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 A historical note on the measurability properties of
 symmetrically continuous and symmetrically

 differentiable functions

 H. Steinhaus asked in 1923 [12] whether there exists a function / : R - ► R

 such that / is discontinuous everywhere yet has an everywhere zero symmetric

 derivative fs = 0, where

 f f./_N (x) = lîrn limfc_o
 f f./_N (x) = lîrn limfc_o

 This question was answered negatively by Z. Charzyński in 1933 [2] after

 some partial results by S. Mazurkiewicz [8] and W. Sierpiński [11]. In fact,

 Charzyński proves that if lim sup^oļ Hx+h)~^{x~h) | < oo for each x € R,

 then the set of points of discontinuity of / is clairsamée (scattered). In 1931,

 while studying a less general version of the symmetric derivative, B. Jurek

 [6] proved that if E is & given clairsamée set, there exists a function which

 is identically zero on the complement of E , positive at each point of E ,

 and has an everywhere zero symmetric derivative. This result was discovered

 independently by E. Szpilrajn in 1933 [13] and after Jurek's work was pointed

 out to him by Jarník, Szpilrajņ published a "Reconnaissance de droit d'auteur"

 in [14].

 In 1935 F. Hausdorff [5] asked whether there is a symmetrically continuous

 function which is discontinuous at the points of an uncountable set or, more

 generally, at the points of a prescribed F„ set. (A function is symmetrically

 continuous if lim^-fO (f(x + h) - f(x - h)) = 0 for every x.) Hausdorff did not

 realize that his second question had already been answered, albeit implicitly, by

 the first part of Charzynski's proof. In 1937 [4], H. Fried published the theorem

 that every symmetrically continuous function is continuous at the points of a

 dense set. As an introduction to his proof he remarks that "Der Beweiss ist

 768



 nach einer Methode, die Z. Charzyński angewendet hat, geführt". But, indeed,

 Fried's proof is merely a reiteration of the first part of the proof of Charznski's

 theorem; even the notation is Charzynski's. Thus, the set of points at which a

 symmetrically continuous function is discontinuous is of first category.

 In 1971 D. Preiss [9] solved Hausdorff's first question by constructing a

 symmetrically continuous function with uncountably many points of disconti-

 nuity. In the same paper he proved that if / : R - ► R is symmetrically con-

 tinuous, then / is continuous almost everywhere. In particular, symmetrically

 continuous functions are measurable and have the property of Baire. According

 to a theorem of M. Chlebík (announced in [3]), the set of symmetrically contin-

 uous functions is of the power 2C and hence there are symmetrically continuous

 functions which are not Borei measurable. An example by Konjagin shows that

 the set of points where a symmetrically continuous function is discontinuous

 need not be <7-porous [17]. A generalization of Preiss' result was given in 1983

 by C.L. Belna in [1] who proved that a function symmetrically continuous on a

 measurable set E is continuous a.e. in E .

 In 1982 J. Uher [16] improved Charzynski's work in a substantial way. He

 proved that if E Ç R is measurable and at each x € E either f'{x) < +oo or

 f*{x) > - oo, then / is different iable at almost every point of E . (Here, f* and

 f denote the upper and lower symmetric derivatives of / .) For measurable

 functions, this was proved by A. Khintchine [7] in 1927. Uher actually proves

 more. Namely, he shows that if each point of E is a density point of the set where

 either f*(x) < +oo or fa(x) > - oo and / is symmetrically semicontinuous at

 each point of E , then f is difFerentiable at almost every point of E . In 1985

 H.W. Pu and H.H. Pu [10] gave a simple proof to show that every function

 having a finite or infinite symmetric derivative everywhere is measurable.

 A function satisfying fè(x) < +oo is necessarily upper symmetrically

 semicontinuous in the sense that lim sup h-*o+(f(x + h) - f(x - h )) < 0. Simi-

 larity, ff(x) > - oo implies that / is lower symmetrically semicontinuous at x.

 Uher realized that his earlier proof actually showed that if / is symmetrically
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 semicontinuous on a measurable set E then f is continuous almost everywhere

 on E . As Uher pointed out, this result, coupled with the earlier theorem of

 Khintchine [7] proves his 1983 theorem above. This work was published in 1986

 [17].

 The theory of symmetric behaviour of functions was reformulated by B.S.

 Thomson in [15]. In this work Thomson first proves two fundamental sym-

 metric covering lemmas and then shows how most all of the known symmetric

 behaviour results (including all the aforementioned results) can be proved using

 these lemmas.
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