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 ON ACG* FUNCTIONS

 The objective of this short note is to clarify the various definitions
 "it "fc

 of ACG . The ACG property is used in defining the Denjoy integral. Also,

 it is used in stating the controlled convergence theorem for the Denjoy

 integral [3, 4, 5 ¡Section 7]. In view of its close affiliation with the real

 line, it wasthe stumbling block for a natural generalization of the

 Denjoy integral to higher dimensions for many years. However a different

 definition, called ACG , was given recently [5;p.l29,6]. It allows easy

 generalization to higher dimensions. We shall show in what follows that

 they are equivalent when considered on the real line.

 ic

 Let us recall the classical definition of ACG . Let Xc [a,b] . A
 'ic

 function F is said to be AC (X) if for every e > 0 there is r¡ > 0 such that

 for every finite or infinite sequence of non- overlapping intervals { [ , t>ļ^] }

 with a^, b^ G X

 I Ibk - '' < n implies £ w(F;[ak>bk]) < e
 k k

 where w denotes the oscillation of F over [a^.b^] . A function F is said to
 ★

 be ACG if F is continuous and [a,b] is the union of a sequence of sets {X^}

 such that the function F is AC (X^) for each i. It is known [ 5 ; p . 29 ]
 'łc "ic - -

 that if F is continuous and AC (X) then F is AC (X) where X is the

 closure of X. In other words, we may always assume in the definition of

 ACG that the set X^ is closed for each i.

 THEOREM 1. A function F defined on [a,b] is ACG* if and only if [a,b] is

 the union of a sequence of sets {X^ } such that for each i and for every
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 € > 0 there is »7^ > O such that for every finite or infinite sequence of

 noiv-over lapping intervals {[a^.b^]} with at least one of a^, belonging
 to

 Elbk - ^1 < Vļ implies £|F(b.) - F(ł ) ļ < €.
 k k

 The proof is elementary (see [ 5 ;p . 27 ] ) . Às suggested by Chew T. S.,
 ★

 the one- endpoint version of ACG as described in Theorem 1 has greatly

 simplified the proof of many results, for example, the equivalence of the

 Henstock and Denjoy integrals [5; section 6].

 Given S(£) >0, a division or a partial division of [a,b] given by a

 finite collection of interval- point pairs í([u,v],£)}, is said to be 5-fine

 if £ e [u, v] c (£ - S( O, £ + ¿(O) for each ([u,v],£). Here £ is called

 the associated point of [u,v] . The following condition in Theorem 2 is a

 weaker version of that in Theorem 1.

 THEOREM 2. A function F defined on [a,b] is ACG* if and only if [a,b] is

 the union of a sequence of sets {X^} such that for each i and for every

 e > 0 there are rj^ > 0 and 6^(0 > 0 for £ G such that for every
 finite or infinite sequence of non- overlapping fine intervals

 {[a^,b^]} with at least one of a^, b^ belonging to

 Il' - '' < 1L implies £lF<bk) - F(ak)| < e.
 k k

 The proof of Theorem 2 is given in Chew [1] . It is equivalent to

 the version given by Henstock [ 2 ; p . 62 ] though both appear in slightly

 different forms. As shown in [2;p.l02], it helps to provide a lucid

 presentation of Henstock' s theory.

 Next, we define yet another version. Let X c [a,b] . A function F is
 "łcłc

 said to be AC (X) if for every e > 0 there are 5(£) > 0 and tj > 0 such that
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 for any two S- fine partial divisions and of [a,b] with the associated

 points in X, in which D 2 may be void,

 (DjV^)! |v - u| < f i implies (Dj'D2) £ |F(v) - F(u) | < «.

 The above sums are over DjV^. Here denotes the collection of

 component intervals [u,v] in - Ē£ where is the union of intervals in
 ifcic

 and the union of intervals in Dj. A function F is said to be ACG

 if [a,b] is the union of a sequence of {X^} such that the function F is

 AC (X^) for each i.

 THEOREM 3. A function F defined on [a,b] is ACG* if and only if F is
 **

 ACG

 PROOF. By taking D 2 void in the definition of ACG , we have precisely the

 conditions in Theorem 2. Hence the sufficiency follows. Furthermore, to
 'frit

 prove neccessity, it is enough to prove the condition in ACG for D 2

 nonvoid. First, suppose that [a,b] is the union of X^, i - 1,2,...,
 "je

 such that F is AC (X^) for each i. Write X - X^ and following the remark

 before Theorem 1 we may assume X closed.

 "łc

 Since F is AC (X) , for every e > 0 there is > 0 such that the

 rest of the condition holds. Choose an open set G D X such that the

 measure | G - X ļ < r¡ . Then for any £ e X, define (£- 6(£ ) , £+£(£ ) ) C G.

 Take any two S- fine partial divisions and D2 with the associated

 points in X. Suppose (D^V^Sļv - u| < r¡ . The component intervals

 [u,v] from can be classified into two groups, one intersecting X

 and the other not. If the latter, then [u,v] c G - X and there is a

 point ^ g X such that [u,v] - [£,v] - [£,u] or [u,£] - [v,£] . Again,

 we may assume both (£,v) and (£,u) are included in G - X, and similarly
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 for the other case. In view of Theorem 1, we have

 .(Dj'D2)Z|F(v) - F(u) I < 3e

 in which one « is contributed by the intervals [u,v] from

 intersecting X and 2e by those not intersecting X, together giving 3c.

 Hence F is AC (X) and consequently ACG

 It is well- known that if F is ACG then F is differentiable almost

 everywhere. However the converse is not true. We shall characterize the

 property which gives the converse. Since it resembles Lusin' s (N)

 condition but stronger, so we shall call it the strong Lusin condition.

 A function F is said to satisfy the strong Lusin condition if for every

 set E c [a,b] of measure zero and for every € > 0 there exists S(£) > 0

 for { 6 E such that for any S- fine partial division D of interval- point

 pairs (([u,v] ,0) with £ e E we have

 (D )l I F(v) - F(u) I < e

 THEOREM 4. A function F defined on [a,b] is ACG* if and only if F

 is differentiable almost everywhere in [a,b] and satisfies the strong

 Lusin condition.

 PROOF. The necessity is obvious. The sufficiency follows from the

 standard argument [ 5 ; p . 31 ] that the derivative F' is Henstock integrable
 "łc

 on [a,b] under the given conditions, and therefore F is ACG . We sketch

 the proof as follows.

 Let f(x) - F' (x) when x € [a,b] - E and 0 otherwise. Here ļ E | -

 0. Then given e > 0 there is 6(£) > 0 such that whenever ( [u,v] ,£) is

 S- fine and £ € [a,b] - E we have
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 I F (v) - F(u) - f(0(v - u)| < é|v - u| .

 Futhermore, for any fi- fine partial division D of interval- point pairs

 ([u,v] ,0 with £ 6 E we have

 (D)Z|F(v) - F(u) I < €.

 Now take any S- fine division D of [a,b]. Split D into and in which

 £ « E and £ e E respectively and we obtain

 I F(b) - F(a) - (D) I f<0(v - u) |

 ^ (D1)X|F(v) - F(u) - f(0(v - u)| + (D2)X|F(v) - F(u)|
 < e (b - a) + e .

 Hence by definition [ 5 ; p . 5 ] f is Henstock integrable on [a,b] . Therefore

 F is AC G* , by Lemma 6.19 [5;p.34].

 Now we may define the Denjoy integral as follows. A function f is

 said to be Denjoy integrable on [a,b] if there is a continuous function F

 such that F' (x) - f(x) almost everywhere in [a,b] and F satisfies the

 strong Lusin condition. We remark that the statement of Theorem 6.22

 [ 5 ; p . 36 ] is faulty. The condition (N) there should be replaced by the

 strong Lusin condition. Though the strong Lusin condition simplifies

 slightly the definition of the Denjoy integral, to state the controlled

 convergence theorem we still require the uniform ACG property.

 For other classical characterization of ACG , see [5,7]. It is

 interesting to note that though the classical definition of ACG has

 difficulty in extending to higher dimensions, all the versions described

 here do not have such handicap. As shown in the proof of the controlled

 convergence theorem for the higher dimensions [5; section 21,6], it is

 necessary to adopt the definition of ACG The other alternative

 definitions are simply not rich enough in order to carry the proof through.
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