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 A set-valued map F, from a topological space X into a locally convex space
 Y, is said to be convex usco if it is upper semicontinuous and takes convex compact
 nonempty values; it is minimal convex usco if there is no other convex usco map
 whose graph is strictly contained in the graph of F. In the following paper,
 minimal convex usco maps are studied and it is shown that usual multivalued Namioka
 type thoerems extend to such maps.

 The paper was written at the end of 1986 but remained unpublished. In
 the meantime L. Jokl's paper (Minimal convex-valued weak*-usco correspondences
 and the Radon-Nikodym property, Commentât iones Math. Univ. Carolinae, 28, 2(1987)
 353-376) appeared, in which most of our results were obtained independently.
 However, we believe that many readers will find our approach to be more efficient
 and more readable than Jokl's. Let us mention, that it was our approach that was
 partially adopted by R. R. Phelps in his 1988 University of Washington Lectures
 (Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Math-
 ematics 1364, Springer 1989).

 In view of the circumstances under which the paper is being published, we
 thought it appropriate to keep its form intact and, accordingly, what follows is
 the original paper without any change.

 ^The paper was written while L.D. was a visiting professor at the Department
 of Mathematics, University of South Carolina, Columbia, S.C. 29208.
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 1. Introduction.

 Here we explain the terminology used in this paper, discuss some multivalued

 Namioka type results that motivate our research and, finally, outline the contents

 of the paper.

 Our main convention is that the term "map" will be used throughout as a shorthand
 for "set-valued map" .

 Let X be an arbitrary topological space, Y = (Y,p) a Hausdorff space, and let

 F:X Y be a map. The following terminology is standard.

 F is uppeA ¿emicontinuouA at a point x of X (uóc at x) if for every open set V
 containing F(x) there exists a neighborhood U of x such that

 F(U) = { J{F(u) : u e U} <Z V.

 F is uppeA ¿emicontinuouA (u&c) if it is use at each point of X. F is U&CO if it is

 use and takes only nonempty compact values. The gAaph of F is defined by

 Gr(F) = {(x,y) e X x Y: y e F(x)}.

 Given another map G:X -»■ Y, we say that G i& contained in F, and write GcF, if

 G(x) c F(x) for each x in X; equivalently , if Gr(G) c Gr(F) . The map F is said to

 be nUyumaZ U&CO if it is usco and does not contain properly any other usco map from

 X into Y. (Likewise, given a family F of maps from X into Y, we may speak of. maps that
 are minimaZ in F.)

 For future reference, we record here a useful result from [2] (cf. also [4]),

 and two of its easy consequences.

 1.1 PROPOSITION. a map F:X -*■ Y i& oóc and compact-vaZued, then <Lt& gAaph ¿i

 a cto¿ed ¿ub¿et ojļ X x Y, and evzA y map G:X Y contained in F and having a cto¿ed
 gAaph i¿ oóc and compact- valued .

 1.2 COROLLARY. a map F:X Y hai a cZoóed gAaph and zvdJiy point x in X hai
 a n&ighboAhood U ¿uch that F(U) ¿6 a AzZativeZy compact ¿ubò et Y, then F Í6 oóc
 and compact- valued.

 1.3 COROLLARY ([2], [6]). EveA y uico map F:X Y contains a minimal u&co map G:X

 Given a map F:X -»■ Y, we define

 Eo (F) = Hq(F;p) = {x e X: F(x) is a singleton and F is p-usc at x}.

 It is easy to see that if the topology p of Y is metrizable, then Eq(F) is a

 subset of X. [In fact, if d is a metric consistent with p, then for each n the set
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 G = {x: d-diam(F(U)) < 1/n for some neighborhood U of x} is open in X, and Hq(F)

 ■Vtcn.l

 By a (multivalued) Namioka type theorem we shall mean any result stating that,
 under some appropriate assumptions about X, Y, and a given family F of maps from X

 into Y, every map F e F satisfies the following condition:

 (N) Hq(F) is a dense subset of X.

 Evidently, if (N) holds for a map F, then it also holds for any map G d F such
 that G(x) ^ 0 whenever F(x) ^ 0; thus, for a map F to satisfy (N) , neither the

 global upper semicontinuity with respect to some other topology on Y, nor any sort

 of "regularity" of its values F(x) , are really necessary. Nevertheless, it appears

 to be highly plausible that the most natural setting for a Namioka theorem is when

 a bitopological space (Y,t,p) is given (where the topology t is usually weaker than

 p), and F consists of maps that are t-usco and are a prujOHÁ, known to be "small", in
 one sense or another. In fact, all the general Namioka type theorems known at the

 moment fit into this natural scheme and, actually, deal exclusively with minimal

 T-usco maps. We refer the reader to [10] for an up-to-date account on this topic,

 and recall here only the Namioka type result of Christensen and Kenderov ([3], 1.6)
 which is relevant to our research.

 1.4 THEOREM. Let X be. a Baisie Apace, and leX Y = (Y,p) be a Banach Apace utith

 the Radon-Nikodym pnopestty. Let t denote, the. mak topology o£ Y, ok the mak* topo-

 logy o¿ Y in ca&e Y i& a dual Banach ¿pace. Then eveny minimal x-aóco map F:X + Y
 ¿atl&^ieó condition (N) .

 The proof of this theorem in [3] followed an idea employed earlier by Kenderov

 [9] in establishing a similar result for monotone maps. We recall (see [11] for more

 information) that if X is a Banach space and D CX, then a map F:D X* is said to be

 monotone if

 <x - y,x* - y*> > 0 for all (x,x*) and (y,y*) in Gr(F) .

 If, in addition, any monotone map G:D X* such that F cz G coincides with F, then F

 is called maximal monotone (over D) . We will say that F is w*-usc [w*-usco] if it is

 use [usco] when D is considered with its norm topology and X* with its weak* topology.

 By the Kuratowski-Zorn Principle, every monotone map F:D X* is contained in a maxi-

 mal monotone map M:D -► X*.

 Kenderov1 s result can be now formulated as follows.
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 1.5 THEOREM. Let X be a Banach. 6 pace wfoo-ôe dual X* ha 6 ¿fie R adon-Uikodym pnopenty,

 and Zet D be an open òubòet oļ X. īfi F:D + X* ¿ó a monotone map a¿Aum¿ng only non-

 empty vaZueò, then the òet o { points x e D òuch that F(x) >¿6 a ¿¿ngZeton and F <u>

 nonm-to-nohm lu&c at x a d<Lvtí>e ¿ub¿et o l D.

 Of course, this is a Namioka type theorem again. Moreover, since it is enough to

 have it proved for maxÃmat monotone maps, and these are known to be w*-usco [8],

 thus modified it seems to be just another instance of the general scheme described

 above. Except that we don't know yet in what sense such maps are "small". Anyway,

 even in the one-dimensional case, a maximal monotone map need not be minimal w*-usco!

 Indeed, if f : R -* R is a discontinuous increasing function, then the map M:R R* = R

 defined by M(x) = [f (x-) , f (x+) ] is maximal monotone and usco, but it is not minimal

 usco.

 In spite of these obstacles, one tends to have a feeling that Theorem 1.4 is

 "more general" than Theorem 1.5. As a matter of fact, the present paper has originated

 from an attempt to make this vague idea precise. We accomplish this via the concept

 of minimal convex-usco maps .

 Let, as before, X be a topological space, and let Y be a Hausdorff locally convex

 space. A map F:X Y is convex UÒCO if it is usco and F(x) is convex for each x e X;

 F is minimal COnvex-UÓCO if it is convex usco and does not contain properly any other

 convex usco map from X into Y. Evidently, the following analog of Cor. 1.3 holds.

 1.6 PROPOSITION. Eveny convex uòco map F:X -> Y contains a minimal convex uòco

 map G:X Y.

 We investigate minimal convex usco maps in Sections 2 and 4. In Section 2 we show

 that, roughly, they arise as "convexifications" of minimal usco maps. From this we

 deduce easily that, under very mild assumptions, a multivalued Namćoka type theorem

 hoZcU {on. minimal convex aóco mapA aX hotdU {ok mJjUmat uòco mapò . In particular,
 we have an exact analog of Theorem 1.4 for minimal convex usco maps.

 In Section 3, devoted to monotone and maximal monotone maps with an open domain D,

 we first reprove quickly a few essentially known results about such maps, in the form

 that suits our purposes. We proceed then to show that a maximal monotone map containing

 a given monotone map is unique. Also, which is more important for us, we show that

 maxÁmaZ monotone map* aAe mwiimat convex w*-oóco, and só Kenderov's result can be
 readily derived from the (convex version of the) result of Christensen and Kenderov.

 Finally, in Section 4, we give some characterizations of minimal convex usco maps.

 In particular we show that a map F is minimal convex usco iff all its compositions

 y*F with continuous linear functionals are minimal convex usco.
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 2. Minimal convex usco maps as convexifications of minimal usco maps.

 In this section, X is a topological space, Y is a vector space, and t, p are

 two Hausdorff locally convex topologies on Y. In our considerations, we will be

 dealing with either the locally convex spaces (Y,t) and (Y,p), or the "bitopological1

 locally convex space (Y,x,p). (Usually x is weaker than p, but we do not need this

 here.) We say that p is t -polan, or that the triplet (Y,x,p) is pol/Vi , if (Y,p) has
 a base of neighborhoods of the origin consisting of x-closed sets (which can be

 chosen to be absolutely convex as well). We say that the space (Y,t) or (Y,x,p)

 has pnopZJVty (C) if the T-closed convex hull co K of every x-compact set K d Y is

 x-compact. (We omit the superscript x, and write simply co K, when there is no risk

 of ambiguity.)

 Given a map F:X -> Y = (Y,x), we define its convcxifiicatíon co F = ~co*FiX Y
 pointwise by

 (co F)(x) = co F(x) .

 2.1 PROPOSITION. Suppose, that (Y,x,p) ¿6 polan..

 a map H:X Y ¿ó p-oóc at a point x e X, F = co H and F(x) ¿ó p -compact, then
 the map F ¿ó p-oóc at x.

 PROOF. Since p is x-polar, the locally convex vector topology v = infix, p} is

 Hausdorff, v p, and p is easily seen to be v-polar. Since v ^ x, F = cc^H d' cc^H
 = G; moreover, F(x) = G(x) by the p-compactness of F(x) . Hence if G is p-usc at x,

 so is F. In what follows we may therefore assume that t 4 p.

 Let I/ be a base of x-closed absolutely convex neighborhoods of 0 in (Y,p). Since

 F(x) is p-compact, the sets F(x) + V ( = 0 if F(x) = 0) , where Vel/, form a base

 of p -neighborhoods of F(x) . Now, as H is p-usc at x, for each Vel/ there is a

 neighborhood U of x such that for all u e U,

 H (u) C H(x) + V c: F(x) + V

 and hence, since F(x) + V is x-closed (because x ^ p) and convex,

 F(u) = ccT'Hiu) cz F(x) + V.

 Thus F is p-usc at x.

 Applying the above proposition with x = p, we obtain the following two results.

 2.2 COROLLARY. a map F:X -* Y = (Y,x) ¿ò minimal convex aòco, then F = co H
 ļoti <L')Vu¿ uòco map H:X Y contained in F.
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 2.3 COROLLARY. Y = (Y,x) ha¿> psiop&ity (C) and a map H:X -*■ Y íá aóc ancí compact/

 valued, &o M> it&çonvexi$içation F- co H.

 in the next resulti "minimal [convex] usé" means "minimal in the class of use

 maps from X into Y which assume nonempty closed {and convex] val ues" .

 2.4 PROPOSITION. Let Y = (Y,x). īļ a map H:X -*■ Y iò minimal uAc, and the map
 F = co H i& u6 c, then F iò minimal, convex aóc.

 PROOF. Suppose it is not go. Then there: exists a convex nonempty-rset-valued use

 map G CF such that G (x) ^ F(x) for some x in X. By the Second Separation Theorem

 for convex sets ([7], 7.3.4), there exists a continuous real-value4 linear functional

 y* on Y such that for some r,

 (1) si p y*(G(x)) < r < sup y*(F(x)) .

 Denote L « {y: y*(y) < r) and M « {y: y*(y) > r} . Then

 (2) H(x) n M Ï 0;

 otherwise H(x) a L, hence F(x) = co H(x) c. Ļ, contradicting (1).

 On the other hand, as G(x) C. L and L is open, there is a neighborhood U of x

 such that

 (3) G(U) C L.

 Now, since H is minimal use, (2) implies thąt H(u) c. M for some u. e U (see [4],

 Prop. 4.6 and Remark 4.7). It ; follows that F Cu) = co H(u) <z. M, which contradicts (3)

 2.5 PROPOSITION. I g Y = (Y,x) hai pnopenZy (C) and a map H:X Y Xá minimal a&co,
 then the. map F = ćo Hi&minÁmal convex a&co.

 PROOF. Apply Cor. 2.3 and Prop. 2.4.

 For a topological space X and a triplet Y = (Y,x,p), let N(X;Y) [resp., Nc(X;Y) ]
 denote the following condition (cf. Introduction):

 For each minimal x-usco [resp., minimal convex x-usco] map F:X -*■ Y, the set

 5q (F) = 5q(F;p) = {x e X: F(x) is a singleton and F is p-usc at x}
 is dense in X.

 2.6 THEOREM, let a topological ¿pace x and a triplet Y - (Y,x,p) be given.

 (a) īļļ Y <ú polaA, then N(X;Y) ==> Nc(X;Y) .
 (b) Ifi Y hoLÁ pnapefuty (C) , then N,(X;Y) ,=» N(X;Y).
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 PROOF. Let F:X -»■ Y.

 (a) Suppose F is minimal convex t-usco, and choose (by Cor. 1.3) a minimal t-usco

 map H CZ F. Then F = cõ^H, by Cor. 2.2. Clearly, 5q(F)c 5q (H) . To prove the reverse
 containment, let x e Hq (H) . Then F(x) = H(x) is a singleton, and Prop. 2.1 shows

 that F is p-usc at x. Thus Eo(F) = Hq(H), and the latter set is dense by N(X;Y).

 (b) Suppose F is minimal x-usco. Then G = coTF is minimal convex t-usco by Cor. 2.5.

 Since F CZ G, we have Zq(G) c. 5q(F); and as 5q(G) is dense by Nc(X;Y), so is 5q(F).

 2.7 COROLLARY. Let Y = (Y,x,p) be a Banach s pace [a dual Banach space] uiith the
 norm to poto g y p and the weak [weak*] topology x. Then, lofi even y topological Apace

 X, condition* N(X;Y) and Nc(X;Y) ate equivalent .

 2.8 COROLLARY. An exact analog o ¿ Theorem 1.4 hold& fior minimal convex t-uaco maps.

 3. Maximal monotone maps.

 In the present section, X = (X, | | • | | ) denotes a real Banach space, X* its dual
 space, and w* the weak* topology of X*.

 We assume throughout that D is a nonempty Open subset of X, and consider only maps

 F:D -*■ X* such that F(x) ^ 0 for all x in D. Recall from the Introduction that such

 a map is said to be w*-usc if it is use when D is equipped with its norm topology,

 and X* with its weak* topology.

 The following three results are essentially known but, for sake of clarity, we

 prefer to state them here, in the form we need later, and with concise proofs.

 We start with an important result due to Rockafellar [121. Our proof of it is the

 same as in Pascali and Sburlan [11], pp. 103-104, except that the Lemma, which is

 a crucial ingredient of this proof, is deduced here directly from the Banach-Stein-
 haus theorem.

 3.1 PROPOSITION. Every monotone map F:D X* is locally bounded ; that is, each
 point x in D ha& a neighborhood u Auch that F(u) is a bounded ( hence relatively
 w*- compact) subset ofa x*.

 LEMMA. (xn) c. X and (x*) cr X* axe s equences s uch that | |xn| | 0 and | |x*| | -+ »,
 then ¿or every r > 0 there exists z e x with ļ ļ z ļ ļ < r, and a strixitly increasing
 sequence ofi indices (n.) such that x* (x - z) -»• -<*> as j -*■ «.

 3 nj nj
 PROOF of the Lemma. Fix r > 0.
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 Coóe 1¿ sup r x*(x ) < °°. r n n

 Since I ļx*| ļ 00 , by the Banach-Steinhaus theorem there exist z e X with
 I I zi I < r and n. + «> such that x* (z) Then x* (x - z) = x* (x ) - x* (z)

 J 1 nv n. n, n * n . n . J J J J J * J . J .

 CdòZ 2: sup x*(x ) = °°; by passing to suitable subsequences we may assume that
 n n

 x*(x ) <*>.
 n n 1 '

 Let y* = x*/x*(xn) ; then ļ |y*| ļ £ ļ [ x^ | [ ' ■+ 00 and y£(xn) = 1« Applying Case 1 to

 the sequences (x^) and (y*) , we find z -with [ | z| | < r and n^ + » so that
 y* (x - z) ■* -«*>.' Then x* (x - z) = x* (x ) • y* (x - z)
 n. n. n. n. n. n, n. n.
 3 J 3 3 3 3 33

 Proof of Proposition 3.1. Suppose F is unbounded in eVery neighborhood of some

 point x e D. Then there exist sequences (x^) c. D and (x*) a X* such that xr x,
 x* e F(xn), and | |x*| | -»■«>. Applying the Lemma to the sequences (xft - x) and (x*) ,
 we find z e X and n. + » so that y = x + z e D and <x - y.x* > -»■ -°°. Take any

 J n n
 y* e F(y) . Then J J

 0 ^ <xn - y ,x* - y*> = <xr - y,x* > - <xn - y,y*> + -°°;
 j j j j j

 a contradiction.

 Given a map F:D -*■ X*, we denote by F the map from D into X* whose graph equals

 the closure in (D,||*||) x (X*,w*) of the graph of F.

 3.2 PROPOSITION. Ij{ a map F:D X* aj> monotone, then the map F:D -»■ X* monotone
 and. w*-ui co.

 PROOF (Comp. [8].). We first show that if a pair (x,x*) e X x X* is such that

 (.+) <x - y,x* - y*> » 0

 for all (y,y*) e Gr(F) , then (+) holds for all (y,y*) e Gr(F) .

 Let (y,y*) e Gr (F) , and let (ya»y*) t>e a net in Gr(F) such that
 Il ya ~ y 1 1 0 ari(i Cb) y* - y 0 (w*).

 Then

 <x - y,x* - y*> = <x - yQ»x* - y*> + <ya~ y,x* - y*> + <x - y,y* - y*>,

 where, to the right of the equality sign, the first term is nonnegative by our

 hypothesis, the second tends to zero in view of (a) and because the net (y*) is

 eventually bounded (by Prop. 3.1), and the third tends to zero in view of (b) . Hence

 <x - y,x* - y*> >0, as claimed.

 Applying the above fact shows that (+) holds for all (x,x*) e Gr(F) and

 (y,y*) e Gr(F) , and applying it once again gives (+) for all (x,x*) and (y,y*) in
 f', ^

 Gr(F) . That is, F is monotone.
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 'V» f'j

 By definition, F has a closed graph; hence, by Cor. 1.2 and Prop. 3.1, F is
 w*-usco.

 The next result is due to Browder ([1], Theorem 1.2 ; cf. also [11], p. 106).

 3.3 PROPOSITION. a map F:D + X* ¿ó monotone., w*-aòc, and take& nonempty
 convex w*-clo¿ed votate, then F maximal monotone .

 PROOF. We have to show that if (z,z*) e D x X* is such that

 (1) <x - z,x* - z*> > 0 for all (x,x*) e Gr(F) ,

 then (z,z*) e Gr(F) , i.e., z* e F(z).

 Suppose z* i F(z). Then, by the Hahn-Banach theorem, there exists y e X such

 that if L = {y* e X*: y*(y) < z*(y)}, then F(z) CZ L. Since F is w*-usc at z and L

 is w*-open, there is a 6 > 0 such that if u e X and | |u| | < 6, then

 z + u e D and F(z + u) d L.

 In particular, for all t > 0 such that ||ty|| < 6 we must have

 (2) z + ty e D and F(z + ty) d L.

 On the other hand, for any such t, if x* e F(z + ty) , then (1) implies

 <(z + ty) - z,x* - z*> > 0, hence <y,x* - z*> > 0, and so F(z + ty) C. X* ' L,

 contradicting (2) .

 With the word "minimal11 omitted, the next result can be found in [8] .

 3.4 THEOREM. Eveny maximal monotone map M:D -* X* iò minimal convex w*-uòco.

 PROOF. It is easy to verify that the map co M (defined in an obvious manner) is

 monotone, hence M = co M by the maximality of M; that is, M is con vex- valued.

 Furthermore, by maximality and Prop. 3.2, M = M, and M is w*-usco. Thus M is a conve>

 w*-usco map, and its minimality follows immediately from Prop. 3.3.

 3.5 COROLLARY. F ok eveny monotone map F:D X* thene ¿ó a pneciAely one maximal

 monotone map M = M^D -* X* containing F.

 PROOF. The existence of at least one such map M is provided by the Kuratowski-

 Zorn Principle. Suppose Mj, M2:D-^ X* are two maximal monotone maps containing F.

 Then, using Theorem 3.4, Prop. 1.1, and Prop. 3.3, it is easy to verify that the map

 M:D -* X* defined by M(x) = Mļ(x) M2(x) is maximal monotone. Since M C Mj , M2 ,

 Mļ = M = M2 follows by maximality.

 Using the notation M introduced in the above result, we have also the following.
 F
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 3.6. COROLLARY .ti F,G:D "-*■ X* axe tm monotone maps Auch that F(x) r' G(x) 4 0

 ion. aZJL x e D, then M^, = mg.

 PROOF. The map H:D -*■ X* defined by H(x) = F(x) r' G(x) ( f 0 by assumption) is

 monotone and contained in both F and G. It follows that c- Mp aûdOH^ ci . Since
 all these maps are maximal monatone, they must coincide.

 We now show that can be defined explicitly.

 3.7 THEOREM. Ii F: D X* Xá a monotone map, then

 M = co (F) :D + X*
 r

 ÁJ) a unique maximaJL monotone map containing F.
 . . . - r'j _

 PROOF. Froìn . Prop. 3.2 we know that the map F is monotone and w*-usco, and

 Cor. 2.3 shows that the map M^ is w*-usco, Moreover, is convex-valued, and it
 is easily seen to be monotone. Thereforę, by Prop. 3.3, M is maximal monotone.

 Oj <'j

 Now, let M:D -> X* be any maximal monotone map containing F. Then FCM = M (by
 - - ^

 Prop. 3.2) and, finally, M = co (F) C M because the values of M are convex and
 F

 w*-closed (Theorem 3.5) . By maximali ty, M^, =» M.

 Now we are ready to deduce Theorem 1.5 (Kenderov's result) from Corollary 2.8

 (a "convex11 analog of Theorem 1.4, the result of Christensen and Kenderov) : By Cor.

 2.8, the assertion of Theorem 1 .5 holds for minimal convex w*-usco maps from D into

 X*. In particular, in view of Theorem 3.4, it holds for maximal monotone maps from

 D into X*, and hence for all monotone maps from D into X*.

 3.8 REMARK. Let A be an arbitrary subset of X, F:A^ X* a monotone map with non-

 empty values, ànd D an open subset of A (e.g. , D = Int A) . Let M:A -+ X* be a maximal

 monotone map containing F. By Prop. 3.1, the map N = M | D is locally böunded. From
 o»

 this it follows, as in the proof of Prop. 3.2, that Gr(M) u 6r(N) is the graph of a

 monotone map from A into X*. By maximality, this last map coincides with M. Hence

 the map N has a closed graph (in D x X*); therefore, it is w*-usco. Moreover, since

 M(x) is convex for all x in A, Prop. 3.3 implies that N is maximal monotone (over D)

 In consequence, by Cor. 3.5 (or Theorem 3.7), we have M¡D = and thus MID is
 determined uniquely by F (and even by f|d).

 We do not know if a maximal monotone map containing a given monotone map is

 always determined uniquely.

 As a corollary to the above we have the following: Thz kQA&iúltjjon o fi a maximaJt

 monotono, map to an opm Azt L n ¿tó domain ¿6 maxònaZ monotone, ovqa that Azt.

 (Of course, if the domain is open, this follows directly from 3.4 and 3.3.)

 738



 4. Some characterizations of minimal convex usco maps.

 Here again, X is an arbitrary topological space and Y is a Hausdorff

 locally convex space.

 The following result is a convex analog of [4], Prop. 4.6 + Remark 4.7 (note

 that our space Y ÁA regular). As in Prop. 2.4, "minimal convex use" is to be under-

 stood as meaning "minimal in the class of use maps which assume nonempty closed
 convex values".

 4.1 PROPOSITION. F on. every convex u&c map F:X •* Y ¿ uch that F(x) áa c£.o¿e>d.
 and nonempty Ion. aZt x e X, the. ¿o-tíouiíng axe. zquivatent.
 (a) F áa mÁJumaZ convex u&c.

 (b) f|u áa mÁnÁmaZ convex uac ¿ on. every open ¿ub&et u o¿ x.

 (c) Whenever U áa an open AubAet o¿ x and c áa a cZo&ed convex Aubòet o¿ Y a uch
 that F(x) n c í 0 ¿OA alt x e u, then F(u) <z C.

 (d) Same a& (c) tu ith c a closed haZ^- Apace Án Y.

 (e) Ton. any x e x, a neighborhood u o¿ x, and an open haZ¿-Apacz V o¿ Y, Á.¿
 F(x) n V ^ 0, then f(u) c. v ¿ on. Aome u e u.

 (f) F on. each x e x, the map F áa mÁnÁmaZ convex u&c at x; that áa, ¿ on. every u&c

 at x map G:X -*■ Y Auch that G o&AumeA nonempty vaJbxeA Án a neighborhood o{¡ x

 and g(x) áa cZoAed and convex, Á.¿ Gc F, then G(x) = F(x) .

 PROOF, (a) (b) : Let U be an open subset of X, and let H:U + Ï be a convex use

 map contained in f|u. Then the map G:X -»■ Y such that g|u - H and g| (X ' U) = f| (X ' U)

 is convex use and GCF. Hence G = F and, consequently, H = f|u. Thus f|u is
 minimal convex use.

 (b) => (c) : The map U 9 x -*■ F(x) O C is convex use and takes nonempty values,

 hence (b) implies that F(x) r> C = F(x), i.e., F(x) c C for all x e U.

 (c) =o (d) : Obvious.

 (d) => (e): Suppose F(u) r' (Y ' V) ^0 for all u e U; then (d) (with C = the

 closed half-space Y ' V) implies F(U) C Y ' V, contradicting the assumption in (e) .

 (e) => (f) : For a map G as specified in (f), suppose that G(x) 4 F(x) . Then,

 by the Second Separation Theorem for convex sets ([71, 7.3.4), there exists a con-

 tinuous real-valued linear functional y* on Y such that for some r,

 sup y*(G(x)) < r < sup y*(F(x)).

 Denote W = {y: y*(y) < r} and V = {y: y*(y) > r} . Since G is use at x, we can find a

 neighborhood U of x such that 0 ^ G(u) C. W for all u e U. But G d F, so there is no

 u e U for which F(u) c. V. However, F(x) c' V ^ 0, and we have a contradiction with (e) .

 (f) =f (a): Obvious.
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 Of course, a result similar to the above holds for minimal convex usco maps.

 Our next goal is to characterize minimal convex usco maps F in terms of their

 compositions y*F with continuous linear functionals y* on the range space Y. We

 first prove a convex analog of Lemma 1(a) in [5].

 4.2 PROPOSITION. Let <|> be a contUnuouò afá¿nz mapping ¿siom a convex ¿ub¿et C

 o ¿ the. locaZJLy convex ¿pace Y Âjnto a L ocalZy com/ex -6 pace Yļ .

 a map F:X Y ¿6 rrU/Umal convex aòco and F(X) <z C, then al&o the. map

 Fļ = <f>F:X + Yļ

 defined by

 Fļ (x) = (f)[F(x)]

 ¿6 nUiUmat convex iiòco.

 PROOF. It is easy to verify that Fļ is convex usco. Now suppose Gļ :X Yļ is

 convex usco and Gļ <Z Fļ , and consider the continuous mapping

 'p :Gr(F) -> Gr(Fļ); (x,y) + (x,<f>(x)).

 Since Gr(Gļ) is a closed subset of Gr(Fļ) (by Prop. 1.1), '¡j *[Gr(Gļ)] is a closed
 subset of Gr(F) . Moreover, *[Gr(Gļ)] = Gr(G) , where G(x) = F(x) n <ķ *[Gļ(x)]
 for all x e X. By Prop. 1.1, G is usco, and since it is evidently convex-valued

 and G CIF, we must have G = F. In consequence, Gļ = <f>G = 'pF = Fļ , which proves that

 Fļ is minimal convex usco.

 4.3 THEOREM. Let F:X -* Y be a convex luco map. Then the. ¿ olZouiing a/ie. equivalent.
 (a) F ¿6 minimal convex u&co.

 (b) y*F ¿6 minimal convex uóco ¿oa eveAy y* e Y*.

 PROOF, (a) => (b) : Apply Prop. 4.2.

 (b) => (a): If Y is a complex vector space, then from (b) and Prop. 4.2 it follow

 that (Re y*)F:X -* R is minimal convex usco for all y* e Y*. We may therefore assume

 that Y is a real vector space. Suppose that there exists a convex usco map G:X -> Y

 such that G c: F and G(xq) ^ F(xq) for some xq e X. Then we can find y* e Y* so that

 sup y*G(xo) < sup y*F(xo). It follows that y*G is a convex usco map contained in

 y*F and y*G(xg) ^ y*F(xg) so that y*F is not minimal, contradicting (b) .

 The implication (a) (b) in the above theorem holds true also in the non-convex

 case, i.e., for minimal usco maps (by [5], Lemma 1(a)), but its reverse is in genera

 false in that case.
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 4.4 EXAMPLE. Let

 00 00

 Aj = U [ 2n«2ir,( 2n+l) 2ir ļ , A2 = U [(2n+Ì)2ir, (2n+2)2ir]
 n=0 n=0

 and

 f^(x) = (sin x)x^ (x) for x e [O,00) and i = 1,2.
 i

 Also, let K » [-1,1] X {0} Kj {0} x [-1,1], C = co(K) C R2 , and choose any compact
 set L such that K CIL CI C. Then define a map F:[0,œ] R2 by setting

 F(x) = { (f^ (x) ,f2(x))} for x e [0,~), and F(») = L.

 It is easily seen that F is usco; moreover, if L = K it is minimal usco. For

 L ^ K it is therefore non-minimal usco.

 Now we are going to show that for every (continuous) linear functional y*

 = ( cļ , c2 ) e R2 = (R2)*, the map y*F:[0,°°] + R is minimal usco. It is usco

 by [5], Lemma 1(a). If x e [0,®), then y*F(x) = Cļfļ(x) + c2f2(x) = c^sin x for
 x e A^ (i = 1,2); hence (y*F) ((a,00)) = [-d,d] for a » 0, where d = maxi | c^ | , | c2 | } .
 For x = °°,

 y*F(oo) = y*(L) = y*(C) = y*[co({ (±1,0) , (0,±1) }) ]

 = co y*({ (±1,0) ,(0,±1)}) = co{±ci,±c2}

 = [-d, d].

 It follows that y*F is minimal usco.
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