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 LOCAL CONVEX HULLS OF A CURVE,

 AND THE VALUE OF ITS FRACTAL DIMENSION

 1. Introduction

 Throughout this paper, T will denote a bounded, simple planar curve, and
 is defined as the image of a continuous, injective function 7, the parametrization,
 defined on an interval [a, 6], with values in the plane. Rectifiable curves have
 finite length. Fractal curves have infinite length, and their fractal dimension lies
 between 1 and 2.

 The only notion of fractal dimension that we consider here is the Minkowski-
 Bouligand dimension

 A(T) = limsup (2 - , (1)
 where B€(x) is the closed disk of centre x and radius e, Uxgr-ß«(®) is the e-
 Minkowski sausage of T, and A denotes the area (2-dimensional Lebesgue mea-
 sure)[l], [4].

 For strictly self-similar or self-affine curves, it is usually possible to give
 the exact value of A(r). For non-theoretical curves, a classical method consists
 in evaluating the quantity >l(Uxgr-Si(^)) for a large range of values of e, and
 trying to estimate 2 - A(T) as a limit, usually by constructing the log-log plot
 of ^4(Uxgr-S«(®)) versus e. This method is justified only for curves such that
 •4(Uxgr-S«(z)) - e2-A(r). An alternative, the box counting method, which is, in
 principle, equivalent, consists in calculating the number N((T) of disjoint squares
 of side e covering I' Then

 A(r)=lim!upi^ffl. (2)
 The compass method calculates the maximal length lf of a regular polygonal

 curve of step e, whose vertices belong to T; then

 A(r) = lim_3up (l + i^ļ) . (3)
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 All these methods have the same drawback: they give very imprecise results
 for the dimension (convergences are too slow), due to the fact that they axe too
 general in nature, and not well adapted to the particular structure of T. Numer-
 ical evidences show that it is possible to find algorithms with faster convergence,
 in the particular case where T is the graph of a continuous function (variation
 method [8], [3]). Until now, no such algorithm had been found for general, simple
 curves. The purpose of this paper is to present an algorithm that generalizes the
 variation method, and is adaptable to the local geometry of a very large family
 of contours in the plane, by the use of convex hulls. We are only concerned here
 with the theoretical foundations of this algorithm, reserving the numerical results
 for publication elsewhere.

 Nevertheless, in order to use our method, we must assume that T is expansive,
 a notion introduced in section 3. The well-known fractal curves are expansive,
 and practically all digitalized curves (geographical coastlines, aggregate contours,
 signal datas, rupture profiles, etc...) may be considered as expansive, within the
 scales of observation. We study in section 2 the globed shape of a curve, by means
 of two quantities: the size, comparable to the diameter, and the deviation, which
 measures the perturbation of a curve. A curve with deviation 0 is a segment.
 These notions are applied in section 4 to the local study of I' We show in section 5
 that, in cases where T is expansive, the rate of convergence to 0 of the local size
 and deviation may determine the value of A(r): this gives the variable steps
 method, with constant deviation. Particular cases are studied in section 6 (graphs
 of continuous functions) and in section 7 (self-similar curves), where a precise
 definition is given of the notion of "statistical self-similarity". Finally, section 8
 presents a general algorithm for the computation of the fractal dimension, the
 local convex hulls method.

 1.1 Notations For any set E in the plane,
 fC(E) denotes the convex hull of E
 diami? is the diameter of E

 dE is its boundary.
 The length of a curve T is L(T), the area of a domain D is A(D).

 The distance between two points x, y is denoted by dist(x, y).

 If X is a set, and /, g are two functions such that X - ► R+*, we write

 fig

 when there exists a constant c such that /(w) < cg(u) for all u> € X, and

 f^9

 if together fig and gif.
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 2. Global analysis of a curve
 i

 Let T be the family of all simple, bounded curves in the plane, non reduced
 to one point. Using the Hausdorff distance, T is considered as a metric space. The
 continuity of a function T -* R+ is understood according to this topology.

 2.1 Definition We call size a continuous function p : T - ► R+, such that

 . jgL _ ļ X - ^K<r» (4) ' diam r _ ļ X - (diam T)2 (4) '
 • ri c ==>■ p(Tļ) < p(r2) (5)
 • H F is a similitude, of contraction ratio c, then

 p(F(T)) = cp(T) . (6)
 In particular, the size of a segment is always equal to its length.
 A trivial example of a size function is

 p(r) = diamT .

 For this definition of p, a segment has the same size as a half-circle of the same
 diameter. The following examples are more sensitive to a perturbation of the
 curve:

 2.2 Example Let

 p(r) = ÌL(aqr)) (7)
 be the half-perimeter of the convex hull. This function clearly verifies (5) and (6).
 As to (4), it is possible to show that

 diam r < p(T) < diam T + 2 (g) diam F

 Indeed, let ajj, Xļ be two points of T, such that dist(xi, a:2) = diam T. Since they
 are both on the curve 5/C(T)), we have

 2 diam T < L(d)C(T)) . (9)

 Let us contruct the smallest rectangle K', containing T, with two sides parallel to
 the segment X'X2- Let I be the width of K'. Since /C(T) C K',

 L{dK(T)) < L(dKļ ) = 2(1 + diam T) . (10)

 Since r meets the four sides of the rectangle,

 *4(£(r)) > 'a(Kx) Z = î/diam z T . (11) Z z

 Inequalities (9), (10), (11) prove (8). Therefore, p is a size function.
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 2.3 Remark Let us recall the probabilistic interpretation of L(dK,(T)) [6]:
 If r is included in a domain D of area 1, let us consider the events

 S' : a random straight line cuts F

 £2 : a random straight line cuts D .

 Then L(dlC(T)) is the probability of Si, conditional on £2 .

 Now, we need to establish a notion related to the "width" for rectangles.

 2.4 Definition For all T € f we call deviation of T a continuous function q :
 T - ► R+, such that

 • <12>

 • Ti c T2 í(ri) < ç(r2) (13)
 • If F is a similitude , of contraction ratio c, then

 q(F(T)) = cq(T). (14)

 In particular, the deviation of a segment is always equal to 0.

 A trivial example of a deviation function is

 ' diam r

 2.5 Remark For any size function p(r), and deviation function ?(r), we have

 >i(K(r))~p(r),(r). (15)

 2.6 Example The breadth of a convex body E in the plane [7] is the mini-
 mum b(E) of the distance between two parallel straight lines which contain E
 between them. One can show that

 q(T) = 6(/C(r))

 is a deviation function, by proving the inequalities

 ig(r)diam T < .4(/C(r)) < 2g(r)diam T .

 Here, the constant 1/2 on the left is the best possible constant (obtained with an
 equilateral triangle, for example), but the constant 2 on the right is not.
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 2.7 Example The inner diameter of a convex body E, denoted diamint(i?), is
 the diameter of the largest disk included in E. This is again a deviation function:
 indeed, it is known that

 ' b(E) < diamint(£) < b(E) ,
 O

 where b(E) is the breadth.

 3. Expansive curves

 When a bounded curve T has infinite length, it is impossible at small scales
 to cover it with disks having disjoint interiors, centred on T. The more intricate T
 is, the more these disks intersect each other.

 Following the same line of thought, we want to measure the common inter-
 section of coverings by local convex hulls, which are much more adaptable to the
 local structure of T than disks. To further apply to the calculus of the fractal
 dimension, we will always consider coverings by convex bodies having comparable
 breadths. A curve is expansive if these local structural elements do not intersect
 too much. In terms of a trajectory, T is expansive, if the move results in a space
 gain with time, instead of repeatedly coming back to old positions.

 3.1 Definition Let q be a deviation function. A curve T is expansive if, for some
 constant c, and for all e > 0, we can find a coveríng ofT by subarcs , such
 that

 - < 9(r») < ce for alii E J (16)

 and

 2>(K(r¡)) < cAU K(r<)) • (1?)
 i€i iei

 3.2 Remark Condition (17) implies that the index family J is finite: indeed, the
 left member of (17) is finite. Every term of this sum is larger than c' q(T{ )2 >
 C' (e/c)2, for some constant c' depending on the choice of q. The series converges,
 only if there is a finite number of terms.

 3.3 Notation For every family {I/,} of sets in a topological space X, we denote
 by u;({í7¿}), the largest of all integers k such that, for at least one x in X, x belongs
 to the interior of k distinct sets in the family {Ui}. In particular, u>( {?/»}) = 1 if,
 for every pair of distinct sets Ui, Uj, their interiors are disjoint.
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 3.4 Proposition Let r G T , and e be such that 0 < e < ç(r). There exists a
 covering {r,} igj by subarcs, such that q(T ¿) = e for all i, and u>({r,}) < 2.

 Proof of Proposition (3.4) Let a direction be given along T (it is usually
 provided by a parametrizai ion of the curve). We write

 X < x'

 when x , x' € T, x' is located "after" x, and x ý x' • The axe of extremities x, x' is
 denoted x^x' . We define the function ut : T - ► T as follows:

 tiť(x) = sup{ x' (E r : x' > x , q(x^x') < e } .

 Let A < B denote the extremities of I' By continuity of the function q, we get

 u€(x) = B q(x"^B) < e
 ue(x) < B =>• q^x^u^x)) = € .

 We define by induction a sequence of points

 x0 -A

 ®t°+ 1 =^€(®t) 5

 until the rank N such that q(x^'^B) < e (see Figure 1).

 Figure 1

 If xpj = B, then take i = 1, . . . , N.
 If xpj < B, then define

 xn+1 = inf{ i'ēT : x'<B, q(x'^B) < e } ,

 which is such that

 XN+ 1 < XN < B ,

 and take T¿ = i = 1, . . . , JV, IV+i = xn+i^B. The only subarcs whose
 interiors have common points are Tfļ and IV+i-

 In either case, the sequence r¿ is as required.
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 3.5 Vocabulary Using the previous notations, the sequence I?i , . . Tm, M = N
 or N + 1, acording to the case being considered, is called the constant deviation
 covering of I' These subarcs have, in general, unequal size - short in the irregular
 parts, long in the smooth parts of I' When T contains a straight part, then the
 maximal size does not tend to 0 with e.

 3.6 Corollary Let T £ P, and e be such that 0 < c < ç(T). Using the constant
 deviation coveríng of F, consider the convex hulls /C(I') for i - 1, . . N. If there
 exists a constant c, independent of e, such that

 f>(£(ro) < * A(J K<r')) •
 i=l «=1

 then r is expansive.

 Proof of Corollary 3.6 When xn = J5, then the Corollary follows directly from
 Definition (3.1). Otherwise, the axe r yv+i is needed to cover T. Note that c > 1.
 We may write

 N+l N

 Y2 AW >)) = '£ AW i)) + AW N+l ))
 1= 1 1= 1

 < cA(ö?=1!C(ri)) + A(K(rN+i))
 N

 < 2c maxMdJ £(I')) , A{1C{ TN+1))}
 i= 1

 N+l

 <2cA('J IC(Ti)).
 i= 1

 Thus, the family {I'} verifies conditions (16) and (17).

 4. Examples of expansive curves

 4.1 Example
 Let r be such that, for all x in T, there exists a straight line Dr such
 that

 DInr = {i}.

 Then T is expansive.
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 To show this, let us first note that, for any subarc Ti C T,

 K(r1)n(r-r1) = u. (is)

 Indeed, if there exists a point x in this intersection, every line through x cuts Ti ,
 and therefore it cuts T at two points. This is impossible.

 Let us now show that, if Tj and are two disjoint subarcs of T, and U', U2
 are the interiors of their convex hulls /C(Ti) and £^2), then

 Ut n U2 = 0 . (19)

 Otherwise, there exists a point z in this intersection which is not on F. The
 point z belongs to some chord A'B' of Ti, and to some chord A2B2 of Either
 Ti cuts A2B2 , or r2 cuts A'B' (see Figure 2). In the first case, U2 n Ti ^ 0. In
 the second case, U'V'T2 ^ 0. Both axe impossible, from (18). Therefore (19) is
 true.

 Figure 2

 In conclusion, if we take, for every e, the constant deviation covering {I'}
 of r, the convex hulls £(]?,•) have disjoint interiors; hence

 «=1 ¿=1

 and the conditions of Corollary (3.6) axe fulfilled.

 4.2 Application Let T be the graph of a continuous function in a cartesian
 system of axes. Then T is expansive. Indeed, every line parallel to Oy cuts T at 0
 or 1 point.
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 4.3 Example This is a generalization of the last example:
 Let r be such that , for some constant c, for every subarc T* ofT, there
 exists a convex set W(T*) C £(T*), such that

 w(Tm) n (r - r*) = 0 (20)

 ¿(/C(r*))<c.4(w(r*)). (2i)

 Then T is expansive.

 Indeed, again using the constant deviation covering of T, we deduce from (20)
 that if i ^ j, then W^(I') and W(rj) have disjoint interiors, as in Example (4.1).
 This gives

 N N

 Y, AK(rO) S e £ ^(W(r0) from (21)
 »=1 1=1

 = CX(U ^))
 »=1

 < c^(U ņr,)) .
 i=l

 Notice that in general, the convex set W(T*) does not contain the entire arc T*
 (otherwise, W(Tm) =

 4.4 Application Example (4.3) describes a family of expansive curves, which
 actually contains most of the curves obtained in practice, with a constant c close
 to 1, inside the observation scales. It is also possible to show that self-similar
 curves belong to this family.

 4.5 Example
 Let r be a seif-affine curve, determined by the affine transformations
 F', Fļ, ..., Fn in the plane, such that T = UFj(r). Moreover, we
 suppose that T is included in a convex domain D such that

 ( i ) F¡(D)CD
 (ii) the interiors of the Fi(D ) are disjoint.

 Then T is expansive.

 To show this, let us call p the smallest absolute value of the eigenvalues of F',
 . . ., Fpj. For all segments S, and for alii, we have

 L(Fi(S))>pL(S). (22)
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 Every x in T is the limit of an imbedded family of affine copies of D:

 Dt(x) = (Fi,o...oFh)(D),

 where {¿i , . . . , î*} G {1, . . . , N}k. In particular, -Djfc(x) contains the subarc (F^ o
 . . . o Fi k)(T) of r.

 Let q be a deviation function. Being given e, such that 0 < e < p, there exists
 for every x € T an integer Kx such that

 q(DKx+1(x )) < e < q{DKl(x )) .

 PVom (22), q(DKx+1(x)) > pq(DKx(x)), so that

 * < q(DKm(x)) < ~n ■ P

 If x and y are two points of T, either Dkx (x) and Dk, ( y ) have disjoint interiors or
 they are equal. This proves that {Dkx{z)}x£ t is a finite family of convex bodies,
 with disjoint interiors, covering T. Each of them contains exactly one arc of T,
 and also its convex hull. Using Definition (3.1) directly, with c = 1, T is expansive.

 5. Fractal dimension of an expansive curve

 Let p and q be size and deviation functions.

 5.1 Proposition Let T be an expansive curve. For all e, such that 0 < e < «m,
 let {r¿} be a covering ofT, satisfying (16) and (17). Let L( = ]C»ejP(r«)- Then

 A(r) = Bmsup (l + pipì) . (23)

 5.2 Remark Formula (23) looks very mudi like (3). But in the latter, all steps
 along the curve have equal length. The steplengths in (23) (that is, the size of
 the covering elements) axe, in general, different. Only the deviation ç(I') of every
 step is kept uniform (Formula (16)), equivalent to e. Therefore (23) defines a new
 method, very different in nature from the previous ones, that we call the variable
 step method, with uniform deviation.
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 5.3 Remark If (e¿) is a sequence tending to 0, such that

 lim !°8£i±i = ! ,
 fc- OO loge*

 then

 u™p (x + Sã). - 1,?-«up í1 + né) ■ (24)
 Proof of Proposition (5.1) Let e be given. Every convex set £(I') has an
 area equivalent to p(I') q(Ti) (15), that is, ep(I'). Let K[ be the set of all points
 at distance < e from /C(I'). This set is convex too, with diameter diam£(I') +2e,
 and breadth b(K.(Ti)) + 2c. Therefore,

 A(Kļ) ~ -4(/C(r¿)) ä ep(rť) . (25)

 Since

 UAC(r¿) C Uxer£t(z) C u K'i , (26)
 we have

 eL€ ~ ^ ^4(/C(r,)) from (25)

 < c^U/C^)) from (17)
 < c^(Uxgr-B<(®)) from (26)
 <cA('JK[) from (26)

 < c' eL( from (25) ,
 for suitable constants c and c'. Therefore

 ,4(Uxer.Bť(aO) ^ eL€ ,

 which proves (23).

 5.4 Example Let T be a triangle ABC of sides 1, 1, y/2, as in Figure 3, two
 parameters hi, h<i such that 0 < hļ < hi < 1, and a chain {T,}i<¿<yv of isoceles
 triangles of base hļ , height h2, vertices AíBíCí. We assume that

 Ax- A , Bn = B , andT, nTi+1 = {B¿} = {¿i+i} for i = 1, . . . ,N - 1 .

 This construction defines a simple, self-affine curve (we may notice that the
 value of the Hausdorff dimension is not known for such a curve). Each of the N
 affinities has eigenvalues h'ļy/2 and hļy/2. For every k, the curve T is covered
 with Nk triangles, of size ~ h J, and deviation ~ h%. Letting e = h% and L( =
 Nk h* in (23), we get

 A(r) = 1+W
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 Figure 3

 With

 l°g and J a log h2
 a = logļ7 r log^

 this can be written

 A(r) W = 1 + - - - = ß + 1~a
 A(r) W = 1 + - ß - - ß = ß

 This formula, discovered in a particular case, is actually very general in the
 context of curves having uniform deviation , as the next theorem shows.

 5.5 Notations Let T = 7([a, 6]) be a parametrized curve. For all pairs (ťj, ť2) of
 real numbers, we write

 Í 7([<i,*2]) if a < <t2 <b-,
 I'ťi ,t2) = < 7(īa>*2]) if h < a;

 It([*i,6]) Xb<t2.

 For simplicity, we use the notations p(ti,t2), q(tļ,t2) instead of p(r([ťi,ť2])),
 mviM))-

 5.6 Definition Let ß, 0 < ß < 1. We say that the parametrized curve T has
 uniform deviation of exponent ß if, for all ti < t2 in [a, &];

 q(ti,t2) ( t2 -txý .

 The property of uniform deviation depends on the parametrization of the
 curve.
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 5.7 Theorem Let T be a parametrized curve, with uniform deviation of expo-
 nent ß. We also assume that T is expansive. Let

 1 fb
 p(t) = j- j p(t-T,t + T ) dt

 be the average size of the subarcs T(t - r, ť + r), and

 a = uminfl^El).
 r-»0 log r

 Then

 A(T) = fi + ya . (27)
 Proof of Theorem (5.7) For all e, such that 0 < e < q(T), let {I'}i<j<jv be
 a covering of T, verifying (16) and (17). For all i=l, . . N, let us call [a¿, ò,] the
 interval of [a, 6] such that 7([a», 6¿]) = I'. The family {[a¿, 6,]} is a covering of T.
 Without loss of generality, we may assume that

 u>({[a¿,&,-]}) < 2 .

 This implies that
 N

 a.) <2 (6 -a). (28)
 «= i

 Let r =

 We deduce from Proposition (5.1) that

 Using (16), and the fact that T has uniform deviation of exponent ß ,

 s(r¡) ^ ^ ft - «.j)" ,

 so that

 bi - ai~ T . (29)

 With (28), this implies
 r ~ JV-1 , (30)

 and

 A(r) = 1 + i - liminf r-*0 los^p=ip(r') . ß r-*0 log r
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 So that all we have to prove is that, when r - ► 0, or N - ► oo,

 liminf l0g ^ P(ri) = a . (31)
 logr

 a) We write

 fb N rbi

 I p(t - T,t + r)dt < I p(t - T,t + t) dt .
 Ja i=1 Ja¡

 By the mean theorem, there exists 6 [a,-, such that

 fbi
 / p(t - t, t + r) dt = (bi- ai)p(ri - r, r,- + r ) ,

 Jai

 so that, using (29):
 1 N

 - Ñ J2p(ri * T> r»' + r) • (32)
 i=i

 Using (29) again, there exists an integer K, independent of e and i, such that

 u>({[r¿ - r,r¿ +r]}) < K .

 Therefore, the family {[r¿ - r,r,- + r]} can be split into K families (some of them
 possibly empty) U', . . ., Uk, of disjoint intervals. Every u EU cannot meet more
 than K' intervals [a,-,é¿], for some other constant K', so that

 J2p(u) ś K' ]Tj>(rť) .
 «ew t=i

 This gives
 N N

 5^J>(h -T,ri + T)<KK' 5^Kr«) •
 j=i i=i

 With (32), we obtain

 PM * ji í>r<> • <33>
 1=1

 b) For a converse inequality, note that, for some constant c, and for all t G [a¿, 6¿]:

 [o,-, bi] C[t - cT,t + ct] . (34)

 Since {[a,-, 6¿]} can be split into two families of intervals with disjoint interiors,

 rb 2 N ^
 J p(t - cr,t + ct) dt > - ^ J p{t - CT, t + cr) dt .
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 By the mean theorem, there exists s,- G [a¿, 6¿] such that

 l>bi

 I p(t - er, t + er ) dt = ( bi - ai)p(si - CT, sì + cr)
 Ja¡

 > (bi - a,)p(r¿) from (34)

 tj-fp(ri) from (30).

 Therefore

 ^P(CT) - (35)
 «=i

 Formulas (33) and (35) suffice to prove (31).

 5.8 Remark Since q ^ p, the inequality

 a < ß (36)

 is always true. Moreover, when T is expansive, the sum ^«4(£(I')) is bounded
 for all e. Since

 £A(T,)) ^ r» Np(T)
 „ Ta+ß-l ' - ' 5

 we get

 ct + ß>l. (37)

 When a + ß = 1, A(r) = 2.

 Figure 4
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 The pair ( a,ß ) lies in the triangle bounded by the lines ß = 1, a = ß,
 a + ß = 1. The surface (Figure 4) consisting of the points (a, ß, A), where

 is bounded by three curves:
 a) The segment a + ß = 1, A = 2.
 b) The segment ß = 1, A = 2 - ot.
 c) The hyperbola a = ß, A = ¿ .

 The last two cases contain important families of fractal curves which we study in
 detail in the following section.

 6. Graphs of continuous, non- differentiable, functions

 Let f(t) be a non-constant, continuous function [a, b] - ► R, and T its graph.
 We have seen in Application (4.2) that T is expansive. Its length is infinite when
 the subset of [a, b] on which / is not differentiable has measure > 0. The natural
 parameter of T is the abcissa t. Thus, r(¿i,<2)> where a < t' < tļ < 6, denotes
 the arc of T of extremities (ti,/(<i), (^»/(^)*

 Let R(ti,t2) be the smallest rectangle whose sides are parallel to the axes,
 containing r(ťi,<2)- This rectangle has base tļ - ti- Its height is equal to

 v(ti,t2 ) = sup{ I /(ť) - f(t") I , t', t" G [ti,t2] } •

 It is called the oscillation of f on the interval [<i , <2] - The convex set /C(T(íi, ť2))
 touches ail four sides of the rectangle. Its size is equivalent to the diagonal
 of R(ti,t2), and its deviation is smaller than the two side-lengths; so

 P(h,t2) oí y/v(tut2)2 +(<i -t2)2 , q(h,t2) ^ min{(<2 ~ti,v(tut2)} .

 Using the inequality

 Tv(a,b) X I v(t - T, í + r)dt ,
 we obtain that the average size is equivalent to the average oscillation, which is
 named variation of the function f in [8]:

 1 fb
 p(t) ~ 7

 b~a Ja

 Let us consider a typical case, where

 q(tut2)><*2-ti) (38)
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 for some constant c. This inequality is verified when there exist <3, <4 in [<1,^2]
 such that |<4 - <3 1 > c(<2 - <i) and /(*3) = /(¿4)- It is the case, in particular, for
 strictly self-affine graphs.

 If (38) is true, then T has constant deviation of order 1. We talee /9 = 1, and

 a =Iim .
 r-*0 log r

 Then, Theorem 5.7 implies
 A(r) = 2 - a , (39)

 a formula known as the variation method [8], [2], [3]. It corresponds to case b)
 of Remark (5.8). In the strictly self-affine case, the parameter a plays the role
 of Holder coefficient H [4], characterizing the non-differentiability property of
 the function /. In the case of Weierstrass, or Weierstrass-Mandelbrot functions,
 a = H is directly related to the fractional derivability of the function [9]. Note
 that, even if (38) is not verified, (39) is still true. We conjecture that (39) is true
 for all curves such that

 7. Self- similar curves

 A strictly self-similar curve may be shown to verify the assumptions of The-
 orem (5.7); the proof is omitted. The similarity implies that the size of a subarc
 is equivalent to its deviation, which gives

 ° = ß, (40)

 an equality which corresponds to case c) of Remark (5.8). Then

 A(r) = I.

 In return, Formula (40) could help to characterize the statistical self-similarity , at
 least in a weak sense:

 7.1 Definition We say that a simple, parametrized curve T is statistically self-
 similar if it possesses the following two properties:

 (i) r is expansive.
 (ii) There exists a parameter a such that

 p(ti,t2 ) - q(ti,t2 ) c* |¿i - <2 Ia •
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 8. Methods for the fractal dimension evaluation

 Formula (39) gives a method for evaluating the dimension of graphs that has
 been proven to give excellent results. Our varia ble-step algorithm with constant
 deviation, defined in (23), may be used for a much larger family of curves. One
 drawback of this method is that the extremity A of the considered curve plays a
 special role. A numerical method is always better when it gives every point of the
 curve the same importance. Accordingly, the evaluated length L( in (23) may be
 replaced by an average length corresponding to different starting points. This idea
 finally leads to a new local convex hull method, which is as follows:

 For every e, and for all x € T, we have defined a "next" point u€(x) on T,
 such that

 q(x~u((x)) = e

 if itf(x) 7^ B. Now a domain S(e) enclosing T is constructed, by talcing the union
 of the convex sets K(x^u((x)), for all x G I' This domain may also be defined as

 5(e) = ļ^J{ segments xy such that x, y € T and q(x^y) < e} .

 Since r is continuous, 5(e) is a simply connected domain, which is much more
 adapted to the structure of T than the Minkowski sausage. It may be used for the
 same purpose; indeed,

 8.1 Proposition IfT is expansive :

 A(r) = limr(2 -ÎSfcJP). (41)
 Proof of Proposition (8.1) Let e > 0, and Tļ, . . ., T# be a covering of T as
 in Definition 3.1. We have proved, in Proposition 5.1, that

 .4(U/C(r,)) ^ .4(U*er£ť(s)) • (42)

 Since g(r¿) < ce for all i, we have

 UÍÍ.Kfr,)) C S(c,0 , (43)

 for some constant c'. Let x', X2 be two points of T such that q(x 1^X2) < e. For
 some constant C2, every point of ÌC(x 1^X2) is at a distance < C2 e from X'~~*X2-
 Therefore,

 £(xi~*2) C Uxgr-Sc2i(aO •

 This implies
 u£Li£(r¿) C S(ce ) C Uxgr-Bcic2«(aO .
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 With (42), we finally obtain

 .4(uxerB£(s)) - ¿(uj^/qro)
 < .4(S(cae))
 ^ >^(Uigr^ciC2í(®)) •

 We deduce

 l^togĄSW) =iiminfloS^(U.€rB.(x))
 e-*o log e «-►o log e

 which terminates the proof.

 I wish to thank one of the referees for pointing out that convex hulls have already
 been used for a local study of certain irregular planar curves (e.g. geographical
 coastlines): the interested reader is refered to [6].
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