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On Functions Discontinuous
on Countable Sets

If f is a real valued function on (0, 1) such that each z € (0,1) is a left and
right accumulation point of the set f~!(f(z)), then (by a familiar argument)
f is constant on any interval on which it is continuous. The question we pose
here is this: must f be constant on any interval on which f is continuous at all
but (possibly) countably many points? The answer is no. We will construct a
bounded function F on (0,1) such that F is continuous at each irrational point,
discontinuous at each rational point in (0, 1), and such that each z € (0,1) is a left
and right condensation point of F~1(F(z)). To wit, each set (0,z) N F~!(F(z))
and (z,1) N F~!(F(z)) will meet any neighborhood of z in continuum many
points.

By a nondifferentiable function on (0,1) we mean a function that has no
derivative, finite or infinite, at any point in (0,1). By a nowhere monotone
function on (0,1) we mean a function that is not monotone on any subinterval
of (0,1). In [1] it is shown that a continuous function f, not constant on any
interval, is nowhere monotone on (0,1) if and only if the set

Py = {y € (inf f,sup f) : f'(y) is a perfect set}

is a residual subset of the interval (inf f,sup f). In [2] it is shown that if f is a
continuous nondifferentiable function on [0, 1] then the set (inf f,sup f) \ Po has
measure zero. These results inspire our theorems:

Theorem 1. Let f be a function conditions on (0,1) at all except possibly
countably many points, and constant on no interval. Let f have an infinite
unilateral derivative at no point. Put

P ={y € (inf f,sup f) : f"!(y) equals a perfect set minus a countable set}.

Then the following are equivalent.

(1) (inf f,sup f) \ P is a first category set,
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(2) P is dense in the interval (inf f,sup f),

(3) f is nowhere monotone on (0,1).

Theorem 2. Let f be a function continuous on (0,1) at all except possibly
countably many points, and let f have an infinite unilateral derivative at no
point. Let P be as in Theorem 1. Then the following are equivalent.

(4) The set of all points where f has a nonzero derivative has measure zero.

(5) The set (inf f,sup f) \ P has measure zero.

It will follow that our example is a function F satisfying the hypotheses of
Theorems 1 and 2 as well as the properties (1), (2), (3), (4) and (5). In this case,
P = (inf F,sup F).

For other examples, consult [0, Theorem 4].

Let g; be a function satisfying the hypotheses of Theorem 1 and also the prop-
erties (1), (2) and (3) of this theorem, such that inf g,(0,3] =0, supg:(0,3] =1,
and let g, be an increasing function on (%, 1), discontinuous at a dense set of
points in (},1), such that inf g,(},1) = 0, and supg,(3,1) = 1. Let g(z) = g1(z)
for 0 < z < } and g(z) = gs(z) for 1 < z < 1. Then g satisfies properties
(1) and (2), but not (3) of Theorem 1. Moreover, g satisfies all the hypotheses
of Theorem 1 save one; g has an infinite unilateral derivative at each point of
discontinuity of g,.

We need some preliminary lemmas.

Lemma 1. If E is a second category subset of an interval I, then there exists
a subinterval J of I such that J N E is an uncountable and dense subset of J.

Proof. This is straight-forward, so we leave it. O

Lemma 2. Let f be a function on (0,1), continuous at all but possibly
countably many points of (0,1). Let y € f(0,1). Then f~!(y) equals a perfect
set minus a countable set if and only if the set f~(y) contains no isolated point.

Proof. Let z; be an isolated point of f~!(y) and let f~!(y) = A\ B where
A is a perfect set and B is a countable set. Then zo € A, so z¢ is a condensation
point of A and likewise of f~!(y). But this is impossible.

Now let f~!(y) contain no isolated points. Then its closure f~'(y)~ is a
perfect set. The only points in f~!(y)~ \ f~!(y) are points at which f is discon-
tinuous. By hypothesis f~!(y)~\ f~(y) is a countable set. It follows that f~!(y)
equals a perfect set f~!(y)~ minus a countable set f~(y)~ \ f~(y). O
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We say that a function g is Darboux continuous on an interval I if whenever
a,b € I, g(a) # g(b) and y lies between g(a) and g(b), there is an z between a
and b such that g(z) = y.

Lemma 3. Let g be a function on the interval I such that g is continuous
at all but (possibly) countably many points of I, and g has an infinite unilateral
derivative at no point of I. Then g is Darboux continuous on I.

Proof. Let a,b € I, a < b, g(a) # g(b), and let y be a number between
g(a) and g(b). Say for definiteness, g(a) < y < g(b). The proof for the reverse
inequalities is analogous. Suppose there is no z € (a,b) with g(z) = y. The
sets C = [a,b] N g™ !(—o0,y) and D = [a,b] N g~!(y, 00) are nonvoid. Moreover
[a,b] = CuU D, CN D = 0, and because [a,b] is connected, C N D # @ where C
is the closure of C and D is the closure of D.

Let u € C N D be a right (left) accumulation point of D. Then any neigh-
borhood of u contains points in C and D to the right (left) of u because g does
not have an infinite right (left) derivative at u; by the argument in the preceding
paragraph, any neighborhood of u contains points of C N D to the right (left) of
u. So any point of C N D is an accumulation point of C N D. Likewise any point
of C N D is an accumulation point of CND. But CND = (CnD)u(CnD)
because C U D = [a,b]. It follows that C N D is a nonvoid perfect set. Moreover,
g must be discontinous at each £ € C N D because g(z) # y. Finally, C N D can
contain at most countably many points, and this is impossible. O

Lemma 4. Let g be a function on the interval (0, 1), continuous at all points
of (0,1) except (possibly) countably many. Let each z € (0,1) be a left and
right accumulation point of both the sets g!([g(z), 00) and g~!(—o0,g(z)]. Then
each neighborhood of any z € (0,1) contains continuum many points of the set
(0,z) N g™'(g(z)) and of the set (z,1) N g~1(g(z))-

Proof. We will prove only for (z,1) N g~*(g(z)). The proof for (0,z) N
97 (g(z)) is analogous.

Let ¢ be any number > z. Then (z,c) contains points of g~!(—o0,g(z)]
and of g~1[g(z),00). Moreover it follows from the hypothesis that g has an
infinite unilateral derivative at no point. The interval (z,¢) must contain points
of g~!(g(z)) by Lemma 3. Put

X ={u€ (z,c) : g(u) = g(2)}.
Then X # 0.
Each point of X is a right accumulation point of X by the argument in the
preceding paragraph. The closure of X, then, is a perfect set and has the power
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of the continuum. At each point v € X, where g is continuous, g(v) = g(z). It
follows that g(v) = g(z) for continuum many points v € X. But X C (z,¢), so
X C [z,¢|. Thus the interval [z,c| contains continuum many points v for which
g(v) = g(2). O

Proof of Theorem 1. We will prove (1) = (2) = (3) = (1).

(3) = (1). Let (inf f,sup f) \ P be a second category set. By Lemma
2, the set f~!(y) contains an isolated point if y € (inf f,sup f) \ P. For each
y € (inf f,sup f) \ P select an isolated point z(y) in f~1(y). Let X = {z(y) : y €
(inf f,sup f) \ P}. Then f(X) is a second category set.

It follows that there is a ¢ > 0 such that f(W) is a second category set where
W = {z € X : the distance from{z} to f~!(f(z)) \ {z} > ¢}. Now (0,1) is the
union of finitely many intervals of length < ¢, so there exist a,b € (0,1) (a < b)
such that b — a < ¢ and f((a,b) N W) is a second category set. Note that if
z € (a,b) "W, then

(+) {z} = (a,0) N f7}(f(2)).

By Lemma 1, there is an open interval J such that f((a,b) "W) N J is an un-
countable dense subset of J. Choose an z, € (a,b) "W such that f is continuous
at zo and f(zo) € J. Let I be an open subinterval of (a,b) containing z, such
that f(I) C J.

We claim that there exist no points r,s,t(r < s < t) in I such that either
f(s) < min(f(r), f(t)) or f(s) > max(f(r),f(t)). For otherwise there is a y €
f((a,b) N W) N J such that y € (f(s),min(f(r), f(t))) or y € (max(f(r), f(¢)),
f(s)); in either case, by Lemma 3, there exist z; € (r,s),z; € (s,t) such that
y = f(z1) = f(z2), contrary to (*). It follows that f is monotone on the interval

(1) = (2). Clear.

(2) = (3). Let f be monotone on the open subinterval I of (0,1). Then f
must be nonconstant on I by hypothesis, and f must be continuous on I; for if
f is discontinuous at any point z € I, then f has an infinite unilateral derivative
at z. Each point u € I is an isolated point of the set f~(f(u)),so PN f(I) = 0.
Thus P is not dense in the interval (inf f,sup f). 0

Let f be continuous on the compact interval [0,1]. Then f~(y) is a closed
set for any y in the range of f. If f~1(y) = A\ B where A is perfect and B is
countable, then any point in f~!(y) is a condensation point of A and of f~(y);
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it follows that f~!(y) is a perfect set. Moreover, f is Darboux continuous so our
Lemma 3 is not needed here. A review of our arguments with these points in
mind shows that we can restate some result in [1] as follows.

Corollary 1 (K.M. Garg). Let f be continuous on [0,1] and constant on
no interval. Let

Py = {y € (inf f,sup f) : f~'(y) is a perfect set}.
Then the following are equivalent.

(1) (inf f,sup f) \ P is a first category set.
(2") P is dense in the interval (inf f,sup f).

(3) f is nowhere monotone.

Proof of Theorem 2.

(4) = (5). Assume that (inf f,sup f) \ P does not have measure zero. Let
Y be the set of all y € (inf f,sup f) \ P such that f~!(y) does not contain a
point where f has a strict relative maximum or strict relative minimum. Then
Y does not have measure zero. By Lemmas 2 and 3, we can (and do) choose for
each y € Y, a point z(y) € f~!(y) such that f(t) — f(z(y)) changes sign as ¢
passes through z(y). Thus either the bilateral lower derivate of f is nonnegative
at z(y), or the bilateral upper derivate of f is nonpositive at z(y). Let X =
{z(y) : y € Y}. By a theorem of Denjoy-Young-Saks [3, Theorem 4.2, p. 270] f
is differentiable almost everywhere on X. But f(X) =Y, and f' is not infinite
at any point of X. It follows from [3, Theorem 4.5, p. 271] that f' is nonzero on
a subset of X, not of measure zero.

(5) = (4). Assume that the set of points where f' exists and is nonzero
does not have measure zero. Without loss of generality we assume that f' is
positive on a set not of measure zero. Then there is a ¢ > 0 such that the set
{z: f'(z) > c} is not of measure zero. It follows that {z : f'(z) > ¢} has a subset
E, not of measure zero, such that f(z) — cz is an increasing function on E. (To
see this, observe that there is a set E, C {z : f'(z) > ¢}, not of measure zero,
and a number d > 0, such that f(z;) — f(z2) > c¢(z1 — z2) for z, € Ey,z; € Ey
and 0 < z; — z; < d; let E be a subset of E;, not of measure zero, such that
diameter E < d.) Then there exists an increasing function g on (0,1) such that
g(z) — cz is increasing on E and g(z) = f(z) for all z € E. Hence ¢’ > ¢ almost
everywhere on E, so by [3, Lemma 9.4, p. 126], g(E), and hence f(E), do not
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have measure zero. By Lemma 2, f(E)NP = @ because each z € E is an isolated

point of the set f~!(f(z)). Hence the set (inf f,sup f) \ P cannot have measure
zero. O

Let f be a continuous function on the compact interval [0,1]. It is easy to
show that y € P if and only if f~!(y) is a perfect set. Moreover, f is Darboux
continuous so our Lemma 3 is not needed here. With these observations in mind,
we can restate the results in [2] as follows.

Corollary 2 (S. Minakshisundaram). Let f be continuous on [0, 1], and
let f have an infinite (bilateral) derivative at no point. Let

Py = {y € (inf f,sup f) : ™ (y) is a perfect set}.
Then the following are equivalent.

(4') The set of points where f has a nonzero derivative has measure zero.

(5") The set (inf f,sup f) \ P, has measure zero.

In all that follows, E will be a countable dense subset of (0,1). Let ey, ez, €3,
«++y€n,... be an enumeration of E.

Definition. Let X be a closed set. We say that u,v € X (u < v) are
consecutive points of X if (u,v)N X = 0.

Note that (u,v) is a component interval of the open set R\ X.

Now let 0 < a < b <1 and let f be a function defined on the doubleton
set {a,b} such that f(a) # f(b). Let e be some element of E witha < e < b
and define h(a) = f(a),h(b) = f(b),h(e) = 3(f(a) + f(b)). We call h an even
extension of f on {a,b}.

Let {¢n}®, C EN (a,b) be elements of E such that ¢; < ¢; if ¢ < j and such
that lim,— ¢ = b, lim,—_o, ¢, = a. Define k(a) = f(a),k(b) = f(b),k(cn) =
f(a) for n even and k(c,) = f(b) for n odd. We call k an odd extension of f on
{a,b}.

More generally, let f be defined on a closed subset X of [a,b], such that
f(u) # f(v) whenever u,v € X (u < v) are consecutive points of X.

Definition. Let k be the common extension of f together with an even (odd)
extension of f on {u, v} for each pair of consecutive points u,v (v < v) of X. We
call k an even (odd) extension of f on X.

Note that the domain of h is also closed. Moreover, if u,v (v < v) are
consecutive points of the domain of h, then h(u) # h(v).
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Let fo be the function defined on the doubleton set {0,1} = E, such that
fo(0) = 0, fo(1) = 1. Let f; be an odd extension of f, such that the domain
E, of f, contains e;. Let f, be an even extension of f; such that the domain
E; of f; contains e;. Let fs be an odd extension of f; such that the domain Ej
of fs contains es. Let f; be an even extension of fs such that the domain E,
of f, contains e,. And so forth. In general, f, is an even or odd extension of
fa-1 depending on whether n is even or odd. In either case, the domain E, if f,
contains e,,.

Let f be the greatest common extension of all the function f, (n =1,2,3,...)
on EU{0,1} = U2, E,. Let L, denote the value |f,(u) — fo(v)| where u,v €
E, (v < v) are consecutive points of E,. By construction, L, = L,-; if n is odd,
and L, = }L,_, if n is even.

The domain of f is dense in [0,1]. Let z € (0,1) \ E. Let u,,v, (u, < v,) be
the consecutive points of E, for which u, < £ < v,. Then

max{f(va), f(va)} — min{f(va), f(un)} = Ln

and lim L,, = 0. By construction f((un,v,) N E) is a subset of the closed interval
joining f(u,) to f(vs). It follows that the limit lim.cg .~ f(€) exists. Define
F(z) to be this limit. For t € E U {0,1} put F(t) = f(t). Thus F is defined
on [0,1] and 0 < F < 1. It also follows that F is continuous at each point of
(0,1) \ E. Because

min(F(u,), F(va)) < F(z) < max(F(u,), F(v,)),

it follows that if n is odd, there exist ¢;,¢2 € (un,z) and ts,t4 € (z,v,) such that
F(t,) < F(z) < F(t;) and F(ts) < F(z) < F(t,). Hence z is a left and right
accumulation point of each set F~1[F(z),00) and F~!(—o0, F(z)].

Now let s € E. Say s € E, \ E,_;. It is clear that F is left and right
discontinuous at s; consider f,,; if n is even and f,4; if n is odd. Thus F is
discontinuous at the points in E U {0,1} and at no other points. Moreover, f,1
or fn+2 shows that s is a left and right accumulation point of the set F'~!(F(s)).
Finally by Lemma 4, it follows that each neighborhood of any z € (0,1) contains
continuum many points of the set (0,z) U F~!(F(z)) and of the set (z,1) N
F~(F(z)).

We note that F can have no nonzero unilateral derivative at any point in (0, 1),
and F satisfies the hypotheses of Theorems 1 and 2 as well as the conditions (1),
(2), (3), (4), (5) of these Theorems.

We see that at each point of (0,1), the upper Dini derivates D~ F and D*F
are nonnegative and the lower Dini derivates D_F and D, F are nonpositive.

It is easy to show that F' attains its maximum and minimum values on any
subinterval I of (0,1), closed or not. To prove this observe that sup F(I) =
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sup F(E N I) and inf F(I) = inf F(E N I), and examine carefully the functions
fn. We will leave the argument.

In conclusion, a necessary condition that g be nondecreasing on (0,1) is that
g be continuous at all but at most countably many points and the upper Dini
derivates of g be everywhere nonnegative. But this condition is not sufficient for
g to be nondecreasing on (0,1), as our example F showed.
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