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 On Functions Discontinuous

 on Countable Sets

 If / is a real valued function on (0, 1) such that each x € (0, 1) is a left and
 right accumulation point of the set /-1(/(x)), then (by a familiar argument)
 / is constant on any interval on which it is continuous. The question we pose
 here is this: must / be constant on any interval on which / is continuous at all
 but (possibly) countably many points? The answer is no. We will construct a
 bounded function F on (0, 1) such that F is continuous at each irrational point,
 discontinuous at each rational point in (0, l), and such that each x € (0, 1) is a left
 and right condensation point of F~1(F(x)). To wit, each set (0, x) n F~1(F(x))
 and (x, 1) n F~1(F(x)) will meet any neighborhood of x in continuimi many
 points.

 By a nondifferentiable function on (0,1) we mean a function that has no
 derivative, finite or infinite, at any point in (0,1). By a nowhere monotone
 function on (0, 1) we mean a function that is not monotone on any subinterval
 of (0,1). In [l] it is shown that a continuous function /, not constant on any
 interval, is nowhere monotone on (0, 1) if and only if the set

 Po = {y G (inf /,sup /) : /-1(y) is a perfect set}

 is a residual subset of the interval (inf /,sup /). In [2] it is shown that if / is a
 continuous'nondifferentiable function on [0, 1] then the set (inf /,sup /) ' Po has
 measure zero. These results inspire our theorems:

 Theorem 1. Let / be a function conditions on (0, 1) at all except possibly
 countably many points, and constant on no interval. Let / have an infinite
 unilateral derivative at no point. Put

 P = {y € (inf /,sup /) : /_1(y) equals a perfect set minus a countable set}.

 Then the following are equivalent.

 (l) (inf /,sup f)'P is a first category set,
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 (2) P is dense in the interval (inf /, sup /),

 (3) / is nowhere monotone on (0, 1).

 Theorem 2. Let / be a function continuous on (0, 1) at all except possibly
 countably many points, and let / have an infinite unilateral derivative at no
 point. Let P be as in Theorem 1. Then the following are equivalent.

 (4) The set of all points where / has a nonzero derivative has measure zero.

 (5) The set (inf /, sup f)'P has measure zero.

 It will follow that our example is a function F satisfying the hypotheses of
 Theorems 1 and 2 as well as the properties (l), (2), (3), (4) and (5). In this case,
 P = (inf F,sup F).

 For other examples, consult [0, Theorem 4].
 Let <7i be a function satisfying the hypotheses of Theorem 1 and also the prop-

 erties (1), (2) and (3) of this theorem, such that inf <7i(0, |] = 0, sup j/i(0, 5] = 1,
 and let <72 be an increasing function on (|, 1), discontinuous at a dense set of
 points in (|, 1), such that inf <72(5» 1) = 0, and sup 02(5» 1) = 1« Let flf(x) = <7i(x)
 for 0 < X < ' and g(x) = g^x) for | < x < 1. Then g satisfies properties
 (l) and (2), but not (3) of Theorem 1. Moreover, g satisfies all the hypotheses
 of Theorem 1 save one; g has an infinite unilateral derivative at each point of
 discontinuity of <72«

 We need some preliminary lemmas.

 Lemma 1. If E is a second category subset of an interval J, then there exists
 a subinterval J of I such that J fi E is an uncountable and dense subset of J.

 Proof. This is straight-forward, so we leave it. □

 Lemma 2. Let / be a function on (0,1), continuous at all but possibly
 countably many points of (0,1). Let y 6 /(0,1). Then /-1(y) equals a perfect
 set minus a countable set if and only if the set /-1(y) contains no isolated point.

 Proof. Let x0 be an isolated point of /_1(y) and let /-1(y) = A'B where
 A is a perfect set and B is a countable set. Then xo E A, so xo is a condensation
 point of A and likewise of /-1(y). But this is impossible.

 Now let /_1(y) contain no isolated points. Then its closure /-1(y)~ is a
 perfect set. The only points in /-1(y)~ ' /-1(y) are points at which / is discon-
 tinuous. By hypothesis '/-1(y) is a countable set. It follows that /-1(y)
 equals a perfect set /-1(y)~ minus a countable set /-1(y)~ ' /_1(y). □
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 We say that a function g is Darboux continuous on an interval I if whenever
 a, 6 € I, g (a) g(b) and y lies between g(a) and 9(6), there is an x between a
 and 6 such that g(x) = y.

 Lemma 3. Let g be a function on the interval I such that g is continuous
 at all but (possibly) countably many points of /, and g has an infinite unilateral
 derivative at no point of I. Then g is Darboux continuous on I.

 Proof. Let a, 6 G I, a < b, g(a) ý í/(&)> &nd let y be a number between
 g (a) and g(b). Say for definiteness, g(a) < y < g{b). The proof for the reverse
 inequalities is analogous. Suppose there is no x G (a, 6) with g(x) = y. The
 sets C = [a, 6] D <7_1(- 00, y) and D = [a, 6] fl g~l(y, 00) are nonvoid. Moreover
 [a, 6] = C U D, C n D = 0, and because [a, 6] is connected, G fi Ď ^ 0 where G
 is the closure of C and D is the closure of D.

 V _

 Let u G C D D be a right (left) accumulation point of D. Then any neigh-
 borhood of u contains points in C and D to the right (left) of u because g does
 not have an infinite right (left) derivative at u; by the argument in the preceding
 paragraph, any neighborhood of u contains points of Č fl Ď to the right (left) of
 u. So any point of C fl D is an accumulation point of G n D. Likewise any point
 of G fl D is an accumulation point of G n D. But G fl D = (C fl D) U (G fi D)
 because C U D = [a, 6]. It follows that G D D is a nonvoid perfect set. Moreover,
 g must be discontinous at each x € G fi D because g{x) ^ y. Finally, G D D can
 contain at most countably many points, and this is impossible. □

 Lemma 4. Let g be a function on the interval (0, 1), continuous at all points
 of (0, 1) except (possibly) countably many. Let each x € (0, 1) be a left and
 right accumulation point of both the sets y-1[y(x),oo) and 0-1(- oo,y(x)]. Then
 each neighborhood of any x € (0, 1) contains continuum many points of the set
 (0,x) D </_1(<7(x)) and of the set (x, 1) n y-1(^(x)).

 Proof. We will prove only for (x, 1) n ¡7"" 1(</(x)). The proof for (0,x) fl
 <7-1(<7(x)) is analogous.

 Let c be any number > x. Then (x,c) contains points of y-1(- oo,y(i)]
 and of </-1[y(x),oo). Moreover it follows from the hypothesis that g has an
 infinite unilateral derivative at no point. The interval (x, c) must contain points
 of <7-1(<7(x)) by Lemma 3. Put

 X = {u € (x,c) : g(u) = ?(x)}.
 Then X ¿ 0.

 Each point of X is a right accumulation point of X by the argument in the
 preceding paragraph. The closure of X, then, is a perfect set and has the power
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 of the continuum. At each point v 6 X, where g is continuous, g(v) = g(x). It
 follows that g(v) = g(x) for continuum many points v E X. But X C (x, c), so
 X C [x,c]. Thus the interval [x,c] contains continuum many points v for which
 g(v) =g(x). □

 Proof of Theorem 1. We will prove (l) => (2) => (3) ^ (l).

 (3) => (1). Let (inf/,sup/) ' P be a second category set. By Lemma
 2, the set f~1(y) contains an isolated point if y € (inf /, sup /) ' P. For each
 y € (inf /,sup /) 'P select an isolated point x(y) in /-1(y). Let X = {x(y) : y €
 (inf /,sup /) ' P}. Then f{X) is a second category set.

 It follows that there is a c > 0 such that f{W) is a second category set where
 W = {x € X : the distance from{x} to /_1(/(x)) ' {x} > c}. Now (0,1) is the
 union of finitely many intervals of length < c, so there exist a, b Ç. (0, 1) (a < 6)
 such that b - a < c and /((a, 6) fi W) is a second category set. Note that if
 x € (a, 6) H W, then

 (*) (x} = (a,6)n/-1(/(x)).

 By Lemma 1, there is an open interval J such that /((a, 6) fi W) fl J is an un-
 countable dense subset of J. Choose an Xo € (a, b) fl W such that / is continuous
 at xo and /(x o) € J. Let I be an open subinterval of (a, 6) containing xo such
 that /(/) C J.

 We claim that there exist no points r,s,i(r < s < i) in / such that either
 f(s) < min(/(r), f(t)) or f(s) > ma x(/(r),/(i)). For otherwise there is a y 6
 f((a,b) n W) n J such that y € (/(s),min(/(r),/(í))) or y € (max(/(r), /(ř)),
 /(s)); in either case, by Lemma 3, there exist Xi € (r, s),x2 € (s,i) such that
 y = f(x i) = /(x2), contrary to (*). It follows that / is monotone on the interval
 /.

 (1) =>• (2). Clear.

 (2) => (3). Let / be monotone on the open subinterval I of (0,1). Then /
 must be nonconstant on / by hypothesis, and / must be continuous on J; for if
 f is discontinuous at any point x € /, then / has an infinite unilateral derivative
 at x. Each point u € I is an isolated point of the set /-1 (/(«)), so Pn /(/) = (#.
 Thus P is not dense in the interval (inf /,sup /). □

 Let / be continuous on the compact interval [0,1]. Then /_1(y) is a closed
 set for any y in the range of /. If f~l(y) = A'B where A is perfect and B is
 countable, then any point in /-1(y) is a condensation point of A and of /-1(y);
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 it follows that /-1(y) is a perfect set. Moreover, / is Darboux continuous so our
 Lemma 3 is not needed here. A review of our arguments with these points in
 mind shows that we can restate some result in [l] as follows.

 Corollary 1 (K.M. Garg). Let / be continuous on [0,1] and constant on
 no interval. Let

 P0 = {ye (inf /, sup /) : /-1(y) is a perfect set}.

 Then the following are equivalent.

 (l') (inf /, sup /) ' Po is a first category set.

 (2') Po is dense in the interval (inf /, sup /) .

 (3') / is nowhere monotone.

 Proof of Theorem 2.

 (4) =► (5). Assume that (inf /,sup /) ' P does not have measure zero. Let
 Y be the set of all y € (inf /,sup /) ' P such that /-1(y) does not contain a
 point where / has a strict relative maximum or strict relative minimum. Then
 Y does not have measure zero. By Lemmas 2 and 3, we can (and do) choose for
 each y G Y, a point x(y) 6 /-1(y) such that /(f) - f(x(y)) changes sign as t
 passes through z(y). Thus either the bilateral lower derivate of / is nonnegative
 at x(y), or the bilateral upper derivate of / is nonpositive at x(y). Let X =
 {x(y) : y G V}. By a theorem of Denjoy-Young-Saks [3, Theorem 4.2, p. 270] /
 is differentiate almost everywhere on X. But f(X) = Y , and /' is not infinite
 at any point of X. It follows from [3, Theorem 4.5, p. 271] that /' is nonzero on
 a subset of X , not of measure zero.

 (5) =>• (4). Assume that the set of points where /' exists and is nonzero
 does not have measure zero. Without loss of generality we assume that /' is
 positive on a set not of measure zero. Then there is a e > 0 such that the set
 {x : f'(x) > c} is not of measure zero. It follows that {x : f'(x) > c} has a subset
 E, not of measure zero, such that f(x) - ex is an increasing function on E. (To
 see this, observe that there is a set E' C {x : f'(x) > c}, not of measure zero,
 and a number d > 0, such that f(xi) - f(x¡) > c(x' - X2) for X' € Ei,Xļ G Ei
 and 0 < Xi - Xļ < d] let E be a subset of Ei, not of measure zero, such that
 diameter E < d.) Then there exists an increasing function g on (0, 1) such that
 g(x) - ex is increasing on E and g(x) = f(x) for all x € E. Hence g' > c almost
 everywhere on E, so by [3, Lemma 9.4, p. 126], g{E)t and hence f(E)t do not
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 have measure zero. By Lemma 2, f(E)r'P = 0 because each x € E is an isolated
 point of the set /-1(/(x)). Hence the set (inf /,sup/) ' P cannot have measure
 zero. □

 Let / be a continuous function on the compact interval [0,1]. It is easy to
 show that y € P if and only if /-1(y) is a perfect set. Moreover, / is Darboux
 continuous so our Lemma 3 is not needed here. With these observations in mind,
 we can restate the results in [2] as follows.

 Corollary 2 (S. Minakshisundaram). Let / be continuous on [0,1], and
 let / have an infinite (bilateral) derivative at no point. Let

 Po = {y € (inf /,sup/) : /-1(y) is a perfect set}.

 Then the following are equivalent.

 (4') The set of points where / has a nonzero derivative has measure zero.

 (5') The set (inf /, sup /) ' P0 has measure zero.

 In all that follows, E will be a countable dense subset of (0,1). Let ei,e2,es,
 . . . , en, . . . be an enumeration of E.

 Definition. Let X be a closed set. We say that u,v € X (u < t>) are
 consecutive points of X if (a, v) fi X = 0.
 Note that (u, v) is a component interval of the open set R'X.
 Now let 0 < a < b < 1 and let / be a function defined on the doubleton

 set {a, 6} such that f(a) ý /(&)• Let e be some element of E with a < e < b
 and define h{a) = f(a),h(b) = f(b),h(e) = ¿(/(a) + /(&))• We call h an even
 extension of / on {a, 6}.
 Let {cn}^ C£n(a, b) be elements of E such that c,- < Cj if t < j and such

 that limn-oo Cn = b , linin-oo cn = a. Define k(a) = f(a),k(b) = f(b),k{cn) =
 /(a) for n even and k(cn) = f(b) for n odd. We call k an odd extension of / on
 {. a,b }.

 More generally, let / be defined on a closed subset X of [a, 6], such that
 f(u) ± f{y) whenever u,v E X (u < v) are consecutive points of X.

 Definition. Let h be the common extension of / together with an even (odd)
 extension of / on {u, v} for each pair of consecutive points a, v (« < v) of X. We
 call h an even (odd) extension of / on X.

 Note that the domain of h is also closed. Moreover, if u, v (u < v) are
 consecutive points of the domain of h, then h(u) ý h(v).
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 Let /o be the function defined on the doubleton set {0, 1} = Eq such that
 /o(0) = 0, /o(l) = 1. Let fx be an odd extension of /0 such that the domain
 E' of /1 contains t'. Let /2 be an even extension of /1 such that the domain
 Eļ of /2 contains 1 2. Let /3 be an odd extension of /2 such that the domain E*
 of /3 contains e$. Let /4 be an even extension of /3 such that the domain £4
 of /4 contains €4. And so forth. In general, fn is an even or odd extension of
 /n_ 1 depending on whether n is even or odd. In either case, the domain En if fn
 contains en.

 Let / be the greatest common extension of all the function /„ (n = 1, 2, 3, . . .)
 on E U {0, 1} = Un=o -É'n- Let Ln denote the value |/n(u) - /n(t>)| where u,v €
 En (u < v) are consecutive points of En. By construction, Ln = Ln-' if n is odd,
 and Ln = 'Ln_i if n is even.

 The domain of / is dense in [0, 1]. Let x € (0, 1) ' E. Let un,vn (un < vn) be
 the consecutive points of En for which un< x < vn. Then

 max{/ (t>n) , / (un) } - min{/(v„), /(«„)} = Ln

 and lim Ln = 0. By construction f((univn)C'E) is a subset of the closed interval
 joining /(un) to f{vn). It follows that the limit lim exists. Define
 F(x) to be this limit. For t € E U {0,1} put F(t) = f(t). Thus F is defined
 on [0, 1] and 0 < F < 1. It also follows that F is continuous at each point of
 (0, 1) ' E. Because

 min(.F(un),F(t>n)) < F(x) < max(Jf(un), F(vn)),

 it follows that if n is odd, there exist íi, ř2 6 (un, x) and € (x,v„) such that
 F{h) < F(x) < F(t 2) and F(is) < F (x) < -F^). Hence x is a left and right
 accumulation point of each set F~l[F(x),oo) and -F-1(- 00 , F (x)].

 Now let s € E. Say s € En' En- j. It is clear that F is left and right
 discontinuous at s; consider /n+1 if n is even and /n+2 if n is odd. Thus F is
 discontinuous at the points in E U {0, 1} and at no other points. Moreover, /n+1
 or /n+2 shows that s is a left and right accumulation point of the set F~1(F(s)).
 Finally by Lemma 4, it follows that each neighborhood of any x € (0, 1) contains
 continuum many points of the set (0,x) U F~*(F(x)) and of the set (x, 1) n
 F-Wx)).

 We note that F can have no nonzero unilateral derivative at any point in (0, 1),
 and F satisfies the hypotheses of Theorems 1 and 2 as well as the conditions (1),
 (2) , (3) , (4) , (5) of these Theorems.

 We see that at each point of (0,1), the upper Dini derivates D~ F and D+ F
 are nonnegative and the lower Dini derivates and D+F are nonpositive.

 It is easy to show that F attains its maximum and minimum values on any
 subinterval I of (0,1), closed or not. To prove this observe that sup F (I) =

 650



 sup F (E D I) and inf F(I) = inf F (E n J), and examine carefully the functions
 fn. We will leave the argument.

 In conclusion, a necessary condition that g be nondecreasing on (0, 1) is that
 g be continuous at all but at most countably many points and the upper Dini
 derivates of g be everywhere nonnegative. But this condition is not sufficient for
 g to be nondecreasing on (0, 1), as our example F showed.
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