Vasile Ene, Institute of Mathematics, str. Academiei 14, 70109 Bucharest, Romania

ON SOME QUESTIONS RAISED BY J. FORAN

In a comprehensive survey article [7], J. Foran has raised several interesting questions related to some classes of continuous functions. In the following, we are dealing with three of these questions. As a part of our approach, we will settle in the negative two of Foran's conjectures.

Let $\mathcal{C} = \{F : F \text{ is continuous}\}; L = \{F : F \text{ is Lipschitz}\}; H = \{h : [a,b] \longrightarrow [c,d] : h \text{ is a homeomorphism}\}; \overline{H} = \{h \in H : h \in AC\}.$ Banach's conditions T_1 , T_2 , S, Lusin's condition N and conditions VB, VBG, VB, AC, ACG are defined in [13]; A(N), B(N), \mathcal{F} , \mathcal{S} in [9].

Definition 1. [8]. A function $F: [0,1] \longrightarrow \mathbb{R}$ satisfies Foran's condition M (resp. M_{*}) on $F = \overline{F} \subset [0,1]$ if F is AC on each closed subset of F on which F is $VB \cap C$ (resp. $VB \cap C$).

Definition 2. [12]. Let $F: [0,1] \longrightarrow \mathbb{R}$, $E^{\infty} = \{x : F'(x) = \frac{+}{2}\infty\}$; $\mathbb{N}^{\infty} = \{F : |F(E^{\infty})| = 0\}$.

Definition 3.[7]. A continuous function f on a closed interval is B_2 provided $\{y : f^{-1}(y) \text{ is finite}\} \cap J$ is uncountable, where J is any open interval in the range of f.

Definition 4. [7]. A continuous function f on a closed interval satisfies condition S' provided to each open interval J in the range of f corresponds a number ε_J such that $|\mathbf{E}| \gg \varepsilon_J$, whenever E is a measurable set for which $F(E) \supset J$.

Definition 6. Given a natural number N, let $\mathcal{F}(N)$ (resp. $\mathfrak{L}(N)$) be the class of all continuous functions F defined on a closed interval I for which there exist a sequence of sets $\{E_n\}$ and a sequence of natural numbers $\{N_n\}$ such that $\sup\{N_n\} = N$, $I = \bigcup E_n$ and F is $A(N_n)$ (resp. $B(N_n)$) on E_n . If we drop the condition $\sup\{N_n\} < \infty$ we obtain Foran's class $\mathcal{F}(\text{resp. }\mathfrak{L})$. If the sets E_n are supposed to be closed we obtain conditions $[\mathcal{F}(N)]$, $[\mathcal{L}(N)]$, $[\mathcal{F}]$, $[\mathcal{L}(N)]$

Definition 7. [11] (p.416). For a function f satisfying property P on sets we say that f is generalized P on E, writing $f \in GP$ on E (resp. $f \in [GP]$ on E) if E can be written as the union of countably many sets (resp. closed sets) on each of which f is P. Thus we have properties like GS^* , GS^{**} , GB_2^* , GT_1^* , GS, GT_1 (resp. $[GS^*]$, $[GS^{**}]$, $[GB_2^*]$, $[GT_1^*]$, [GS], $[GT_1]$).

J. Foran asks for a characterization of each of the following classes of continuous functions: a) HeVBG, b) $\overline{H} \circ ACG$, c) $\overline{H} \circ VBG$. With respect to the class a) we prove that it is contained in the class $[GB_2^*]$ and our conjecture is that the converse inclusion is also true. With respect to the class b) we show that it is contained in the class $[GS^*]$ and our conjecture is that the converse inclusion is also true. At the same time, we show that the class $[GS^*]$ is strictly contained in the Lusin class N. In this way, we settle in the negative Foran's conjecture asserting that the class $\overline{H} \circ ACG$ is

identical to the class N. With respect to the class c), we prove that it is contained in the class $[GT_1^*]$ and we conjecture that the converse inclusion is also true. Moreover, we show that $[GT_1^*]$ is strictly contained in the Banach class T_2 ; this settles in the negative Foran's conjecture asserting the identity $\overline{H} \circ VBG = T_2 \circ T_2 \circ T_3 \circ T_4 \circ T_4 \circ T_5 \circ T_5$

In what follows we need the following results:

iemma 1. Let $f:P\to R$, $P=\overline{P}\subset [0,1]$, $f\in C$ and let $s:f(P)\to \overline{R}_+$, s(y) is the number (finite or infinite) of points of $f^{-1}(y)$. Then s(y) is Borel measurable.

<u>Proof.</u> The proof is similar with that of [13] (Theorem 6.4,p. 280). Indeed, let $a = \inf(P)$, $b = \sup(P)$ and let $s_k^{(n)}$ be the characteristic function of the set $f(I_k^{(n)} \cap P)$, where $I_k^{(n)}$ are defined as in [13]. Clearly $s_k^{(n)}$ are Borel measurable and following [13], s(y) is Borel measurable.

Lemma 2. $S = N \cap T_1$ for continuous functions on each closed subset of [0,1].

Proof. The proof is identical with that of [13] (p.284-285) if we use Lemma 1 instead Theorem 6.4,p.280 of [13].

Theorem A. (Theorem 7.4,p.284 of [13] and the Corollary of p. 131 of [12]). $S = N \cap T_1 = N^{\infty} \cap T_1$ for continuous functions on a closed interval.

Lemma 3. (Krzyzewski-lemma, see [10]). If F_{ap} exists at every point of a set E and |F(E)| = 0 then $F_{ap}(x) = 0$ at almost all points $x \in E$.

We will need the symmetric perfect sets and functions defined on these sets which are given in the following construction: Let $\[\[\] = \{a_k\}_k, \ k > 0 \]$, be a sequence of positive numbers such that $a_0 = 1$, $a_{k-1} > 2a_k > 0$ and let $c_k = a_{k-1} - a_k$. Let $C(\alpha) = \{x : \text{There exists } e_i(x) \text{ taking on 0 or 1 and } x = \sum e_i(x)c_i\}$. If $\alpha = \{1/3^k\}_k \text{ then } C(\alpha) = C$ (C = the Cantor ternary set) and if $\alpha = \{1/2^k\}_k \text{ then } C(\alpha) = [0,1]$. The open intervals deleted in the s-1 s-step of the construction of $C(\alpha)$ are $C_{e_1 \cdots e_{s-1}}(\alpha) = \sum_{i=1}^{s-1} e_i c_i + \sum_{i=1}^{s-1} e_i c_i$

 a_s , $\sum_{i=1}^{s-1} e_i c_i + c_s$), $(e_1, \dots, e_{s-1}) \in \{0,1\}^{s-1} = \{0,1\}x \dots x\{0,1\}$ (s-1) times and the remaining intervals of the s-step are

$$R_{e_1 \cdots e_s}(\alpha) = \left[\sum_{i=1}^{s} e_i c_i , \sum_{i=1}^{s} e_i c_i + a_s \right], \text{ where } (e_1, \dots, e_s) \in \{0, 1\}^s.$$

Then
$$C(\alpha) \subset \bigcup_{(e_1, \dots, e_s) \in \{0, 1\}^s} R_{e_1 \dots e_s}(\alpha)$$
, hence $|C(\alpha)| =$

lim $2^{S}a_{S}$. We say that α is of type (*) if $a_{k-1} > 2a_{k}$, $k=1,2,\ldots$. Show Then each $x \in C(\alpha)$ is uniquely represented and $C(\alpha)$ is a symmetric perfect nowhere dense subset of [0,1], $0,1 \in C(\alpha)$. We say that is of type (**) if $a_{k-1} \geqslant 2a_{k}$, $k=1,2,\ldots$. We say that α is of type (***) if $c_{2k-1} = 2 \cdot c_{2k}$, $k=1,2,\ldots$. Let $\alpha = \{a_{k}\}_{k}$, $\alpha' = \{a_{k}\}_{k}$, $k \geqslant 0$, be two sequences of type (*), $c_{k} = a_{k-1} - a_{k}$, $c_{k}' = a_{k-1}' - a_{k}'$, $k \geqslant 1$. Let $\alpha'' = \{a_{k}'\}_{k}$, $k \geqslant 0$, be a sequence of type (**), $c_{k}'' = a_{k-1}'' - a_{k}''$, $k \geqslant 1$. Let $I^{(\alpha)} \circ C(\alpha) \to C(\alpha'')$, $I^{(\alpha)} \circ C($

$$\begin{aligned} & e_{2i}(x)c_{2i-1}^{"}) \; ; \; F_{1}^{\alpha,\alpha''} : C(\alpha) \longrightarrow [0,1), \; F_{2}^{\alpha,\alpha''} : C(\alpha) \longrightarrow [0,1), \; F_{1}^{\alpha,\alpha''}(x) \\ & = \; F_{1}^{\alpha,\alpha''}(\sum_{i=1}^{\infty} e_{i}(x)c_{i}) \; = \; \sum_{i=1}^{\infty} e_{2i-1}(x)c_{2i-1}^{"} \; ; \; F_{2}^{\alpha,\alpha''}(x) \; = \; \end{aligned}$$

 $F_2^{\alpha,\alpha''}(\sum_{i=1}^{\infty}e_i(x)c_i) = \sum_{i=1}^{\infty}e_{2i}(x)c_{2i}^{\alpha}$. Extending $I^{\alpha,\alpha''}$, $G^{\alpha,\alpha''}$, $F_1^{\alpha,\alpha''}$, $F_2^{\alpha,\alpha''}$ (resp. $G^{\alpha',\alpha''}$) by linearity on the intervals contiguous to $C(\alpha)$ (resp. $C(\alpha')$), we have these functions defined and continuous on [0,1]. Clearly $I^{\alpha,\alpha'}(x) = x$ on [0,1]. We have

(1)
$$I^{\kappa_{j}\kappa''}(x) = F_{1}^{\kappa_{j}\kappa''}(x) + F_{2}^{\kappa_{j}\kappa''}(x)$$
;

(2)
$$G^{\kappa,\kappa''}(R_{e_1\cdots e_{2k}}(\kappa)\cap C(\kappa)) = R_{e_2e_1\cdots e_{2k}e_{2k-1}}(\kappa'')\cap C(\kappa'')$$

and $G^{\kappa,\kappa''}(R_{e_1\cdots e_{2k}}(\kappa)) = R_{e_2e_1\cdots e_{2k}e_{2k-1}}(\kappa''), k=0,1,...$

(3)
$$G^{\kappa'}, G^{\kappa, \kappa'} = I^{\kappa, \kappa''}$$
 on $C(\kappa)$.

If in addition \ll is of type (+++) (i.e., $c_{2i-1}^n = 2c_{2i}^n$) then

(4)
$$2G^{\kappa_{j}\kappa''}(x) = 3F_{1}^{\kappa_{j}\kappa''}(x) + I^{\kappa_{j}\kappa''}(x) = 4I^{\kappa_{j}\kappa''}(x) - 3F_{1}^{\kappa_{j}\kappa''}(x)$$

= $4F_{2}^{\kappa_{j}\kappa''}(x) + F_{1}^{\kappa_{j}\kappa''}(x)$.

Remark 1. a) If \ll is of type (*) then \ll is of type (**).
b) If $a \in [0,1)$ then there exists a sequence $\ll = \{a_i\}_i$, i > 0, of type (*) but not of type (***) such that $|C(\propto)| = a$. Put for example $a_i = a/2^i + (1-a)/4^i$.

c) If $a \in [0,1)$ then there exists a sequence $\alpha = \{a_i\}_i$, i > 0, of type (*) and of type (***) such that $|C(\alpha)| = 0$. Put for example: $a_{2i-1} = 2/4^i - (3 \cdot 2^{i+1} - 10)a/(3 \cdot 8^i)$, $i = 1,2,..., a_{2i} = 1/4^i - (2^i - 1)a/(8^i)$, i = 0,1,... Then $c_{2i} = 1/4^i - (3 \cdot 2^i - 7)a/(3 \cdot 8^i)$;

 $c_{2i-1} = 2/4^{i} - (3\cdot2^{i+1} - 14)a/(3\cdot8^{i}).$

- d) If $\alpha = \{1/2^{\frac{1}{2}}\}_{i}$, $i \ge 0$, then α is of types (**) and (***) but not of type (*) and $C(\alpha) = [0,1]$.
- e) If $\alpha = \{1/3^i\}_i$, $i \ge 0$ and $\alpha'' = \{1/2^i\}_i$, $i \ge 0$, then $I^{\alpha',\alpha''} = \Psi$, where Ψ is the Center ternary function.

Lemma 4. Let N be a natural number and let f,h: [0,1] $\rightarrow \mathbb{R}$, h - increasing and AC. Let E be a closed subset of [0,1]. If there exists m > 0 such that for each c,d $\in \mathbb{R}$, with 0 < d - c < m, $\lambda_{N}(f([c,d] \cap E)) < h(d) - h(c)$ then $f \in A(N)$ on E. $(\lambda_{N}(X) = \inf\{\sum_{i=1}^{N} |I_{i}| : \{I_{i}\}_{i=1}^{N} \text{ is a sequence of N open intervals which covers the set X}, see [11],p.404).$

<u>Proof.</u> For $\epsilon > 0$ let ϵ be the ϵ given by the fact that h is AC. Let ϵ = min $\{\epsilon, m\}$. By the definition it follows that $f \in A(N)$ on E.

The proofs of the following theorems 1, 2 and 3 will be deferred until the end of the paper.

Theorem 1. With the above notations we have:

- a) $|F_1^{\alpha,\alpha''}(C(\alpha))| = |F_2^{\alpha,\alpha''}(C(\alpha))| = 0$ and $G^{\alpha,\alpha''}(C(\alpha)) = C(\alpha'');$ (hence $F_1^{\alpha,\alpha''}$ and $F_2^{\alpha,\alpha''}$ belong to $S = N \cap T_1$ on [0,1];)
- b) If $|C(x)| \neq 0$ and $|C(x'')| \neq 0$ then $F_1^{\alpha,\alpha''}$, $F_2^{\alpha,\alpha''}$, $G^{\alpha,\alpha''}$ belong to T(2) 3(1) and the sets of points of C(x) at which $F_1^{\alpha,\alpha''}$,
- $F_2^{*,*"}$, $G^{*,*"}$ are approximately differentiable are null sets. $G^{*,*"}$ has finite or infinite derivative at no point of C(x).
- c) If $|C(\prec)| \neq 0$ and $|C(\prec'')| \neq 0$ then $F_1^{", \prec''}$, $F_2^{\prec, \prec''} \in S$ (hence $F_1^{", \prec''}$, $F_2^{\prec, \prec''} \in [GS^*]$) on [0,1], but $G^{\prec, \prec''} \notin [GS^*]$ on [0,1].

- d) If «" is of type (*) then G , is bijective on C(<);
- e) If w'' is of type (**) but not of type (*) then $\|(G^{w,w''})^{-1}(y) \cap C(w)\| = 1$ $(resp. \|(G^{w,w''})^{-1}(y) \cap C(w)\| = 2)$ if y has an unique representation (resp. two representations); $(\|X\| = the cardinal of the set X.)$
- f) G is monotone on no portion of C(x);
- g) If there exists M>0 such that $c_{2i}^{n}/\min\{a_{2i}-2a_{2i+1}, a_{2i+1}-2a_{2i+2}\}$ $\geq M$, i=0,1,... then $G^{n,n}\in L$. (In particular this holds when C(n)=C(n)=C).
- h) If $|C(\kappa)| = 0$ and $|C(\kappa'')| \neq 0$ then $G^{\kappa,\kappa''} \in (M \cap T_2) N$ on [0,1] and at least one of the functions $F_1^{\kappa,\kappa''}$ and $F_2^{\kappa,\kappa''}$ does not belong to T on [0,1].
- i) M·L 字 N ; j) F(2) · M 字 N .

Remark 2. A continuous, bijective function on C and monotone on no portion of C was constructed before in [5]. There exists a function $f:C \longrightarrow C$, $f \in C \cap L$ and bijective such that f is monotone on no portion of C and $f \circ f(x) = x$ on C. Put for example C(x) = C(x

Lemma 5. Let $f:P \rightarrow R$, $P = \overline{P} \subset [0,1]$ and let $H_1 = \{x : f'|_{\overline{P}}(x) = 0\}$. Then $|f(H_1)| = 0$.

<u>Proof.</u> Let $H = \{x \in H_1 : x \text{ is a billateral point of accumulation of <math>P_1^*$. Then $f_P^*(x) = 0$ at each $x \in H$ and H_P^*H is at most denumerable. By Theorem 4.5,p.271 of [13], it follows that $|f_P(H)| = 0$, hence $|f(H_1)| = 0$.

Proposition 1. Let $f:P \to R$, $f \in G$, $P = P \subset [0,1]$ and let $E = \{x \in P : f'(x) \text{ does not exist with respect to } P\}$. If |f(E)| = 0 then $f \in T_1$ on P.

Proof. Using Lemma 5 instead of Theorem 4.5,p.271 of [13], the proof is similar to the proof of Theorem 6.2,p.278,2° of [13].

Remark 3. The converse of Proposition 1 is true only if P = [0,1]. (See Theorem 1,a),b) and Theorem 6.2,p.278 of [13] or Theorem 1,p.130 of [12].)

Theorem 2. For continuous functions on [0,1] we have: a) $S = N \cap T_1 = M \cap T_1 = N^{\infty} \cap T_1 = M \cap T_1$ (hence $G^{\infty,\infty} \notin T_1$, $G^{\infty,\infty}$)

from Theorem 1.h);

- b) $ACG = [ACG] = [\mathfrak{F}(1)] \subsetneq [GS^*] \text{ and } S \subsetneq [GS^*]$
- c) $[GS^*] = [GT_1^*] \cap N = [GT_1^*] \cap N = [GT_1^*] \cap N_{\varphi}$; $ACG B_2 \neq \emptyset$, hence $ACG S' \neq \emptyset$;
- a) [GS] = [GT₁] \cap N \(\sum_{\text{g}}[GT₁] \cap N \(\sum_{\text{g}} = [GT₁] \cap N,
- e) \(\F=[\F] \(\frac{1}{2} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\

f, $VBG = [VBG] = [\mathfrak{S}(1)] \subsetneq [GT_1^{\sharp}]$: $\mathfrak{S} = [\mathfrak{S}] \subsetneq [GT_1]$ $(T_1 - \mathfrak{S} \neq \emptyset)$; $[GT_1^{\sharp}] \subsetneq [GT_1] \subsetneq T_2$.

Remark 5. That ACG - S' $\neq \emptyset$ was shown in [6].

Proposition 2. For functions defined on a bounded real set \mathbb{R} we have: a) SoS = S; b) $(N \cap T_1) \circ T_1 = T_1$.

Proof. Let $g: \mathbb{G} \to K$. $f: \mathbb{K} \to \mathbb{R}$. $G = f \circ g$.

- :) Sumpose f.g ϵ S. Let ϵ > 0 and let ϵ be the ϵ given by the fact that f ϵ S. For ϵ let ϵ > 0 be the ϵ given by the fact that ϵ ϵ S. Let ϵ \(\text{E}_1 \in \epsilon\$. Then $|G(\epsilon_1)| < \epsilon$.
- b) suppose fermal get_1. Let $A = \{y : G^{-1}(y) \text{ is infinite}\}$ and $A_1 = \{y : f^{-1}(y) \text{ is infinite}\}$. Then $|A_1| = 0$. Let $B_1 = \{z \in K : g^{-1}(z) \text{ is infinite}\}$. Then $|B_1| = 0$. Since $f \in \mathbb{N}$. $|f(B_1)| = 0$: We have $A \subset A_1 \cup f(B_1)$. Indeed. let $y \in A$ then $G^{-1}(y) = g^{-1}(f^{-1}(y))$ is infinite. It follows that $f^{-1}(y)$ is infinite, hence $y \in A_1$ or there exists $z \in f^{-1}(y)$ such that $g^{-1}(z)$ is infinite, hence $z \in B_1$. so $y = f(z) \in f(B_1)$. It follows now that |A| = 0.

Lemma 6. Let g: [a.b] \longrightarrow [c.d], f: [c,d] \longrightarrow R, F: [a.b] \longrightarrow R. F = fog. f.ge C . Let P = $\overline{P} \subset [a,b]$. Then $F_P = (f_{g(P)} \circ g_P)_P$. Moreover, if $g \in H$ then $F_P = f_{g(P)} \circ g_P$.

<u>Proof.</u> The first part of Lemma 6 is evident. We prove the second part. Clearly $F_P(x) = f_{g(P)} \circ g_P(x)$ for $x \in P$. Let $I_n = (a_n \cdot b_n)$. $n \ge 1$, be the intervals contiguous to P with respect to $[\inf(P)$, $\sup(P)]$. Since $g \in H$ the intervals contiguous to g(P) are exactly $J_n = g(I_n)$. Hence $f_{g(P)} \circ g_P$ is linear on each $[a_n \cdot b_n]$. Since $F(a_n) = F_P(a_n)$. $F(b_n) = F_P(b_n)$, it follows that $F_P = f_{g(P)} \circ g_P$

Remark 6. That $g \in H$ is essential in Lemma 6. Indeed, let f = g. $f: [0,1] \longrightarrow [0,1]$. f(x) = 1/3 - x. $x \in [0, 1/3]$; f(x) = x.

 $x \in [2/3, 1]$, f(x) = 2x - 2/3, $x \in (1/3, 2/3)$. Let $P = [0, 1/3] \cup [2/3, 1]$ and $F = f \circ g$. Then $f_P = f$ on [0,1], $F_P(x) = x$ on [0,1], but $F(x) \neq x$ on (1/3, 2/3), and F(1/2) = f(1/3) = 0. (See also the function f of Remark 2.)

Lemma 7. Let $f:[0,1] \longrightarrow \mathbb{R}$, be a continuous function which is T_1 (resp. S; B_2) on [0,1]. If $P = \overline{P} \subset [0,1]$ then f_P is T_1 (resp. S; B_2) on [a,b] = [inf(P),sup(P)].

Proof. Let {In} be the intervals contiguous to P with respect to [a,b]. Suppose $f \in T_1$ on [0,1]. We prove that $f_p \in T_1$ on [a,b]. Let $A = \{y : f^{-1}(y) \cap [a,b] \text{ is infinite}\}$. By the definition of T_1 it follows that |A| = 0. Let $A' = \{y : f_p^{-1}(y) \cap [a,b] \text{ is infinite}\};$ A" = $\{y : f_p^{-1}(y) \supset I_p \text{ for some natural number } n\}$. We show that A'-A" \subset A. Let $y \in A'$ - A" such that $f_p^{-1}(y) \cap P$ is infinite. Then $f^{-1}(y) \cap P$ is infinite, hence $y \in A$. Let $y \in A' - A''$ such that $f_p^{-1}(y)$ $\bigcap P$ is finite. It follows that there exists a sequence $\{n_i(y)\}$, $i\geqslant 1$, such that $\|f_P^{-1}(y) \cap I_{n_i(y)}\| = 1$. Since $f \in \mathcal{C}$ it follows that $\|f^{-1}(y) \cap I_{n_{i}(y)}\| \geqslant 1$, i = 1, 2, ..., hence $y \in A$. Since A" is denumerable, it follows that |A'| = 0, hence $f_p \in T_1$ on [a,b]. Suppose that f is S on [0,1]. We prove that f_p is S on [a,b]. By Banach's theorem (Theorem 7.4,p.284 of [13]), $60s = 60T_10N$ on [a,b]. Since $f \in S = T_1 \cap N$, $f_p \in N$ on [a,b] and by the first part of this lemma $f_P \in T_1$ on [a,b], hence $f_P \in N \cap T_1 = S$ on [a,b]. Suppose that f is B_2 on [0,1]. We prove that $f_p \in B_2$ on [a,b]. Let $J \subset rn_{\mathbb{S}}(f_p)$ be a nondegenerate interval. (Here $rn_{\mathbb{S}}(f)$ denoted the range of the function f.) Clearly $J \subset rng(f)$. Let $A_J = \{ y \in J : a_j = \{$ $f^{-1}(y) \cap [a,b]$ is finite}. By the definition of B_2 it follows that A_J is uncountable. Let $A_J^! = \{y \in J : f_p^{-1}(y) \cap [a,b] \text{ is finite}\}$ and $A_J^{\prime\prime} = \left\{ y \in J : \text{ there exists at least one natural number } n_y \text{ such that } \right\}$ $f_P^{-1}(y) \supset I_{n_y}$. To prove that $f_P \in B_2$ it is sufficient to show that $A_J - A_J'' \subset A_J'$ (since A_J'' is countable). Let $y \in A_J - A_J''$ then $f^{-1}(y) \cap P$ is either finite or empty, $B_y = \{n : f^{-1}(y) \cap I_n \neq \emptyset\}$ is finite and $\|f_P^{-1}(y) \cap I_n\| = 1$, for each $n \in B_y$. Hence $y \in A_J'$.

Some Open Questions. a) Is the converse of Lemma 4 true for continuous functions on [0,1] ?

- b) Let $f:[0,1] \to \mathbb{R}$ and let \mathbb{R} be a subset of [0,1]. Let \mathbb{N} be a natural number. Then f is said to be $L(\mathbb{N})$ on \mathbb{R} if there exists L>0 such that for each $a,b\in\mathbb{R},\ a< b,\ \lambda_{\mathbb{N}}(f([a,b]\cap\mathbb{R}))< L.$ If in Definition 6 condition $A(\mathbb{N})$ is replaced by $L(\mathbb{N}_n)$ we obtain the classes \mathcal{L} and $\mathcal{L}(\mathbb{N})$. We conjecture that: 1) $\mathcal{L}\circ H=\mathcal{F}\circ H=\mathcal{R}$;
- 2) $\cancel{1} \circ \overrightarrow{H} = \cancel{F} \circ \overrightarrow{H} = \cancel{F}$; 3) $\cancel{1}(k) \circ H = \cancel{F}(k) \circ H = \cancel{R}(k)$; 4) $\cancel{1}(\cancel{K}) \circ \overrightarrow{H} = \cancel{F}(k) \circ \overrightarrow{H} = \cancel{$
- 6) H•ACG = [GS'*] (see Question 3 of [7]) and H•[GS'*] = [GS'*].
 c) How can the following classes of continuous functions on closed intervals be characterized: $\overline{H} \bullet \mathcal{F}(k)$; $\overline{H} \bullet \mathcal{F}$; $\overline{H} \bullet \mathcal{F}(k)$; $\overline{H} \bullet \mathcal{F}$?
 The same question if \mathcal{F} is replaced by \mathcal{I} and \mathcal{B} .
- d) Does Lemma 7 remain true if S is replaced by S'?

Proof of Theorem 1. a) $F_2^{\alpha,\alpha''}(C(\alpha)) \subset \bigcup_{j_1,\dots,j_n \in \{0,1\}^n} \left[\sum_{i=1}^n j_i c_{2i}^n, \cdots, j_n \in \{0,1\}^n\right]$

 $\sum_{i=1}^{n} j_{i} c_{2i}^{"} + \sum_{i=n+1}^{\infty} c_{2i}^{"}]. \text{ Clearly } a_{i}^{"} \leq 1/2^{i}, i = 1, 2, \dots \text{ . It follows}$

that $\sum_{i=1}^{\infty} c_{2i}^{n} < 1/4^n$, hence $|\mathbb{F}_2^{\infty,\infty}|(\mathbb{C}(\infty))| \leq \lim_{n \to \infty} 2^n(1/4^n) = 0$.

Similarly $|F_1^{\alpha,\alpha''}(C(\alpha))| = 0$. If k = 0, by (2), $G^{\alpha,\alpha''}(C(\alpha)) = C(\alpha'')$. That $F_1^{\alpha,\alpha''}$ and $F_2^{\alpha,\alpha''}$ belong to $S = N \cap T_1$ on [0,1] follows by [13] (Theorem 6.2,p.278) and Theorem A.

b) Let $|C(\propto)| = a$ and $|C(\approx")| = b$. By hypothesis $a \neq 0$ and $b \neq 0$. First we shall prove that $(I^{\approx, \ll^n})!(x) = b/a$ s.e. on $C(\ll)$ and I^{\ll, \ll^n}

is AC on [0,1]. Let $A = \{x \in C(x) : I^{x,x} \text{ is derivable at } x\}$. Let $x_0 \in A$, $x_0 = \sum_{i=1}^{\infty} e_i c_i$, $x_n = \sum_{i=1}^{\infty} e_i c_i + (1-e_{n+1})c_{n+1}$. It follows that $(I^{*,*''}(x_n)-I^{*,*''}(x_n))/(x_n-x_n) = (a_n''-a_{n+1}'')/(a_n-a_{n+1}) =$ $(2^{n}a_{n}^{n} - 2^{n}a_{n+1}^{n})/(2^{n}a_{n} - 2^{n}a_{n+1}) \rightarrow b/a$, hence $(I^{x}, x^{n})^{*}(x) = b/a$ if x6A. Observing that $I^{-, \prec "}$ is increasing on [0,1], it follows that $|C(\propto) - A| = 0$. Also $\int_{0}^{1} (I^{\propto}, x'')'(x) dx = \int_{C(\propto)} (b/a) dx +$ $\int_{[0,1]-C(x)} (I^{x,x''})'(x)dx = 1, \text{ hence } I^{x,x''} \in AC \text{ on } [0,1]. \text{ We shall}$ prove that $F_1^{\checkmark, \checkmark'}$, $F_2^{\checkmark, \checkmark'} \in A(2)$ on $C(\checkmark)$. By (1), since A(1) + A(2)= A(2), it is sufficient to prove that $F_2^{\kappa,\kappa''} \in A(2)$ on $C(\kappa)$. By [3] it follows that if $u, v \in C(\sim)$ then there exists J_1 and J_2 such that $F_2^{\alpha,\alpha''}([u,v] \cap C(\alpha)) \subset J_1 \cup J_2 \text{ and } |J_1| + |J_2| \leq I^{\alpha,\alpha''}(v) - I^{\alpha,\alpha''}(u).$ Since $I^{*,*''} \in AC$, by Lemma 4, it follows that $F_2^{*,*''} \in A(2)$ on C(*). We shall prove that the sets of points of C(<) at which $F_1^{a_1<^n}$ and $\mathbf{F}_{2}^{*,*}$ are approximately differentiable, are null sets. Let B = $\{x \in A : F_2^{x, x''} \text{ is approximately differentiable at } x\}$. By (1), B = $\{x \in A : F_1^{x^{-1}} \text{ is approximately differentiable at } x\}$. By Lemma 3 together with $|\mathbf{F}_1^{\prec}, \prec^{"}(\mathbf{B})| = |\mathbf{F}_2^{\prec}, \prec^{"}(\mathbf{B})| = 0$, it follows that $(F_1^{\alpha,\alpha''})_{ap}^{i}(x) = (F_2^{\alpha,\alpha''})_{ap}^{i}(x) = 0$ a.e. on B. By (1), since $(I^{\alpha,\alpha''})_{ap}^{i}(x)$ = b/a on A, it follows that |B| = 0. By $\lceil 13 \rceil$ (p.222-223) it follows that $F_1^{\alpha,\alpha''}$, $F_2^{\alpha,\alpha''} \notin \mathfrak{B}(1)$. If α'' satisfies condition (***) the assertion for G"," follows easily by (4). We shall prove without condition (###) that $G^{\prec}, \prec^{"} \in A(2)$ on $C(\prec)$. Let 0 < v = u, $u, v \in C(\prec)$. Let s be the first natural number such that [u,v] contains an open interval $0_{e_1 \cdot \cdot \cdot \cdot e_{s-1}}(x) = (u_1, v_1)$, from the step s. Then $[u, v] \subset$

 $R_{e_1 \cdot \cdot \cdot \cdot e_{s-1}}(x)$. Let $u_2, v_2 \in C(x)$ such that $G(u_2) = \inf_{x \in [u, u_1] \cap C(x)} G(x)$, $G(v_2) = \sup_{x \in [v_1, v] \cap G(x)} G(x)$, $u_2 = \sum_{i=1}^{s-1} e_i c_i + \sum_{i=1}^{\infty} e_i^i c_i$, $v_2 = v_1 + \sum_{i=1}^{s-1} e_i^i c_i$ $\sum_{i=s+1}^{\infty} e_i^{"} c_i. \text{ Let } h^{\bullet,\bullet,\bullet}^{\bullet,\bullet,\bullet}(x) = \sum_{i=1}^{\infty} e_i(x) c_{i-1}^{"}, x \in C(\bullet), c_0^{"} = 2. \text{ Extending}$ h linearly on each interval contiguous to C(~) we have h , " defined and continuous on [0,1], $h^{\kappa,\kappa''}(0) = 0$, $h^{\kappa,\kappa''}(1) = 2$, $(h^{\kappa',\kappa''})^{\dagger}(x) = 2b/a$ a.e. on $C(\kappa)$ (see the proof for $I^{\kappa',\kappa''}$), $h(C(\kappa))$ = $C(\alpha'') + [1 + C(\alpha'')]$, h is strictly increasing on $[0,a_1] \cup [b_1,1]$ and constant on $[a_1,b_1]$, $b^{\kappa,\kappa''} \in AC$ (see the proof for $I^{\kappa,\kappa''}$) on [0,1]. We have $G^{*,*"}(u_1) - G^{*,*"}(u_2) = \sum_{2i-1 \ge s} (1 - e_{2i-1}^i) c_{2i}^{*} +$ $\sum_{2i \ge s} (1 - e_{2i}) c_{2i-1}^{"} < \sum_{2i-1 \ge s} (1 - e_{2i-1}) c_{2i-2}^{"} + \sum_{2i \ge s} (1 - e_{2i}) c_{2i-1}^{"}$ $= \sum_{i > s} (1 - e_{i}^{i}) c_{j-1}^{n} = h^{\alpha, \alpha''}(u_{1}) - h^{\alpha, \alpha''}(u_{2}). \text{ Analogously, } G^{\alpha, \alpha''}(v_{2})$ $= G^{\alpha,\alpha''}(v_1) < h^{\alpha,\alpha''}(v_2) - h^{\alpha,\alpha''}(v_1). \text{ Hence } G^{\alpha,\alpha''}([u,v] \cap C(\alpha)) \subset$ $[\tilde{G}(u_2), \tilde{G}(u_1)] \cup [\tilde{G}(v_1), \tilde{G}(v_2)]$ and $G^{*,*}(u_1) - G^{*,*}(u_2) + G^{*,*}(v_2)$ $-G^{\kappa,\kappa''}(v_1) \leq h^{\kappa,\kappa''}(v) - h^{\kappa,\kappa''}(u)$. By Lemma 4 it follows that $G^{\kappa,\kappa''}$ €A(2) on C(<). We shall prove that G has finite or infinite derivative at no point of C(×) and G^{<, ←, ←, ←} has not a finite approximate derivative a.e. on $C(\infty)$. Let $x_c = \sum_{i=1}^{\infty} e_i c_i$. For each natural number n we have four situations: (I) Suppose $e_{2n-1} = e_{2n} = 0$. Let $x \in \mathbb{R}_{e_1 \cdot \cdot \cdot e_{2n-2} \cdot 01} (\prec)$, ye $R_{e_1...e_{2n-2}1000}(x)$. Then $x_0 < x < y$; $G^{x,x''}(x) > G^{x,x''}(x_0)$; $G^{x,x''}(y)$ $>G^{\kappa_{3}\kappa''}(x_{0})$, hence $(G^{\kappa_{3}\kappa''}(x) - G^{\kappa_{3}\kappa''}(x_{0}))/(x-x_{0}) - (G^{\kappa_{3}\kappa''}(y) - G^{\kappa_{3}\kappa''}(y))$

 $G^{x,x''}(x_0)/(y-x_0) > (G^{x,x''}(x) - G^{x,x''}(y))/(y-x_0) > 3a_{2n+2}''a_{2n-2}$ $\rightarrow 3b/16a$. Let $x_n = x_0 + c_{2n-1}$ then $(G^{x,x''}(x_n) - G^{x,x''}(x_0))/(x_n-x_0) = (a_{2n-1}'' - a_{2n}')/(a_{2n-2} - a_{2n-1}) \rightarrow b/2a$.

(II) Suppose $e_{2n-1} = 0$ and $e_{2n} = 1$. Let $R_{e_1 \cdots e_{2n-2} = 00}(\alpha)$, $y \in R_{e_1 \cdots e_{2n-2} = 10}(\alpha)$. Then $x < x_0 < y$; $G^{x,x''}(x) < G^{x,x''}(x_0)$; $G^{x,x''}(x_0)$; $G^{x,x''}(x_0) = G^{x,x''}(x_0)/(x_0-x) > a_{2n}^n/a_{2n-1} \rightarrow b/2a$ and $(G^{x,x''}(y) - G^{x,x''}(x_0))/(y-x_0) < 0$.

(III) Suppose $e_{2n-1} = 1$ and $e_{2n} = 0$. Let $x \in R_{e_1 \cdots e_{2n-2} 01}(\infty)$, ye $R_{e_1 \cdots e_{2n-2} 11}(\infty)$. Then $x < x_0 < y$; $G^{\infty,\infty''}(x) > G^{\infty,\infty''}(x_0)$; $G^{\infty,\infty''}(x_0)$; $G^{\infty,\infty'}(x_0)$; $G^{\infty,\infty'}(x_0)$; $G^{\infty,\infty''}(x_0)$; $G^{\infty,\infty''}(x_0)$; $G^{\infty,\infty''}(x_0)$; $G^{\infty,\infty'}(x_0)$; $G^{\infty,\infty''}(x_0)$; $G^{\infty,\infty''}(x_0)$; $G^{\infty,\infty'}(x_0)$; $G^$

(IV) Suppose $e_{2n-1} = e_{2n} = 1$. Let $x \in R_{e_1 \cdots e_{2n-2} 10}(x)$, $y \in R_{e_1 \cdots e_{2n-2} 0111}(x)$. Then $y < x < x_0$; $G^{x,x''}(x_0) > G^{x,x''}(x)$; $G^{x,x''}(x_0) > G^{x,x''}(x)$; $G^{x,x''}(x_0) > G^{x,x''}(x)$; $G^{x,x''}(x_0) = G^{x,x''}(x)$; $G^{x,x''}(x) = G^{x,x''}(x)$; $G^{x,x'}$

By (I), (II), (III) and (IV) it follows that $G^{*,*}$ has finite or infinite derivative at no point of $C(\sim)$. Also $G^{*,*}$ has a finite approximative derivative at no point $x_0 \in C(\sim)$, x_0 a point of density of $C(\sim)$. Clearly $G^{*,*}$ $\not\in$ $\mathfrak{B}(1)$ (see [13],p.222-223).

c) That $F_1^{*,*}$ and $F_2^{*,*}$ belong to S follows by a). Suppose that $G^{*,*}$ \in $[GS^*]$ on [0,1] then it follows that there exists (u,v)

such that $(u,v) \cap C(\prec) \neq \emptyset$ and $G^{\prec, \prec}$ is S^{\neq} on $(u,v) \cap C(\prec)$. There exists $R_{e_1 \cdots e_{2k}}(\prec) \subset (u,v)$ such that $G^{\prec, \prec}$ is S, hence T_1 on $R_{e_1 \cdots e_{2k}}(\prec)$. By (2), b) and Theorem 6.2,p.278 of [13], it follows that $G^{\prec, \prec} \notin T_1$ on $R_{e_1 \cdots e_{2k}}(\prec)$, a contradiction.

d) Since \ll " is of type (*), each $y \in C(\ll)$ has an unique representation $y = \sum_{i=1}^{\infty} e_i(y)c_i^n$ and $(G^{\ll, \ll})^{-1}(y) \cap C(\ll) =$

 $\left\{\sum_{i=1}^{\infty} e_{2i-1}(y)c_{2i} + e_{2i}(y)c_{2i-1}\right\}, \text{ hence } G^{\leftarrow, \prec''} \text{ is bijective on } C(\prec).$

e) If \prec " is of type (**), but not of type (*) and $y \in C(\prec$ ") has two representations, $y = \sum e_i(y)c_i^n = \sum e_i'(y)c_i^n$, then

$$(G^{\alpha,\alpha''})^{-1}(y) \cap C(\alpha) = \{ \sum_{i=1}^{\infty} e_{2i-1}(y)c_{2i} + e_{2i}(y)c_{2i-1} \};$$

$$\sum_{i=1}^{\infty} (e_{2i-1}(y)c_{2i} + e_{2i}(y)c_{2i-1}) \}.$$

f) Let $(u,v) \cap C(<)$ be a portion of C(<). Then there exists a

$$R_{e_1 \cdots e_{2k}}(x) \subset (u,v)$$
. Let $x_1 = \sum_{i=1}^{2k} e_i c_i + a_{2k+1}$, $x_2 = \sum_{i=1}^{2k} e_i c_i + a_{2k+1}$

 c_{2k+1} , $x_3 = \sum_{i=1}^{2k} e_i c_i + a_{2k}$ then $x_1 < x_2 < x_3$ belong to $R_{e_1 \cdot \cdot \cdot e_{2k}}(<)$ and $G^{<,<"}(x_1) > G^{<,<"}(x_2) < G^{<,<"}(x_3)$.

- g) Let $x \ge y$ belong to C(x) and let k be the first natural number such that (x,y) contains an open interval $O_{e_1\cdots e_{k-1}}$ from the step k, with $2i < k \le 2i + 2$ for some natural number i. Then $[x,y] \subset R_{e_1\cdots e_{2i}}(x)$, hence $y-x > a_{k-1} 2a_k > \min\{a_{2i+1} 2a_{2i+2}, a_{2i-2i+1}\}$ and $|G^{x,x}(y) G^{x,x}(x)| < a_{2i}^x$. It follows that $G^{x,x}(x)$ satisfies condition L with constant M.
- b) By c) and a), clearly G"," & T2- N. We prove that G"," & M.

The proof is based on an ideea of J. Foran of [8](p.85). In order to show that G satisfies Foran's condition M, by Theorem 1 of [8], it suffices to show that if $A \subset C(\prec)$ and $G^{\prec, \prec'}$ is monotone on A then G satisfies Lusin's condition N on A. Suppose that $G^{\prec,\prec''}$ is increasing on ACC(\prec). Clearly $R_{e_1,\ldots e_{2k}}(\prec'')$ are nonoverlapping intervals and $|R_{e_1 \cdot \cdot \cdot e_{2k}}(\prec'')| = a_{2k}'' \leq 1/4^k$. Let $C_1 \times C_2 \times \cdots \times C_k = \{(e_1, \dots, e_{2k}) : A \cap R_{e_1, \dots, e_{2k}}(\propto) \neq \emptyset\}. \text{ By (2) it}$ follows that $\|C_1 \times C_2 \times \dots \times C_k\| \le 3^k$, hence $|G^{*,*}| (A)| < (3/4)^k \to 0$. Since $\mathcal{F} + \mathcal{F} = \mathcal{F} \subset \mathbb{N}$ and $G^{\sigma, \kappa''} \notin \mathbb{N}$ it follows that at least one of the functions $F_1^{\pi, \prec}$ and $F_2^{\pi, \prec}$ does not belong to \mathcal{F} on [0,1]. i) Let $C(\propto) = C(\kappa') = C$ then $G^{\sim, \sim'} \in L$ (see g)) and $G^{\sim', \sim''} \in M \cap T_2$. If $|C(\kappa'')| > 0$ then $I^{\kappa,\kappa''}$ is increasing on $C(\kappa)$ and $I^{\kappa,\kappa''} \notin \mathbb{R}$ on $C(\sim)$. Since $M \circ L \supset M$, by (3) it follows that $M \circ L \supseteq M$. j) If $|C(\alpha'')| \ge 0$ and $|C(\alpha')| \ge 0$ then $G^{\alpha'}, \alpha''' \in \mathfrak{F}(2)$ (see b)). If |C(x)| = 0 then by h), $G^{x,x'} \in (\mathbb{N} \cap \mathbb{T}_2) - \mathbb{N}$, but $I^{x,x''} \notin \mathbb{M}$ on C(<). Since $\mathfrak{F}(2) \circ M \supset M$, by (3) it follows that $\mathfrak{F}(2) \circ M \supseteq M$.

Proof of Theorem 2. a) By Theorem A, $S = N \cap T_1 = N^{\infty} \cap T_1$. Since $N \subset M \subset N^{\infty} = M_{\pi}$, by [4](Remark 1,e), Theorem 6 and Theorem 1, g)), it follows that $S = N \cap T_1 = M \cap T_1 = N^{\infty} \cap T_1 = M_{\pi} \cap T_1$. b) $\mathfrak{F}(1) \subset [GS^{*}]$. Indeed, let $f : [0,1] \longrightarrow \mathbb{R}$, $f \in ACG \cap G$. It follows that there exist $P_n = \overline{P}_n$ such that $[0,1] = \bigcup P_n$ and $f_{P_n} \in AC \subset S$, hence $f \in [GS^{*}]$. By Theorem 1,a),b), $S = ACG \neq \emptyset$, hence $ACG \subsetneq [GS^{*}]$ on [0,1]. By [13](p.279), $ACG = S \neq \emptyset$, hence $S \subsetneq [GS^{*}]$ on [0,1]. c) By a) and the definitions of $[GS^{*}]$ and $[GT_1^{*}] \cap M$ on [0,1]. It follows that there exist $P_n = \overline{P}_n$ such that $f_p \in G \cap T_1 \cap M = G \cap S$ (see a)), hence $f \in [GS^{*}]$ on [0,1]. Then $[GS^{*}] = [GT_1^{*}] \cap N = G \cap S$

fig 1

there exist $P_n = \overline{P}_n$ and natural numbers N_n such that $f \in A(N_n)$ on P_n . By definitions, $f \in S$ on P_n , hence $f = [f] \subset [GS]$ on [0,1]. By Theorem 1,b),c) it follows that $\mathbf{F} - [GS^*] \neq \emptyset$, hence $[GS^*] \subsetneq [GS]$ on [0,1]. By Theorem 1,a),h) it follows that $S - \mathcal{F} \neq \emptyset$, hence $x \in [GS]$. Clearly $[GS] \subset GS \subset N$. To prove that $[GS] \subseteq GS$ we shall construct the following example. At first we construct a continuous function g: $[0,1] \longrightarrow [0,1]$, using the notations of c). We suppose that |C(x)| > 0. Let $g(x) = I^{(x)}$, $x \in C(x)$; $g(x) = I^{(x)}$ $g(s_i^S) + (i/2^8) \cdot I^{\bullet}((x-s_i^S)/(c_i^S-s_i^S)), x \in [s_i^S, c_i^S]; g(x) = g(c_i^S) (1/2^{s-1}):I^{-1}((x-c_i^s)/(d_i^s-c_i^s)), x \in [c_i^s, d_i^s]; g(x) = g(d_i^s) + (1/2^s)$ $I^{\leftarrow}((x-d_1^s)/(b_1^s-d_1^s)), x \in [d_1^s, b_1^s]. \text{ Let } P_1 = C(\leftarrow) \cup (\bigcup_{i=1}^{2^{s-1}} \bigcup_{i=1}^{2^{s-1}} [(c_1^s-a_1^s))].$ $\mathbb{C}(\propto) + a_i^s \cup \{(d_i^s - c_i^s) \in (\approx) + c_i^s\} \cup \{(b_i^s - d_i^s) \in (\approx) + d_i^s\} \}$. We show that g(0) = 0; g(1) = 1; g is constant on each interval contiguous to P_1 ; g is ACG on [0,1]; $g^{-1}(y)$ is infinite for each $y \in [0,1]$. Using the function g, we can construct a continuous function f1: $[0,1] \longrightarrow [0,1]$ and a nowhere dense, perfect subset Q_1 of [0,1]with positive measure, such that $f_1(0) = f_1(1) = 0$; $\inf(Q_1) = 0$, $\sup(Q_1) = 1$; f_1 is constant on each interval contiguous to Q_1 ; $f_1 \in ACG$; $f^{-1}(y)$ is infinite. Let $\{I_n^1\}_n = \{(u_n^1, v_n^1)\}_n$ be the intervals contiguous to Q_1 . Let $Q_k = Q_{k-1} \cup (\bigcup_{n=1}^{\infty} (u_n^{k-1} + (v_n^{k-1} - u_n^{k-1})Q_1))$, k = 2,3,..., where $(u_n^k, v_n^k), n = 1,2,...$ are the intervals contiguous to Q_k . Let $f_{k+1}(x) = 0$, $x \in Q_k$; $f_{k+1}(x) = (1/2^{n+k+1})$. $f_1((x-a_n^k)/(b_n^k-a_n^k)), x \in [a_n^k, b_n^k], k = 1,2,...$ Let $F(x) = \sum_{k=1}^{\infty} f_k(x)$. Let $H = [0,1] - \bigcup_{m=1}^{\infty} Q_m$. Fe ACG on UQ_m and |F(H)| = 0, hence

 $F \in GS \subset N$. But $F \notin [GT_1]$ because F is not T_1 on any interval, hence by d) $F \notin [GS]$; but clearly $F \in GS$.

f) Since VB = B(1) on a set E it follows that VBG = $\mathfrak{B}(1)$. Let $f:[0,1] \longrightarrow \mathbb{R}$, $f \in \mathcal{C} \cap \mathbb{V}$ BG. Then there exist $P_n = \overline{P}_n$ such that $f_{P_n} \in \mathbb{C} \cap \mathbb{C}$ VBC T_1 ([13], p.279). It follows that for continuous functions on [0,1], VBG = $[\mathbb{V} \cap \mathbb{C}] = [\mathbb{S}(1)] \subset [\mathbb{C} \cap \mathbb{C}]$. Since $[\mathbb{V} \cap \mathbb{C}] \cap \mathbb{C} = [\mathbb{C} \cap \mathbb{C}] \cap \mathbb{C}$ ([13], Theorem 6.8,p.228) and $[\mathbb{C} \cap \mathbb{C}] \cap \mathbb{C} = [\mathbb{C} \cap \mathbb{C}]$ (see c)) on [0,1], by b), it follows that $[\mathbb{S}(1)] \subseteq [\mathbb{C} \cap \mathbb{C}]$. By [9] ((iv),p.360) and [13] (p.279), it follows that $[\mathbb{S}] \subset [\mathbb{C} \cap \mathbb{C}]$. Each of the functions \mathbb{F}_q , defined in the proof of Theorem 2 of [2], belongs to $\mathbb{T}_1 = [\mathbb{S}]$, hence $[\mathbb{S}] \subseteq [\mathbb{C} \cap \mathbb{C}]$. Let F be the function defined in e). Then $\mathbb{F} \in \mathbb{N} = [\mathbb{C} \cap \mathbb{C}]$, hence $\mathbb{F} \in \mathbb{T}_2$ (see [13], Theorem 7.3,p.284). But $\mathbb{F} \notin [\mathbb{C} \cap \mathbb{C}]$, hence $[\mathbb{C} \cap \mathbb{C}] \subseteq [\mathbb{C} \cap \mathbb{C}]$

Theorem 3. For continuous functions defined on closed intervals we have: a) HeVBG \subset He[GT1] \subset He[GB2] = [GB2](see [7], Question 4); b) HeACG \subset He[GS] = [GS](see [7], Question 8); Moreover [GS] [GS] = [GS]; c) HeVBG \subset He[GT1] \subset [GS] [GT1] = [GT1]; d) [GS] [GS] = [GS] and GSeGS = GS; e) [GS] He [GS] [GT1] = [GT1]; d) [GS] GS] eld \subset [GS] [GT1] = [GT1]; f) [GS] He [GS] [GT1] = [GT1] \subset [GB2] = [GB2] He [GS] GLeH = ACGeH = VBG eld GLeH = ACGeH = ACG

<u>Proof.</u> Let $f:[a,b] \rightarrow R$, $g:[c,d] \rightarrow R$, $g([c,d]) \subset [a,b]$ and let $F = f \circ g$, $f, g \in G$.

a) The two inclusions are evident. We shall prove that $H \circ [GB_2] = [GB_2]$. It suffices to show that $H \circ [GB_2] \subset [GB_2]$. Suppose that $f \in H$, $g \in [GB_2]$. Then there exist $E_n = \overline{E}_n$ such that $[c,d] = \bigcup E_n$ and

- $g_{E_n} \in B_2^{\bullet}$. Clearly $f_{g(E_n)} \in H$. By Remark 4,1), $f_{g(E_n)} \circ g_{E_n} \in B_2$. By Lemma 6 and Lemma 7, $F_{E_n} \in B_2$.
- b) Clearly $\overline{H} \circ ACG \subset \overline{H} \circ [GS^*]$. To prove that $[GS^*] = \overline{H} \circ [GS^*] = [GS^*]$ \circ $[GS^*]$, it suffices to show that $[GS^*] \circ [GS^*] \subset [GS^*]$. Suppose that $f,g \in [GS^*]$. Then there exist $E_n = \overline{E}_n$ such that $[a,b] = \bigcup E_n$ and $f_{E_n} \in S$. Let $T_n = g^{-1}(E_n)$. Then T_n is closed, $[c,d] = \bigcup T_n$ and there exists a sequence of closed sets $T_{n,k}$ such that $T_n = \bigcup T_{n,k}$ and $g_{T_n,k} \in S$. By Proposition 2 or Remark 4,f), it follows that $f_{g(T_{n,k})} \circ g_{T_n,k} \in S$. By Lemma 6 and Lemma 7, $T_{n,k} \in S$.
- c) Clearly $\overline{H} \circ VBG \subset \overline{H} \circ [GT_1^*] \subset [GS^*] \circ [GT_1^*]$. To prove that $[GS^*] \circ [GT_1^*]$ = $[GT_1^*]$, see the proof of b), Remark 4,i), Lemma 6 and Lemma 7.
- d) See the proof of b) and Proposition 2,a).
- e) The first part follows by c). To prove that $[GS] \circ [GT_1] = [GT_1]$, see the proof of b) and Remark 4.i).
- f) The first inclusion is evident and for the second see the proof of b) and Remark 4,k). To prove that $[GB_2^*] \circ H = [GB_2^*]$, it suffices to show that $[GB_2^*] \circ H \subset [GB_2^*]$. Suppose that $f \in [GB_2^*]$ and $g \in H$. Then there exist $E_n = \overline{E}_n$ such that $[a,b] = \bigcup E_n$ and $f_{E_n} \in B_2$. Let $T_n = g^{-1}(E_n)$. Then $T_n = \overline{T}_n$, $[c,d] = \bigcup T_n$ and $g_{T_n} \in H$. By Lemma 6 $F_{T_n} = f_{E_n} \circ g_{T_n} \text{ and by Remark 4,m} \text{ it follows that } F_{T_n} \in B_2.$ g) Since $H \cap N = \overline{H}$ and $VBG \cap N = ACG$ we have to prove only that $GL \circ H = ACG \circ H = VBG \circ H = VBG$. Clearly $GL \circ H \subset ACG \circ H \subset VBG \circ H = VBG$, so it remains to prove that $VBG \subset GL \circ H$. Let $F: [0,1] \to R$, $F \in VBG \cap G$. Then there exist $E_n = \overline{E}_n$ such that $\bigcup E_n = [0,1]$ and $F_{E_n \cup \{0,1\}}$ is VB on [0,1]. Let $h_n(x) = A_n(x)/L_n$, $x \in [0,1]$, where $A_n(x)$ is the total arc-length of the graph of $F_{E_n \cup \{0,1\}}$ from 0 to x and $L_n = A_n(1)$ ([1], p.125). Let $h: [0,1] \to [0,1]$, $h(x) = \sum_{n=1}^\infty h_n(x)/2^n$. Let

 $[GT_1^*] \cap M$ on [0,1]. To prove that $[GT_1^*] \cap M \subseteq [GT_1^*] \cap N^{\infty}$ we construct the following example: for C(x) let $J_i^s(x) = (a_i^s, b_i^s)$, $i = 1, 2, ..., 2^{s-1}$ be the open intervals from the step s, numbered from the left to the right. Let $c_i^s < d_i^s$ belong to $J_i^s(<)$. Let <"= $\{1/2^k\}$, $k \ge 0$. Put $I^{*,*} = I^*$. Let $f: [0,1] \rightarrow [0,1]$ be defined as follows: $f(x) = I^{*}(x)$, $x \in C(*)$; $f(c_{i}^{s}) = (i-1)/2^{s-1}$, $f(d_{i}^{s}) = i/2^{s-1}$, $i = 1,2,...,2^{s-1}$, s = 1,2,... Extending f linearly on each interval contiguous to $C(\propto) \cup (\bigcup_{s=1}^{\infty} \bigcup_{i=1}^{2^{s-1}} \{c_i^s, d_i^s\})$ we have f defined and continuous on [0,1] (see fig.1 for the representation of the first three steps in the construction of the graph of f). The continuity follows by the fact that $O(f; R_{e_1 \cdot \cdot \cdot \cdot e_a}(\approx)) = 1/2^s$. Since $f(\bigcup_{i=1}^{2^{s-1}} J_i^s(\propto)) = [0,1]$ and $f^{-1}(y) \cap C(\propto)$ has at most two points, it follows that $f^{-1}(y)$ is denumerable for each $y \in [0,1]$. Moreover, the set $f^{-1}(y) \cap R_{e_1 \cdot \cdot \cdot \cdot e_s}(x)$ is infinite for each s. For $x_0 \in C(x)$ and for each s there exist $e_1, \dots e_s$ such that $x_0 \in \mathbb{R}_{e_1 \dots e_s} (\infty)$. It follows that O is a derived number for f at xo. Since $\overline{\lim_{s\to\infty}} \ O(f; \mathbb{R}_{e_1\cdots e_s}(<))/|\mathbb{R}_{e_1\cdots e_s}(<)| > 1, f has a finite or$ infinite derivative at no point of $C(\propto)$, hence $f \in \mathbb{N}^{\infty}$. Clearly $f \in [GT_1^*]$ - M on [0,1] if $|C(\propto)| = 0$. If $|C(\propto)| > 0$ then $f \in ACG - B_2$, hence by Remark 4, j) it follows that f & ACG - S'. d) By Lemma 2, $[GS] = [GT_1] \cap N$. By Theorem 1,h) it follows that $[GT_1] - N \neq \emptyset$. Since $[GT_1] \cap N \subset [GT_1] \cap M$, it follows that $[GT_1] \cap N$ $\not\subseteq [GT_1] \cap M$. By c), $([GT_1] \cap N^{-}) - M \neq \emptyset$, hence $[GT_1] \cap M \subsetneq [GT_1] \cap N^{-}$. e) Clearly $[GS^*] \subset [GS]$. By [9]((ii),p.360), if $f \in \mathcal{F}$ on [0,1] then

 $a < b, \quad a,b \in E_n, \text{ then } 2^n [F(b)-F(a)]/(h_n(b)-h_n(a)) < 2^n L_n. \text{ Let}$ $h(a) = c \text{ and } h(b) = d. \text{ Then } [F \cdot h^{-1}(d) - F \cdot h^{-1}(c)]/(d-c) < 2^n L_n.$ Thus $F \cdot h^{-1}$ is a Lipschitz function with constant $2^n L_n$.

We are indebted to Professor Solomon Marcus for his help in preparing this article.

REFERENCES

- [1] Bruckner, A.M.: Differentiation of Real Functions. Lecture
 Notes in Mathematics, 659, Springer-Verkag, New York, 1978.
- [2] Ene,G.: An Extension of the Ordinary Variation. Real Analysis Exchange, 10, (1984-85), 149-154.
- [3] Ene, V.: On Foran's conditions A(N), B(N) and (M). Real Analysis Exchange, 9 (1984), 495-501.
- [4] Ene, V.: Monotonicity Theorems. Real Analysis Exchange, 12 (1986-87), 420-454.
- [5] Filipczak, F.: Sur les fonctions continues relativement monotones. Fund. Math., LVIII. (1966), 75-87.
- [6] Fleissner, R.J. and Foran, J.: Transformation of differentiable functions. Colloq. Math., XXXIX (1978).
- [7] Foran, J.: Continuous Functions. Real Analysis Exchange, 2, (1977), 85-103.
- [8] Foran, J.: A generalization of Absolute Continuity. Real Analysis Exchange, 5, (1979-80), 82-91.
- [9] Foran, J.: An extension of the Denjoy integral. Proc. Amer. Math. Soc., 49 (1975), 359-365.
- [10] Foran, J.: A Chain rule for the Approximate Derivative and Change of Variable for the **D**-Integral. Real Analysis Exchange, 8, (1982-83), 443-454.

- [11] Lee,C.M.: Some Hausdorff variants of absolute continuity,
 Banach's condition (S) and Lusin's condition (N).
 Real Analysis Exchange, 13 (1987-88), 391-404.
- [12] Saks,S.: Sur certaines classes de fonctions continues. Fund.Math.,17, (1931), 124-151.
- [13] Saks,S.: Theory of the integral. 2nd rev.ed. Monografie Matematyczne, PWN, Warsaw (1937).

Received 20 June, 1989