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ON _SOME QUESTIONS BRAISED BY J, FORAN

In a comprebensive survey article [7], J. Poren bas raised
several interesting questions related to some classes of continuous
functions. In the following, we are dealing with three of these
questions. As 8 part of our approuch, we will settle in the nega-
tive twc c¢f Foran's conjectures.

iet € = [F : F is contimious}; L = {F : F is Lipschitz}; H =
{b : b,p]—[c,d] : b is a homeomorphism}; ® = {h €H : heac}.
Bansch's conditions Ty, Ty, S, lusirc's cconditicn N and conditions
V3, VBG, VB, AC, ACG are defined in [13]: a(w), (), ¥, 8 in [9].

Definiticn 1,[8]. A functicn F:[0,1]—>R satisfies Foran's
condition M (resp. M,) on E = FC[o,i if F is AC cn each closed
subset of E on which F is VBNE (resp. VB, nt ).

Definition 2, [12] , Let F:[0,1]—R, E® ={x : F'(x) = } ool;
K™ = [F : |F(E™)| =0},

Defirition 5.]2] o« A continvous funecticn £ on a closed interval

is B, provided {y : f'l(y) is finite}N J is uncountable, where J is
any open interval in the range of f.

Definiticn 4.|:Z| o« A continuous function £ on a closed interval
satisfies ccndition S' provided to esch open interval J in the
range of f corresponds a number €; such that Bl > €y, whenever

E is a measurasble set fcr which F(E) D J.
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Definiticn 5. Let P = PC [0,1] . A function £f:P—R is $*
(resp. T7, 8'*, BY) on P if f, is S(resp. T;, S', By) on [s,b],
where a = inf(P), b = sup(?), {(an’bn)}n are the intervals

contiguous to P and f: [8,b]— R is defined as follows: fp(x) =

(b, )=f
f(x), xeP 8nd fP(x) = —i--g-)—_—a--(—al-ll-(x-an) + f(an), X € [an,bn].
n n

Definiticn 6. Given 5 natural nvmber N, let ¥ (N) (resp. 8(X))
be the class cf all ccontinucus functions F defined on 8 closed
interval I four which there exist a sequence of sets {E ] and a
sequence of natursl mumbers {N § such tbat sup{N,} = §, I =URB/

and F is A(Nn) (respe B(Nn)) ocn E_, If we drop the conditicn

n
sup{N } < oo we obtain Feran's class ¥ (resp.8). If the sets E

are supposed to be closed we cbtain conditions [F(X)], [B(x)] ,[¥],[8

Definition 7. |11| (ps4l6)s For a function £ satisfying property
P cn sets we say that f is generalized P on E, writing f€GP cr E

(resp. f € [GP] on E) if E can be written as the union ¢f countably
wmany sets (resp. closed sets) on each ¢f which £ is P. Thus we have
properties like Gs*, Gs'* , 6B% , 617 , G§, 6T, (resp. [6s*], [68'"],
Ge3), [eril, bS], [ryDd.

J. Foran asks fcr 8 characterization of each of the fcllowing
rlasses of continuous functicns: a) HeVE:, b) HeACG , ¢) HeVEG,
With respect tc the class 8) we prove thast it is ccntained in the
class [GBE] and sur conjecture is thst the converse inclusicn is
8lso true, Witb respect tc the class b) we show that it is contained
in the class [6S®] and cur conjecture is that the comverse inclusion
is also true. 4t the same time, we show that the class [GS'] is
strictly contained in the Lusin class N. In this way, we settle in

the negative Foran's conjecture asserting that the class HeaCG is
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identinal to the class N, iith respect tc ths class ¢), we prove
that it is contained in the class [CT]] and we ccnjecture that the
converse inclusion is alsc true. horeover, we show that [GT7] is
strietly ccontained in the Bsnarh class '1‘2; this settles in the

ne-ative Fsran's conjecture asserting the identity HoVB: = T,.
In what follows we need the follswing results:

ieuma 1. Let £f:P—R, F =PC [0,1], f€€ and let s:f(P)—»'_i%'+,

s(y) the number (finite or infinite) of points of f"l(y). Then

is
s(y) 1s Borel measurable.

Proof. The procf is similar with that of [13](Theorem 6.4,p.

280). Indeed, let a = inf(P), b = sup(P) and let s be the
characteristic function of the set f(Il(cn)n P), where Ifcn) are
defined as in [13]. Clearly skn) ars Bcrel measurable anj

fcllewing [13], s(y) is Bcrel measurable.

Lemma 2. S = NNTy for continucus functions on esch closed
subset of [0,1] .

Proof. The prozf is identirzl with that of [173] (p.284-285) if
we use Lemma 1 instead Theureu €.4,p.280 of [13].

Thegrem A, (Theorem 7.4,p.284 of [13] and the Corollary of p.
131 of [12]). 5= NAT; = N®NT, f2r continuous functions gn a

clgsed interval,

ieuma_ 3, (Krzyzewski-lemma, see [10]). If Pgp &xists at
every point of 8 set E and [F(E)| = O then Fép(x) = 0 at almost
all psints xekE.

We will need the symmetric perfect sets and functicns defined

on these sets which are civen in the following construction:
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Let «= {ak} g» k>0, be 3 sequence of positive numbers

such that,ao =1, ak_1>2ak>0 and let ¢, = 8y _1=8¢ let (=) =

[x & There exists ei(x) taking on O or 1 and x = Eei(x)ci} . If
«= {1/3%}, then 0(x) = G (C = the Cantor ternary set) and if

= {1/2l}k then C(x) = [0,1] . The open intervals deleted in the
s=step of the cocnstruction of C(ex) are Oel‘”es-l(“) = (E}l eqcy +

S=1
g "§1 e;Cy + cs) ’ (eltﬂnes_l) € {0,1}8 1 = {O,l}x cee X{O,l}

(s=1) times and the remaining intervals of the s-step are

2

S s
S
v«Eloa.es(«) = [igleici ) %16101 + as]’ where (31,000,98)5 {0’1} .

Then G(x) C J

. (), bence [C(e«)| =
(€1s++218,)€ 0,1}

R
elo..es

lim zsas. We say that = is of type (+) if a,_;>23,, k=1,2,... .

S—»o0e

Then sach x € C(x«) is uniquely represented and C(x) is a symmetric
perfect nowhere dense subset of [0,1], 0,1€ C(x). e say that
is of type (e#) if 8,.1>28,, k=1,2,... . ¥e say that e< is of
type (e#s) if Copel =2Coiyr K = 1,2,000 o Lot o= {a,},, «'-=
{8fik» k>0, be two sequences of type (#), ¢, = 8, 1% Ck =
al_1-8k, k>1. Let «" = f{ajj,, k>0, be 3 sequence of type (#e),

efl = ay_j=ap, k3l. Let I0% ig(x) = o), 190" (x) =

I“”'"(.ilei(x)ci) = ;z.:]_ei(X)Cg 3 G 10 () —C ("), 6™ (x) =
1l= =
n o° & ' :
BT Z eg(x)ey) = B (en; 100005y + epp(xegy )i 6707
1t n_ 3
3( “')__’c(“")’ Ge&"a (X) - Ga.' ’ % (lglpi(x)ci) = igl(.Zi_l(X)C:éi +
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ep(XeBy 1) 5 B 00— B,1), B5™ ice)— b,1), )

o o™ g v i " L
= Fl ( < ei(X)ci) = - 921-1(1)021-1 H F2 (X) =
i=1 i=1
ey oM i _ i " B 1 - =" ., o P o'

o« o'

F2’ ' (I‘esp.

G"""‘") by linearity on the intervals contiruous to

C(x) (respe C(«')), we have these functions defined and continucus

cn [0,1] . Clearly I*™(x) = x on [0,1]. We have

1) I = PPN ¢ B3 ()
(2) (R ()N G(=)) = R (NG (<)
elo..eak . eael.o.eakeak-l
. 11]
and G (R <)) = R ("), k=0,1,0¢0 &
( 91000921{( ) 92elooo62ke2k_l . ’ ’
(3) G“"“"o G«,-t' = Ia,-&" on G(x).

If in addition «" is of type (ee+) (i.e., °51-1 = 2c§i) then
(8) 8N = P e 1) = @ - @
= 485" (x) + FP ().

Remark 1. a) If « 1is of type (+) then « is of type (#+¢).
b) If ae [0,1) then there exists a segquence « = f[a;};, 130, of
type (#) but not of type (+#+#+) such that |C(x)| = a. Put for

sxample a4 = 15/2".L + (l-a)/ui.
c) 1f ae [0,1) then there exists 2 seguence o« = f{as} i, 120, of
type (#) and of type (++#) such that [C(x)| = G« But for example:

a1 = 2/8F = (3211 C10)a/(3-8Y), 1 = 1,2,.00, 8y, = L8t -

(2! <1)a/(8Y), 1-0,1,... o Then ¢y = 18t = (3-2t = Da/(3-8") 5
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eos_q = 2/4% = (3211 L 1mya/(308Y).

d) If = {1/21}1 y 130, then & is of types («#) 2nd (+e#)
but not of type (+) and C(%) = {0,1].
) If «= {/3%,;, 130 8nd «" = {1/2%,, 120, then 1" = ¥,
where  is the Cantor ternary function.
Lemma 4, Let N be a natural number and let f,bi[0,l]— R,

b - increasing and AC. Let E be a closed subset of [0,1] . If

there exists m> O such that for each ¢,d€EF, with O<d=-c<ny ,

As([e,d NE)) < b(d) = b(c) then £ & A(N) on B. (N(X) =

X N
1nf{121111| : {1;};_, is 2 seguence of N gpen intervals mhich

covers the set X}, see [11],p.z04).

Procf. For €>0 let & be the & given by the fact that
h is AC, Let :% = win{f, M} . By the definition it follows that
f €A(N) ¢cn E,

The pro.fs of the following thecrems 1, 2 and 3 will be
deferred until the end of the paper,

Thegrem 1. With the above notations we have:
a) PNl = JF3r*(C=)] = 0 and 6*1"(c@)) = o(w");

(bence F'l""" and Fg,.cv belonz to 5= NAT; on [0,1]4)

b) If |C(%)] # 0 and IG(=")| # O then FY*™", F5*™", ¢*** Delony

i‘"" ,

to ¥(2) - ¥(1) and the sets of peints of C(%) at which ¥
FE’“", =" are approximately differentiable are null sets.
¢*+*" bas finite or infinite derivative at mo point of O(x).
¢) If 16()l # 0 amd [o(a")] # 0 then F}*™", F5**"¢ 8 (hence

F'°, P50 [6s°]) on [0,1], but ¢™*"¢ [65*] en [0,1] .
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d) If «" is of type (#) then G***" is bijective on C(%);

e) If =" is of type (##) but not of type () then [I(¢™*™ )~1(y)
NSE)l = 1 (zespe HE**™)"L(3)N eI = 2) £ y bas an unigue
representation (resp. twec representations); (WXl = the cardinal
of the set X.)

on of C(*);

ch that Zi/min{°21'2'2i+1' 21*1-2:32“;
¥ , 1=0,1,,.. then G™*"e L. (In particular this holds when

C@) = C=") = C).

h) If |C®)| = 0 and |C@™)] # O then 6™*™"¢ MNT,)-N op [0,1]
and st least onme of the functisns Fy**" and F,***" does not belons
te ¥ on [0, .

1) ML RE 5 §) FeuZzwu .

£) 6" is monotcne on no por
g) If there exists M>O0 su

Remark 2. A continuous, bijective function on C and mcnctone
on no portion of C was constructed before in [5J. There exists a
function £:C—»C, f&e €NL and bijective such that f is monctone
on no portion of C and fef(x) = x ¢n C, Put for example C(«) =
O(w') = C(w") = C 8nd £ = G**™" (see Theorem 1,d),£),g) and (3)).

Lemna 5. Let £:P—>R, P = Fc[0,U and let H) = {x & £)p(x)
= 0§« Then |£(H))| =

Progf, Let H = {erl ¢t x is a billateral point of
accumulation of P} . Then f3(x) = O at each x€F and HeH 1is at
most denumerable, By Theorem 4,5,p.271 of [13] s 1t follows that
[£p (@1 = 0, bence |£(8,)] =

Proposition 1. Let f:P—R3, fe€ , P = PC[p,1] and let E =
[x€P & £'(x) does not exist with respect to P}. If |£(B)|
then f€T, onP.

565



Prosf. Using Lemma 5 instead of Thecrem 4.5,p.271 of [13],
the procf is similar to the proof of Theorem 6.2,p.2’78,2° of [13] .

emark 3., The converse of Proposition 1 is true only if P =
[0,1]. (See Theorem 1,3),b) and Thezrem 6,2,p.278 of [13] or
Theorem 1,p.130 of [12].)

Remark 4, Fcr conmtimucus functions defined on [0,1] me have:
a) HeL = HeAC = HeS = He3' = 3' (see [7]); b) HoVB = Hel; = B, (see
[71)s ¢) Heac = Hes = 5 (see [7]); d) HeVB = Hely = Ty (see [7]);
e) LOH = ACeH = VBeH = VB (see [7]); £) SeS = S (see [13],p.289);
g) S'eS = 3' (since by a), 3'¢S = HeSoS = HeS = 3'). This fcllows
slso by definitions. Indeed, let f,g:[0,1]—>R and let G = feg,
fes', gesS. let EC [0,1] and let J be an interval such that JC
G(E) = £(g(E)). Then there exists £, >0 such that le(B) > €y .

Since g& S there exists €>0 such that |E| >&. b) T} = SeH
(since by d),e),c), T, = HeVB = HeaCeH = SeH); 1) T, = SeT; (since
by £),b), SeT) = SeSeH = SeH = Ty); J) B, = S'eH (since by b),e),
a), By = HeVB = HoAGeH = S'eH); k) B, = S'7; (since by j),b),s),
§'eT; = S'eSeH = S'oH = B,); 1) HeB, = B, (since by b), HeB, =
HeHoVB = HoeVB = By); m) By*H = B, (since by j), ByeH = S'eHeH =
S'eH = By).

Theorem 2., For contimious functions on b,1 we bave:
8) §= NAT; = MNT, = AT, = b NT; (bence c™<"¢ 1, o=
from Thecrew 1,h));
b) ac6 = [acc] = [¥(1)] g [6s"] and s g [Bs]’
¢) [6s*] = [er7laN = [er{Iny ger]In®™ = [Gr1lOK, ; ACG - B,
#0 , hence ACG = S' £ ¢ ;3
a) [6s] = [om1nw g femylon glrdan™ = [ery1nu,

e) g‘:(?]g@}s] G6SC¥ and [65%] g[es]s
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£, 036 = [vea] = B()] g b1]]: B=[8] ¢ [1;] (2,-8 # 9);
CACSCNEEN
Remark 5. That ACG = S' # ¢ was shown in €] .

Proposition 2. For functions defined on 8 bounded real set

“ we have: 3) 308 = 3 ; b) (NﬂTl)oTl =Ty

Froof. Lot g:E—> K, f:k—>r. & - fog.
.) 3unpcse f.reé 5. Let €>0 and let §¢ be the & given by the
fs~t thst fe 5. For 8¢ le* m>0 be the & given by the fact that
ces. et 7€ F, [%)|<m , Then [G(E))<E .
b, cuopose feTl. geTy. Let 4 = {y : G'l(y) is infinite}] and Ay =
fy : £71(y) is infinite}. Then [Aj| = 0. Let By = {zek : g 1(2)
is infinite}. Then |B)| = 0. Since fe N. |£(By)] = O. ¥e have
AC AU E(B)). Indeed. let y€ 4 then G 1(y) = g™2(£ 1(y)) 1s
infinite. It follcws that f'l(y) is infinite, bence ye€ aj cr there
exists ze€f 1(y) such tbat g 1(z) is infinite, hence z €Bj. so

y = f(z)ef(Bl). It follews now that [A| = O.
Lemma 6, Let ¢: [a.b]— [c.d], f: [c,d]—>R, F: [s.b]— R.
F = fog, f,ge € « Let P = PC [a,b] « Then F; = (£gp)°Ep)p

Moreover, if ge H then Fp = fg(P)°gP‘

Procf. The first part of Lemms 6 is evident. We prove the
second vart. Clearly FP(x) = fg(p)ogp(x) for xeP. Let I = (s,.D).
n>1, be the intervals contiguous to P with resvect to [inf(}").
sup(¥)] . 3ince geH the intervals contiguous to g(P) sre exsctly
I, = ¢(I,). Hence fgr(P)"gP is linesr on each [an.bn]. Since F(a,)
= FP(an) . F(‘?n) = FP(bn). it follcws that FP = fg(P)°EP

d2mark 6% That g eH 1s essential in L-mma 6. Indeed. let

f=g.f:0.1}—[0.1]. £(x) = 1/3 - x. xe [0, 1/3]; £(x) = x.
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xe[2/3, 1], £(x) = 2x =2/3, xe€(1/3, 2/3). Let P = [0, 1/3]VU.
[2/3, 1] snd F = fog. Then £, = £ on [0,1], F(x) = x on [0,1],
but F(x) # x on (1/3, 2/3), and F(1/2) = f.(1/3)' = 0, (See also
the function f of Remark 2,)

Lemma 7. Let f:[0,1]—>R, be a contimuous functicn which is
T, (zesp. S; B,) en [0,1]. I£ P = PC[0,1] then fp is T; (zesp. S;
B2) on [_B,b] = [inCP)gSUp(P)Jo

Proof. Let {I_} be the intervals contiguous to P with respect
to [a,b]. Suppose f€ T, on [0,1]. we prove that f, €T, on fa,b].
Let & = {y : £72(3)N [a,b) 1is infinite]. By the definition of T,
it follows that [A| = 0. Iet &' ={y : £51(3) N [8,8] 1is infinite};
A" = {y : f;l(y).: I, for some nstural number n}. We show that
A'=A"C A, Let ye A'- A" such that f5(y)N\P is infinite. Then
f"l(y)nP is infinite, hence ye A. 1et ygA'= A" such that fpfl(y)
NP is finite. It follows that there exists a sequence {n, (y)},

i>1, such that N£51(3)N In (y)ll = 1 Stoce fe€ it follows that

\\f'l(y)n Ini(y)”>/ 1, 1 = 1,2,... , hence ye A. Since A" is
denumerable, it follows that |A'] = O, bence f, €T, on [a,n].
Suppose that £ is S on [0,1]. We prove that f; is S on [a,b].

By Banmach's theorem (Theorem 7.4,p.284 of [13]), €ns =4nT;NN
on [a,b]. Since fe€S = TJNA N, f € N on [a,b]and by the first part
of this lemma f €T, on [6,4] bence f,€ NNT; = S on [a,b].
Suppose that f is B, on [0,1]. we prove that fp€B, on B,bl. Let
J c.rng(fP) be a8 nondecenerate interval, (Here rng(f) denoted the
range of the function f.) Clearly Jcrng(f). Let 4y = {JEJ t
f‘l(y) N{e,b] is finite}. By the definition of B, it follows tbat
A; is uncountable. Let 4% = {yeJ : £37(3)N [a,v] 1s finite} and

Ay = {yeJ t there exists at least one natural number n, such that
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£51(3) D1, }. To prove that £ € B, 1t is sufficient to show that
Ay = A} C A] (since A} is countable). Let yaAy = A} then f"l(y)
NP is eitber finite or empty, By = {n : £7lyn1, # 9} 1s

finite and 257 (3)NI ]l = 1, for each ne By. Hence ye Aj.

Some_Open guestions. a) Is the converse of Leuma &4 true for
contimious functions on {0,1] ?
b) Let £:[0,1]—>R and let E be a subset of [0,1]. Let N be a
natural number. Then £ is saild to be L(N) on E if there exists
L>0 such tbat for each a,beR, agh, )\N(f( [a,x]NB))<L L. If in
Definition € condition A(N) is replaced by L(N,) we obtain the
classes L and L(N). We conjecture that: 1) LeH = FeH =& 3
2) LoH = FoH =F 3 3) L(k)eH = F(k)oH = B(k) s 4) LWH
= F(k)oH = ¥F(k) , k2 3 5) [65*]eH = [677] snd [G5'*JeH = [GBSI;
6) HeACG = [6S'*] (see question 3 of [7]) and He[as'?] = [6s'*].
¢)How can the following classes of continuous functicns on closed
intervals be characterized: He F(k) ; He ¥ 5 Ho ¥(k) ; Ho¥ ?
The ssme question if ¥ is replaced by £ and B .
d) Does lLemms 7 remain true if S is replaced by S' ?

Proof of Theorem 1, a) F'*"(c(«))c (LJ [3 d;e8
e Spreeesipe fO, B am1 e
n o0 i
izljicgi + Z lcgi]. Clearly aj <1/2%, i = 1,2,4s+ + It follows
= =D+

[
that 2 ey < 1/4n, bence ]Fg,un(c(u))]é lim 2P(1/4®) = o.
i=1 D) e

Similarly |F3*""(C(=))] = 0. If k = 0, by (2), G "(C(=)) = C(«").
That F]*™" and F5**" belong to S = NNT, on [0,1]follows by [13]
(Theorem 6.2,p.278) and Theorem 4.

b) Let |C(<)}] = a and [C(x")| = b. By hypothesis a ¥ O and b ¥ O.
First we shall prove that (I“"‘“)'(x) = b/a 8.6, on C(=x) and I""‘"
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1s 4C on [0,1]. Let 4 = {xec(x) : I"""" 1is derivable at x}. Let

o® o
XOGA, Io = Eleici 9 xn = E eici + (l-en+1)cn+1. It fOllOWB

that (T 0" (x,)=I""™ (x,))/(xy=x,) = (al- &l 1)/(ay= &, 1) =
(2“3" 2 a" 1)/(2 a_ - 28 8., 1)—’b/a, bence (I“"‘ )'(x) = b/s

if xeA. Observing that 1""" is increas:lng on [0,1], it follows
that Jo(x) = A| = 0. Alsc f (") 1 (x)dx = Jc(«) (b/a)dx +

J (1%"")1 (x)dx = 1, bence I*™ € AC on [0,1]. We shall
E)’]J - C(“) [ ]

prove that F3*= , F5*™" € A(2) on C(=). By (1), since A(1) + A(2)
= A(2), it is sufficient to prove that Fé"“"e A(2) on C@&). By [3]
it follows that if u,veC(«) tben there exists J; and J, such that
" (B, ncE)) € J,UT, and | 3] + 10,] € T (v) = " (u).

Since I"**"& AC, by Leuma 4, it follows that F3' e A(2) on c(«).
We sball prove that the sets of points of C(x) at whiech Fl " and
l‘é"" are approximately differentiable, are null sets. let B =
jxed s Fg""" is approximately differentiable at x}. By (1), B =
{xed s 1"']"."‘" is approximately differentiable at x}. By Leuma 3
together with |F{*="(B)| = |P$**"(B)| = 0, it follows that

"“");p(x) - (Fg"‘");p(x) = 0 a.e. on B. By (1), since (I*?%)'(x)

= b/a on A, it follows that |B| = 0. By [13](p.222-223) it follows
that F{*™", P5*<" ¢ B(1). If " satisfies condition (ss#) the
assertion for G™ o= follows easily by (4). We shall prove witbout
condition (s#s) that G='< g A(2) on C(=). Iet 0 4v=u, u,v gC(=).
-Iet s be the first natursl number such that [u,v] econtains an open

interval o’l""s—l(“) = (uy,v7), from the step 8. Then [,wv] e,
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R (=), Let u2,V2eC(°<) such that G(uy) = inf G(x),

eloooes-l xeu]’ullnC(ﬂ)
) 5 S
G(v,) = sup G(x Un = e:C: + elc, Vo = Vq +
2 Xe[VI,V]ﬂC(“) ’ 2 i=1 171 i=1 i¥i 2 1

o0

oc oM oo | ' .
i§s+1eici' Let ™™ (x) = i%lei(X)Ci-l’ xeC(<), cf = 2. Extending

o alt . . L *"
b™*" 1linearly on each interval contiguous to C(=) we bhave h™’

defined and continuous on [0,1], B> (0) = 0, h"’“"(l) -2,
(h"&")'(x) = 2b/a a.e. on C(x) (see the proof for I“”‘"), h(C(=))
= C(=") + {1 + C(«¢)], b is strictly incressing on [0,a;]V tbl’l.]
and constant on [a),b,], b**™"¢ AC (see the proof for I**™") on

[c,1]. We have G***"(u;) = G="(uy) = 3 (-

el. )c" +
2i-l>s 2i=1/721

2 (1= e3:)eY < 3 (1- el Yel. + 'Z (1= e}, ek,
21> g 21/ ¥2i=1 2i-12s 2i=1/"2i=2 2{>s 2i/72i=1

= jzs(l- ezj)c'é_l = h""‘"(ul) - b""‘"(uz). Analogously, G""‘"(vz)
=
- 6" (v)) 2 8™ (v,) = B (v)). Hence 6% ([u,vlNC()C
(J (] o« o, L] : ot '
(6%u,),6Tuy MU [6191),6Tv,)] amd 6%0™" (ag) = 6™ (up) + 6™ (v,)
- 6™ (v)) & B (v) = 5" (u). By Lemma 4 it follows that ™'
€4(2) on C(x). We shall prove that G¥*~°" has finite or infinite
derivative at no point of C(x) and G™*™" has not a finite

approximate derivative a.e. on C(x)., Let X, = ? e;cq. For each

=1
natural number n we have four situations:

(I) Suppose e, _, = €5, = 0. Iet xeR (=), ye

el"°e2n-201
" " 1]
Re.vvreyy ploco &) Then Xo< X<y 3 61T I@)>E™T (xy) 5 6T (3)

>G"9""(xo)s bence (G""‘“(X) - G“’.‘"(xo))/(x-xo> - (G"q"(y> -
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X" (2 )/ (3mxg) = (@ (@) = 6T () /() =38, /850 0
—>3b/168. Let X, = X, + cy 1 then (60 (xp) = 6™ (x,))/
(xp=xy) = (83, 3 = 85p)/(app o = 85, 9) —>b/2a.

(II) Suppose e, _; = O and e, = 1. Let R (), y€

€ .e2n_200

. ol <" o o' ) o o
Rﬁloooezn.zlo(“). Then x<xo<y’ G™? (X)<G ’ (xo), G? (y)<

" " (xo); (G""‘"(xo) - G"’“"(x))/(xo-x) > a'én/aan-l"’b/za and

6" (3) = 6™ (x,))/(y=x,) < O.

(11I) Suppose e,, 1 = 1 and e, = O, Let xeRel'_'QZn.aol(«), ye
Rejesseyy o110 Then x<x,<3; @) > 6 (x5 6T ) >
c-""‘"(xo); 6" (y) - G“"‘"(xc))/(y-xo) > a8,/a,, 1 —>b/2a and

(@™ (x) = 6" (x))/ (xx,) < 0.

(IV) Suppose e,, 7 = e,, = 1. let x &R (<), ye

€. "e2n-210

. ot gt poRal L
Bg uuve,  0111(0)e Then y<xax i G¥0™ (x) > () 3 6707 (xg)

>0 @) (@ (xy) = 6T @)/ (xpmx) = (@ (x,) = 6 @)/
(x=y) > (G~ " (y) - G“o“"(x))/(xo-y) > 383, o/8,_ —>3b/168.

Let x, = x_ = a8,_; then (G™**"(x,) = 6" (x,))/(x,~x,) =

a5, /8>p.1 —> b/2a.

By (I), (II), (III) and (IV) it follows tbat G™**" bas finite or
infinite derivative at no point of C(~). Also " bas a8 finite
approximative derivative at no point x e C(=), x, 8 point of
density of C@<). Clearly G™*~" ¢ B(1) (see [13],p.222-223).

¢) That F'l""" and F‘é""" belcng to S follows By a). Buppose that
¢"»*" €[6s*] on [0,1] then it follows tbat there exists (u,v)
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such that (u,v)NC(%) # ¢ and G**~" is 5% on (u,v)N C(x). There

exists R°1“'°2k(“) c (u,v) such that G“’“" is 5, bence T; on

Rel,,,eak(*)- By (2), b) and Theorem 6.2,p.278 of [13], it

follows that G""'"¢ T, on R (<), 8 contradiction.

61.‘0621{
d) Since «" is of type (+#), each y eC(=") has an unique

. & [} oc o™ -1
representaticn y = iElei(y)c'i and (G )TN (@FINC(=) =
{ o0 d..‘" .
15_:1921-1(3’)"25. + eai(y)cei_l)} , hence G is bijective cn C(x).

e) If <" is of type (+#), but not of type (+) and ye C(x") has
two representsticns, y = Eei(y)c'{ = 2 ef(y)ecf, then

(Gu,u")—l(y)nc(ct) = {Elezj.-l(y)cai + eai(y)CZi_l) H
e
El(eéi_l(y)cgi + eéi(y)°2i-l)}'

f) Let (u,v)C(e¢) be a portion of C(t), Then there exists a

2k 2k
R (%) c (u,v). Let x7 = 2, e;c. + a X, = D, €:Cs +
eloo °e2k ? 1 i=1 i~i 2k+1 ? 2 i=1 i¥i

eiCy + 85 then xl<x2<x5 belong to R

S
°2k+1 ’ x3 = i=1 eloooeek(“)

" - ™ 1
and G." (xl) D= G“’ (XE) < G.‘,“' (X5>o

g) let X<y belong to C(x) and let k be the first natural number

such that (x,y) contains an cpen interval Oel“'ek . from the

step k, with 21 <k<2i+2 for some nstural number i. Then [x,y]c

Rel”.ea(u), hence y-x > a,_; - 23, > min{aai+l - 28,5.5 9 834 =

o« ‘ o oM
284,71 and 6™ (y) - G""‘"(x)l < 8%;. It follows that G™*~
satisfies condition L witbh constant M.
b) By ¢) and &), clearly G*** € T,- N. We prove that e N,

573



The prcof is based on an ideea of J. Foren of [8](p.85). In order
to show that G™'< satisfies Foran's condition M, by Theorem 1 of
[8], it suffices tc shcw that if AC C(x) and e s uonotone on
A then G satisfies lusin's condition N on A. Suppose that

<" 1g increasing on Ac C(~), Clearly R («") are nonover=-

els o-Gak
(«™)| = ay, =1/45. Let
91000921{(") # g}' By (2) it

follows that [[0)XC X, ..x0, ]| 35, hence |6*"(a) <« (3/mE—o0.

lapping intervals and lRel"'ezk

CIICZX...XCK = {(el’ooo’eak) 3 AnR

since ¥+ F =% < Nand G** ¢ N it follows that at least one
of the functicns FJ'™ and F3*™" does not belong to ¥ on [0,1].

ol

1) Iet 0(x) = C(=') = G then G™* €L (see g)) and 6™+ e MNT,,
If |c(x")] >0 then I***" is increasing on C(~) and I*'“ € I on
C(«). Since MeL DN, by (3) it follows that MeL 2 M.

3) If lo(x™)] > 0 and Jc(«<')| > 0 then 6™ =" € F(2) (see b)).

If |C)| = 0 then by b), G="'& (1 NT,)= N, but I*™" ¢ M on

C(*). Since F(2)oliD K, by (3) it follows that F(2)oM 2 M,

Procf of Theorem 2. s) By Theorem 4, S = NAT, = NN T,.
Since NCX eN® =, by [4](lemark 1,e), Thecrem & and Theorem 1,
g)), it follows that S = NAT, = MATy = N*N T, = M*O ;.

v) ¥(1)c [65*]. Indeed, let £:[0,1]— R, £€ 40GNE ., It follows

that there exist Pn = Pn

such that [0,1] = UP, and £, & aCC3S,
n n
bence £ €& [G3*]. By Theorem 1,3),b), S - 4CG # @, hence ACG & [G3*]
on [0,1]. By [13](p.279), 40G - S # @, bence S [Gs*] on [0,1].
c) By a) and tbe definitions of [65*] and [GT{] it follows that
[6s*]< [rilny < [cT]{laM. Let £e €N[cT}]NM on [0,1]. It
follows that there exist P, = P, such that £, € €N N M = €NS
n
(see a)), bence fe [65°] on [0,1]. Then [65*] = [6T}]N N =
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there exist P = Fn and natural numbers N, such that fé€ A(N,) on
£pe By definitions, f€S on P, hence ¥ =[F]c [GS] on [0,1].

By Theorem 1,b),c) it follows that ¥-[65"] # ¢#, bemce [65*]Z [GS]
on [0,1]. By Theorem 1,a),h) it follows that S = F # @, bence

¥ g [65].clearly [6S] € ¢S < N. To prove that [GS] G GS we shall
construct the following example. At first we construct a
cantinuous function g:[0,1]—s[0,1], using the notations of c).
We suppose that [C(%) > 0. Let ¢(x) = I"(x), xe C(=); g(x)

(85) + (1/2%) T ((x-a§)/(c§-5)), xe [o],e8)s &(x) = e(cf) -

(17257181 ((x=c§)/(a5-¢5)), xe [e5,a51s e(x) = e(a]) + (1/2°)-
s-l
™ ((x=a5)/(b5-a9)), xe [a5,b51, Let Py = c(—:)U(u LJ { [(cB=a)-

c()+a51V [(af-cSxe()+cf1U (50520 (=)+a51}). We sbow that

£(0) = 03 g(1) = 1; g is constant on each interval contiguous to
P g is 4CG on [0,1] s g71(y) is infinite for each ye [0,1].
Using the function g, we can ccnstruct a continuous function flz
[0,1]— [0,1] and a nowbere dense, perfect subset § of [0,1]
with positive measure, such that fl(o) = fl(l) = 03 inf(Q;) =
sup(Ql) = 1; f; is constant on each interval conticuous to Q; ;

£1€406 5 £7l(y) is infinite. Let {Ir}, = {(ul,v1)}, ve tne

intervals contiguous to Q. let Q = Qk_lU( U (u k-l (Vg-l-ug-l)'Ql))o

k = 2,3yee0, where (un,v ), n=1,2,... 8re the intervals
canftiguous to Qko Let fk+1(X) = O, xeqk; fk+1(x) = (1/2n+k+1),

£ ((x=a5)/(05-35)), x € [a5,bK], k = 1,2,4.. . Dot P(x) = élfk(x).

(- 4
Let H = [0,1] - ul Qs F€ACG on UQ, and |F(H)| = 0, bence
M=
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FEGSC N, But Fe¢ [GT1] because F is not T; on any interval,
hence by d) Fé [GS]; but clearly F € GS,

f) Since VB = B(1) on & set E it follows that VBG = B(1). Let
£:[0,1]—> R, £€ ¥NVBG, Then there exist P, =P  such that fP:

VBC T, ([12]} ,p.279). It follows that for continucus functions on
0,1, ves = [vBd =fBQ)] C [679]. since [vBA]NNNE = [acdNt
([13], Theorem €.8,p.228) snd [GI]]NN = [68*] (see ¢)) on [0,1],
by b), it follows that [B(1)]G [61%]. By [9)((11),p.360), B=[AL
By [9)((iv),p.360) and [13] (p.279), it follows that [R]JC [6T,].
Bach of the functions P, defined in the proof of Theorem 2 of 21,
pelongs to T, =[B], hence [R1G[GT] . clearly [rdlefr,l c1,.

By ¢),d) and e) it fcllows that [GTI]%[GT]_] . Let F be the
function defined in e). Then F€ N -[6S], hence F& T, (see [13],
Theorem 7.3,p.284). But F ¢ [6T;], bence [6T,] g Tpe

Thecrem 3. For continuous functions defined cn clcsed
intervals we have: a) HeVBG < He[GT]] ¢ Ho[6BS] = [6BJ](see [7],
Question 4); b) HeacG c'ﬁ'{GS'] = [GS'_] (see [7], Questicn 8)
Moreover [6S%)e[65"] = [65%1; ¢) Hevas ¢ HeleTi] o [6s* eoT%]
(see [7], Question 9); dioreover [68*]efor7] = [6171: ) {csYe[cs]
= [6S] and GSecs = 685 o) [65%]en < [65™Fe[eTf] = [67%] and [Gs1
off ¢ {6s]efoT,1 = [67,1; £) [6s5'"]eH < [65'*]e[67]] < [GB5] =
[6BZ]eH ; ,g) GL9H = ACGeH = VBGoH = VBG and GLsH = ACGSH = ACG.

Proof, Let f:{a,b]—R, g:[c,d]—> R, g([c,d}) < [a,b] and
let F = fog , $,26€'6G &
a) The two inclusions are evident, We shall prove that He[GB3] =
[GBJ1. It suffices to show that He[GBjl< [GBS]. Suppose that fe H,
g€ [6BS). Then there exist B, = E such that [c,d] = UE, and
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EEne Bg. Clearly fg(En)eH. By Remark 4,1), fg(En)ogEne By« By
Lemma 6 and Lemma 7, Fp € B,.
n

b) Clearly HeacG < T [GS*]. To prove th;t Bs*] = HEeps*]= [6s*]
« [68"], it suffices to show thst [GS*] e« (GS*] < [GS*]. Suppose
that f,g € [GS*]. Then there exist E = E_ such that [p,b] = UE
and fEne S, Let T = g'l(En). Then T, is closed, [c,d] = UT, and
there exists a sequence of closed sets Tn,k such that T = U Tn,k
and g,l,n ke S. By Proposition 2 or Remark 4,f), it follows that

9
f £ € S, By Lemma 6 and Lemma 7, ¥ € 8,
e(Ty 1) Tn ke " Thk

¢) Clearly HevBG ¢ He[6T]] < [65*] °[GI{]. To prove that [68*]e [6T]]

= [GT{], see the procf of b), Remark 4,i), Lemma 6 and Leuma 7.

d) See the proof of b) anmd Proposition 2,a),

e) The first part follows by c¢). To prove that [GSle[cT,] = [6T,1,

see the proof of b) and Remark 4,i).

f) The first inclusion is evident and for the second see the proof

of b) and Remark 4,k), To prove that [GBJ]eH = [GB3], it suffices

to show that [GB3]eH < [6B3]. Suppose that £€ [GB}] and ¢e H.

Then there exist E, = E, such thet [a,b] = UE, and fEne B,. Let
-1 =

T,=¢ (Ep)e Then T =T, [c,d] =U T, and nge H. By Lemma 6

FTn = fE.nogJrn and by Remark 4,m) it follows that FTne B,.

g) Since HNN = H and VBGNN = ACG we have to prove only that

GLeH = ACGeH = VBGeH = VBG, Clesrly GLoH < ACGeH <« VBGeH = VBG, so

it remains to prove that VBG c GLeH. Let F:(0,1] — R, Fe VBGNGE .

Then there exist E, = E, such that VUE, = [0,1] and FEnU{O,l‘, is

VB on [0,1] . Let b (%) = 4, (x)/L, , x€ [0,1], where 4,(x) is the

total arc=length of the graph of FEnU fo,1} from 0 to x and L, =

(1) ((2],p.125). Let bi[0,1]— [0,1], b(x) = Elhn(x)/an . Let
n=
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61Nk on [0,1]. To prove that [cT{]nM g [GTT]NNT we
construct the following example: for G(x) let J7(%) = (a?,bg) ,
i= 1,2,...,23"1 be the open intervals from the step s, numbered
from the left to the right. Let cf < df belong to Jf(x). let «" =
[1/2¥}, k20, Put " = I*. Let £:[0,1]— [0,1] be defined ss
follows: £(x) = I"(x), x€0(=); £(cd) = (1-1)/2%7%, £(a8) = 172571,

1=1,2,000,251, 5=1,2,... . Extending £ linearly on each
o s=1

interval econtiguous to C(<)U ( Ul H {cf, di}) we have f defined
S= =

and continuous on [0,1] (see fig,1 for the representation of the

first three steps in the ccnstruction of the graph of f£f). The

contimuity follows by the fant that o(f;ael. e (%)) = 1/2°%. Since
LN ] s

Sel

2
f(H J?(“)) = [0,1]' and f'l(y)nc(ﬂ) has at most two points, it

follows that f'l(y) is denumerable for each Y€ [O,l] . Moreover,

the set £~ (y)NR (%) is infinite for each s. For x & C(~)
S

eloooe

and for each s there exist e;,...e, such that xoeRel...e (<)o 1t

8 s

follows that O is a derived number for f at Xy Since

lim O(fiR, , .o (*))/18, . .o ()| > 1, £ bas a finite or
s—voo 1°°°*"s 1°°*%s

infinite derivative at no point of C(x), hence fe N* , Clearly

£e [6T7]- ¥ on [0,1] if Io(E)l = 0. If|c(x)| >0 then fEACG = B,,
bence by Remark 4,j) it follows that £ € ACG = S'.

d) By Lemma 2, [65] = [6T;]NN. By Theorem 1,h) it follows that
[674] = ¥ # g. since [6T,]JN N < [67,]NM, it follows that [GT,]NN
g 67 ]nm. By ), ({67 )N N")- N £ ¢, hence [6T,]NMg [6T,]NN7.
e) Clearly [6s*]< [es]. By [9]((i1),p.360), if fe ¥ on [0,1] then
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a<b, a,b€E;, then 2°[F(b)~F(a)]/(h (b)=b (a8)) < 2™ L. Let

b(a) = ¢ and h(b) = d. Then [Feb™1(d) = Peh™1(c)] /(a=c) « 2% L.
Thus Feb™  is a Lipschitz function with constant 2™ L.

We are indebted to Professor Solomon Marcus for his help in

preparing this article.
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