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 In a comprehensive survey article [7j , J» Foren bas raised

 several interesting questions related to soa« classes of continuous

 functions. In tbe following, vie are dealing with three of these

 questions. As a part of our approucb, we will settle in the nega-

 tive two cf F oran1 s conjectures.

 Let if = (F ; P is continuous}; L = jF : F is Lipscbitz}; H »
 {h : [a,bļ - *I?»d] s h is a bcœeomorpbism}; H = {b €H s bfcAC}.

 Banscb's conditions T^, T£, S, lusin's condition N and conditions

 V3, VBG, VB#, AC, ACG are defined in [13] ; A(N), B(F) , ï , ß in [9] .

 Definition 1. fe] . A function Fj[o,l] - »R satisfies Foran's

 condition M (resp. M#) on E = 1£c[p,i] if F is AO on each closed
 subset of E on which F is VBOHf (resp. VB ).

 Definition 2. ÌÌ2Ì . Let Fi[o,ļ] - »R, E°* = {x : F'(x) = * <*>};
 = {F : )F(E-)| = 0}.
 Definition 7>AÌ' . A continuous function f on a closed interval

 is B2 provided [y t f~*(y) is finite}OJ is uncountable, where J is
 any open interval in tbe range of f .

 Definition 4. M . A continuous function f on a closed interval

 satisfies condition S' provided to each open interval J in tbe

 range of f corresponds a number gj such that |l| ^ £j, whenever
 1 is a measurable set for which F(E) Z> J.
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 Definition 5. Let P = PC|o,l] . A function f :P- * R is S#

 (resp. Tļ, S,#, B|) on P if fp is S(resp. T^, S', B2) on {a,"bj ,
 where a = inf(P), b = sup(P), ļC®n»^n)} n tbe intervals
 contiguous to P and fpi ļājb]- »B is defined as follows: fp(x) =

 f (b_)-f (a_)
 f(x), ï tP and fp(x) =

 n n

 Définition 6. Given a natural number Nf let S-(H) (resp. &(K))

 be tbe class cf all continuous functions F defined on « closed

 interval I f¿r which there exist a sequence of sete {Bnî and a

 sequence of natural numbers [Knj sucb tbat sup{Nn} = N, I =U®n

 and F is A(NQ) (resp. B(Nn)) on EQ. If we drop tbe condition

 sup Ki < 00 we obt8in Foran' s class i(resp.ß). If tbe sets E
 are supposed to be closed vie obtain conditions [T(K)J , [&(ï0]

 Definition 7» fill (p. 416). Por a function f satisfying property

 P on sets we say tbat f is generalized P on I, writing f € GP or. E

 (resp. f € [GPj on E) if E can be written as the union of countably

 many sets (resp. closed sets) on each cf which f is P. Thus we bave

 properties like GS*, GS'* , GB| , GT* , GS, GTj (resp. [GS*] , [GS1*] ,

 [gbJL Iģt J], Ins] , [gtJ).

 J. Foran asks for a characterization of each of the following

 classes of continuous functions: a) H®VBG, b) H°ACG , c) H°VBG.

 With respect to tbe class a) we prove tbat it is contained in tbe

 class [GBg] and our conjecture is that the converse inclusion is
 also true, »vitb respect to the class b) we sbow tbat it is contained

 in tbe class [gs*J and cur conjecture is tbat tbe converse inclusion
 is also true. At tbe same time, we show tbat tbe class [GS^J is
 strictly contained in tbe Lusin class N. In this way, we settle in

 tbe negative Foran* s conjecture asserting tbat tbe class H*ACG is
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 identical to the class N. .»'i th respect to tb? class c) , we prove

 that it is coütained in the class ļpTļ] and we conjecture that tbe
 converse inclusion is also true. Moreover, we show that [pT^J is

 strictly contained in tbe Banach class T£î this settles in the
 negative Foran's conjecture asserting the identity ÏÏ°V3G =

 In what follows we need tbe following resultai

 Lemma 1. Let f :P ->R, P = PC [o,l] , feť and let s:f (P)-*l+,
 s(y) is tbe number (finite or infinite ) of points of f~^(y). Then
 s(y) is Borei measurable .

 Proof . The proof is similar with that of [13] (Theorem 6.4, p.

 280). Indeed, let a = inf(P), b s sup(P) and let be the

 characteristic function of tbe set f(l£n^f|P), where ®re
 defined as in [13Q • Clearly s£.n^ are Borei measurable and
 following [13] , s(y) is 3crel measurable.

 Lemma 2. S - NrïTj f or continuous functions on each closed
 subset of [0,1] »

 Proof . Tbe proof is identical with that of [lj] (p »284-285) if
 we use Lemma 1 instead Tbe^reu 6. 4, p. 280 of [l$] •

 Theorem A. (Theorem 7. 4. p. 284 of hí' and the Corollary of p.

 151 of ll2l ). S = NOTļ = N~n T^ f or continuous functions on a
 closed interval .

 intima 3. (Krz.yzewsłci-leama . see -M>- 1« ?¿p exists at

 every point of a set E and |F(E)| = 0 then F¿p(x) = 0 at almost
 all points X e E.

 We will need tbe symmetric perfect sets and functions defined

 on these sets which are £iven in tbe following construction:
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 Let *= taķi k» ^e 3 sequence of positive numbers

 such that aQ = 1, ak^>2alc>0 and let Let GC*) =

 {x » There exists e^(x) taking on 0 or 1 and x s 2ei(x)c¿3 • If
 <* = {1/3^} ^ then 0(«) = 0 (C = the Oantor ternary set) and if
 o<= 1l/2^ç then 0(«O = ļp,l] • The open intervals deleted in the

 s-l

 s-step of the construction of 0(«<) are 0« a («) = ( 2 e^c^ +
 el*,,es-l a i=l 1 x

 s-l i

 as » ^2^ ®ici + cs) » Cei» • •• »es-l^ e Í0»1) = {Ofljx ••• x{0,lj
 (s-l) times and the remaining intervals of the s-step are

 s s

 'e, ...e & = L.2eici » S Vi + as], where {0,l3 s.
 i S 1=1 i- JL

 Then C(°<) CI y

 (©ļ» •••»®g)€ÇDjlJ

 lim 1saQ. We say that * is of type ( + ) if akc-ļ> " 2ak, k=.l,2,... . s- to* "

 Then each x « OC*) is uniquely represented and 0(°<) is a symmetric

 perfect nowhere dense subset of ļo,ļ], 0,1£G(*<). Ve say that

 is of type (♦#) if aķ«i^'2ak, k s 1,2,... . We say that <* is of
 type (###) if 02^ =2-C2k' k = • Let cts ÍMk» *' =

 {a¿}k, k^O, be two sequences of type (#), ck = at.i~aķ» c¿ s

 a¿_l-a¿» k^l. Let «'* s íafe J k: * a sequence of type (#♦)»

 ck = ak-l"ak' k>1* *** I*»"*" :0(*) - ► G(®c") t l"'""(x) =

 l"»""(S ei(x)ci) 1 1 = S «,(*)<>? 1 1 « G**»*" :G(«0 - »CO*") , G^'Cx) = U1 1 1 i=l 1 1

 G«,« ( 2 •j>(x)ci) = 2 (e2i.l^)c2i + e2i^x^c2i- 1^ ' G :

 C(V ) - »CC«"), G04' •" (x) = G*' »" (Z^OOcļ) = i?^(«2i-.l^)c2i +
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 e2i(x)c^i.i) ; tP,l), iC(-0 - CP,1), Pj'^Cx)

 = PĪ,"",(2ļei(x)cļ) = J¡1«2i-lC*)c2i-l * f2,H,,(x) =

 ^2*" ^.2 ei(*)Cļ) = 2 •^COcg^. Extending I^*-", G*'*4 , ,

 F2* (resp. G * ) by linearity on the intervals contiguous to
 CO*) (resp. C(«'))» bave these functions defined and continuous

 on [o,l]. Clearly I*',*'(x) : z on [o,l]» We bave

 (1) I^'Cx) = Fï»-,,(x) ♦ I??)* K"(X) ;

 (2) G"»""(He e (-)noc<)) = S. 0 * (•<" ) H C (*" )
 1 2k 2 1 * 2k 2k-l

 and G"*,-t"(H_ e (•<)) = Re ň e e (*"), k=0,l,... .
 1* 2k 2 1#* 2k 2k-l

 w I ««ti ^ ^ ^ f I

 (3) G » o G » ss I » onO(«c)ã

 If in addition «*.'• is of type (+♦*) (i.e., = ^c2.0 ^hen

 (4) 2G~,""(x) = SFj'^'Cx) + I"»rf,(x) = «"»""(x) -

 = ¿^»""(x) + Fj»""(x).

 Remark 1. a) If •< is of type (#) then k Is çf type (#♦) .

 b) If ae ļo ,1) then there exists h sequence •* s {a^} ^ , i> O , of
 type (#) but not of type (■*+■*) such that |C(«)| = a. Put for

 • m

 example = s/2 + (l-a)/^1.

 c) If äc [0,1) then there exists a sequence * s {a^J i>0, of
 type (#) and of type (*♦#) such that |c(«)| = OU Put for example :

 a2i-l s 2 ^ - (3'2i+1 - ÍOWO-S*), i = 1,2,..., a2i = 1/41 -

 (21 -Da/ce1), i=0,l,... . Then c2i = 1/41 - (3-21 - 7)«/(3'81) ;
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 c2i-l = 2/4Í " (?'2Í+1 - l'Oa/O-S1).

 d) If * = [1/2^)1 , i>0, then k is of types (+*) and (##*)
 but not of type (•# ) and 0 (•< ) = [0,1] .

 e) If * = i»0 and «" = {l/a1} ± , i»0, then I"9*" = ¥ ,
 v.here if i¿ the Cantor ternary function.

 Lemma 4« Let N be_ a natural number and let f ,bi [0,l] - ► 3,

 b - increasing, and AC. Let E be a closed subset of ÍO.ll « If

 there exists m> 0 such that for each c,d fil, with 0 <d-c< *1 ,

 '(f( [c,d]OE)) < b(d ) - b(c) then f € A(N) on E. ('(X) =
 i N N

 infļS i ll¿l i i® ā. sequence of N open intervals which

 covers the set xL see [u] ,p .404).

 Procf . For 6>0 let Ve be the it given by tbe fact that

 b is AC. Let = min{^,f[} • By the definition it follows that
 f «A(N) on Ē.

 The proofs of tbe following theorems 1, 2 and 3 will be

 deferred until tbe end of tbe paper.

 Theorem 1. With the above notations we bave :

 a) |Ff»rf,(C(«))J = |P;»-"(0(*))| =0 art G*»""(CC*)) « C(*M);

 C hence F*»** and Fg'"* belong to, S = NfiT^ on [o,l] ;)

 b) If ļC(«)| ¿ 0 and lC(«")ļ i O then Fj»*", Fp"", G-»*" belong,

 to JT(2) - Ä(l) and tbe sets of points of C(°<) at mbich f£*"* ,
 * ü,f m 9án

 Ī2* » G ® are approximately differentiate are null sets.
 §€ *V1

 G §€ * bas finite or infinite derivative at no point of 0(®<).

 c) If 1C(^)I ¿ O aró |C(n")| / 0 then Fj»""f Fg»""« S C hence
 fļ'"", F|'-"í (6s*J) oņ Ip.l] , but G-'-"* [GS'j aa [0,1] .
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 d) If is of type (#) then G",,"<, is bi.iective on 0 (•<)•,

 e ) If h n is of type ( ## ) but not of type (#) then U(G°* »" )-1(y)

 no(°<)ll « 1 (reso. U (G°* ,-c )""*(y)A 0 (•* )ll = 2) if y bas an unique

 representation (resp> t^c r epr e s ent a t i ons ) ; (Hx|j = tbe cardinal

 of the set X. )

 f) G * is monotone on no portion of C(*);

 fO If there exists M>0 such that ciīļ/minļaoj^a.^ļ. a2i+l~2a2i+¿
 #t KtY

 ¿ M , 1=0,1,. .. tben G * 6 L. (In particalar tbia holds when

 C(*) = OC-*") = 0).

 h) If |0(*«)1 = 0 and |C(«x")| 4 0 tben (?*""& (MnT2)-N on ļp,3
 and at least one of tbe functions * and F 2 * does not belong
 to ? on [0,1].

 i) M*L ņ K ; Ż) ř(2)ott j&M .

 Remark 2. A continuous, bijective function on 0 and mene tone

 on nc portion of C *as constructed before in [5l. There exists a
 function f:0- *C, ffe ifflL and bijective sucb tbat f is monotone

 on no portion of C arid f*f(x) s x on 0. Put for example 0(*) =

 O(k') = C(*") = 0 and f = G* ***" (see Theorem l,d),f),g) and (3)).

 Lemma 5. Let f iP- *B, P = *P C [o , fl and let H1 = [x 1 f '^(x)

 S oj. Tben 1^(^)1 « 0.
 Proof . Let H = :xisa billateral point of

 accumulation of Pj • Then f£(x) s 0 at each xôE and IļpH is at
 most d e numer able. By Theorem 4.5, p. 271 of [13], it follows tbat

 |fp(H)l = 0, bence = 0.
 Proposition 1. Let f :P- ♦a, f«t5 , p s PC 0?,ļ3 and let E =

 {x€P x f ' (x) does not exist with respect to P} • If |f (B)ļ = 0
 tben f€T^ on P.
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 Proof « Using Lemma 5 instead of Theorem 4«5»P»271 of M,

 tbe proof is similar to the proof of Theorem 6. 2, p, 278, 2° of Ol^] •

 Remark 3« Tbe converse of Proposition 1 is true only if P =

 [o,ť]. (See Theorem l,a),b) and Theorem 6.2,p«278 of D-?3 or
 Theorem l,p,130 of

 Remark 4. For continuous functions defined on ßp»l3 we_ have :

 a) H*L = H »AC = H«S = H*S* = 3* (see [7j)i b) H»VB = H®Tļ = B2 (see

 [7]); c) H -AC = H«S = S (see [7]); d) H-VB = = Tx (see [7]);
 e) LoH = AOH = VB«H = VB (see [7])î f) S»S = S (see [133 ,P. 289);
 g) S'oS = S' (since by a), 3'oS = H»S«S = H*S =3'). This follows

 also by definitions. Indeed, let ftg»[b,lj - *R and let G =. fog,

 f€3', gfiS. Let EC [o,l] and let J be an interval such that JC

 G(E) = f(g(E)). Then there exists S^O such that ļg(E)'*> •
 Since g € S there exists €>0 such that 'B' >6'. h) Tļ = S«H
 (since by d),e),c), Tx = H«VB = H»AOH = SoH)? i) Tx s S#TX (since
 by f),b), S«T^ s S*SoH s SoH = T^); j) B2 = S'oH (since by b),e),
 a), B2 = H«VB = H®A0«H = S'oH); k) B2 = S,«T1 (since by á)»b),g),

 8t*T1 = S'oSoH s S'oH = B2); 1) H«B2 = B2 (since by b), H®B2 =
 H-HoVB = HoVB = B2); m) B2®H = B2 (since by j), B2oH = S'*HoH =

 S'-H = Bg).

 Theorem 2. For continuous functions on jp,l3 ££. J22Z£:

 a) S = NOT^ = IdAT^ = = Is^Tļ (hence G"*K"i Tx, G*»""
 from Theorem l.h)) ;

 b) A CG = [aOG] = [3r (1)1 |j[GS#J and S $ f&s'J ;

 c) Lgs#3 = £gt*Jon « [gtJJom = [GTjJnii^ ; aog - b2
 i Çf , hence ACG - S' ¿ Çl '

 d) (GS J = [GT^nH g [GT^OM ^(GTjIoN*0 = (gTj] 0 ;
 «) *=[*]§ IN ^GSCN and [GS#J g [gs]î
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 t, riß = [/BgJ = [9(1)] g [Glļ] : $, = [»] £ [CTJ (Tļ-fc i g)¡
 If.Tj] c [GTJ ļ T2.

 Remark 5» That ACG - S' 4 $ was sbown in [é] •

 Proposition 2. Fpr functions defined on a bounded real set

 H have : a) 3«S = 3 ; b) (NOT^)oT^ = T^.

 F roof » L°t g:E- *K. f:K - * rt , H - fog.

 ;) Suppose f.p-c 3. Let 6>0 and let be the S given by tbe

 fī-t tbst feS. For &e le4" "l> O be tbe Sr given by the fact th8t

 re 3. I/>t ?ŁC i?. |EX|< tļ . Then |G(E1)("6
 by öuopose feT,('H . geT^. Let A = {y : G"^(y) is infinite] and A^ =
 [y : f ~^(y) is infinite}. Then (A^l =0» Let = {z€K : g_1(z)
 is infinite}. Then jB^I = 0. Since f e N. (f(B^)| = O'. Äe have
 AC^ļUfCBļ). Indeed, let ye A then G-1(y) = g-1(f *(y)) is
 infinite. It follows that f~*(y) is infinite, hence yeá^ or there
 exists z€f"^(y) such that g~*(z) is infinite, hence zeB^. so
 y s f(z)gf(Bļ). It follows now that |A| = 0.

 Lemma 6. Let g: [ą.b] - * [c.d] , f: [c,d]

 F = fog. f,ge-€ . Let P = PC [a,fe] . Then Fp = (fg(p)0Ēp)p*

 Moreover, if gcH then Fp = fg^p^°gp*

 Procf . Tbe first part of Lemma 6 is evident. We prove tbe

 s^coná part. Clearly Fp(x) = fg(p)oEp00 for xeP. Let In = (an.bn).
 n>l, be tb*> intervals contiguous to P with respect to [inf(P),

 sup(P)] . Since gcH tbe intervals contiguous to g(P) are exactly

 Jn = Hence fcCP)08P iS line*r on each [an,bJ# Since F(sn^
 - Fp^sn^ • F(bn) = FP^bn^ it: that Fp = fp(p)°Pp

 ^?mark 6'. That geH is essential in L mma 6. Indeed, let

 f = g. f: [O.l]- > [0.1] . f(x) = 1/3 - X. xe [o, 1/3]; f(x) = x.
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 *e[2/3, 1 ], f(x) = 2x -2/3, X € (1/3» 2/3). Let P * [O, 1/3]U

 [2/3, Ū and F = fog, Then fp s f on ß>,l], Pp(x) s x on [o,f],
 but F(x) / x on (1/3, 2/3), and F(l/2) s f(l/3) s 0. (See also

 the function f of Remark 2.)

 Lemma 7, Let f : ļo,ļ] - >H, be a continuous function which is

 T1 fcesp « S; B2) on ļp,lļ . If P = ^C|0,ÍJ then fp is Tļ (resp. S;
 B2) on ļa,b] = [inf (P),sup(P)] .

 Proof, Let ļln^ be the intervals contiguous to P with respect

 to ja,b] • Suppose f€ T^ on Jp,l], We prove that fp€ on 1a,b3.
 Let A s £y s f~^(y)0 £a,bļ is infinite^, By the definition of T^

 it follows that I A I = 0. Let A* s{y : fp*(y ) C' £a,b] is infinite^;

 A" s £y : fp^íy)^ IQ for some natural number n}. We show that

 A'-A" c A. Let ye A'- A" such that fp^(y)OP is infinite. Then
 fÄl(y)r'P is infinite, hence y e A. Let y g A1- A" such that fp"'1(y)

 OP is finite. It follows that there exists a sequence {&¿(y)}t
 i^l, such that Hfp^^n « 1. Since fetf it follows that

 11^(7)0 In^(y)ļļ^.l, i = 1,2,.., , hence y€A. Since A" is
 denumerable, it follows that ļA'j = 0, hence fp6^ on [a,"b3 •
 Suppose that f is S on [b,l]. We prove that fp is S on fa,b3.
 By Banach's theorem (Theorem 7.4,p.284 of [l3j), 1>0S

 on [a,bQ, Since f6S s TjH N, fp€ N on [ja^and by the first part

 of this lemma fp£ on [a, til hence fpCNOT^ = S on [a,b3.
 Suppose that f is B2 on £o,lj. We prove that fpfiB2 on Łe"b
 J crng(fp) be a nondegenerate interval. (Here rng(f) denoted the

 range of the function f.) Clearly Jcrng(f), Let Aj s £y 6 J :
 f~*(y) Hï?,b3 is finite}. By the definition of it follows that
 Aj is uncountable. Let A^ s £yfeJ : fp1(y)H j«,lQ is finite^ and
 AJ = ļy£ J t there exists at least one natural number such that
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 fp^y) Ol^ļ. To prove tbat fp€ 3^ it is sufficient to show tbat
 Aj - Aj c Aj (since AJJ is countable). Let yaAj - AJJ then f"*(y)

 O P is eitber finite or empty, By = {n : f"l(y)AIn 4 0} is
 finite and Hfp^(y)n In|J = 1, for each neB^. Hence ye Aj.

 Some Open Questions, a) Is tbe converse of Lemma 4- true for

 continuous functions on £o,l] ?

 b) Let f:[0,lj- and let E be a subset of ļ0,lj. Let N be a
 natural number. Then f is said to be L(N) on I if these exists

 L>0 sucb tbat for eacb a,beB, a<b, XN(f ( [a,iO HI))<L. If in
 Definition 6 condition A(N) is replaced by L(Nn) we obtain tbe
 classes and X(N). We conjecture that* 1) io H = = & î

 2) Ho H = fot = ï ; 3) *i(k).H = ř(k)oH = fc(k) í 4)

 = ï(k)»Û = ař(k) , k^.2 ; 5) [GS*J©H = [gtJJ and [GSt#J®H s [GBl];
 6) H»ACG = CGS'*] (see Question 3 of [7]) and H«ļGS'*j = [GS*^.
 c)How can tbe following classes of continuous functions on closed

 intervals be characterized: H>3r(k) ; If* % ? H» ?(k) ; H *3T ?

 Tbe same question if 3 is replaced by X and S .

 d) Does Lemma 7 remain true if S is replaced by S' ?

 Proof of Theorem 1. a) f5»"<"(0(«)) ¿ C I
 ¿ ^,...,^6

 S O-iCöi 1 ^ + 2 cpļ]* " Clearly aV^l/2ít 1 i = 1,2,... • It follows i=l 1 ^ i =n+l " 1

 tbat § cî>', 4 l/4n, bence ^^'""(Cí«))! ¿ ^ lim 2n(l/4n) = 0. i=l ¿ n-+,>.

 Similarly |Pi»""(C (•<))! = 0. If k = 0, by (2), G**»""^«)) = C(*").
 That F^»*" and belong to S = NOTx on £o,l] fol lows by [ļ3j
 (Theorem 6.2,p.278) and Theorem A.

 b) Let ļC(o<)| = a and ļC(«")| s b. By hypothesis a 4 0 and b ¿ 0.

 First we shall prove tbat (1***") ' (x) = b/a a.e. on C(*) and l*,-t
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 is AO on [0,1]. Let A s {xfiCW s i"»*" is derivable at x}. Let

 xcei> To ' Jļ'i0! • zn " ļfļ eici + (1_en+l)cn»l- "
 i/n+1

 that (l"»*tW(xn)-I'<^,,(x0))/(xn-x0) = (a»- a»+1)/(an- an+1) *

 (2na£ - 2na^+i)/(2nan - 2nan+1) -> b/a, bence (I"»**") » (x) = b/a

 if xfiA, Observing that i**»K" is increasing on (p«ļ], it follows

 that ICOO - Aj s 0. Also J (r,»<H)'(x)dx = ioC"*) (fe/a)dx ♦
 0

 J' (I'ť»*c"),(x)dx s 1, bence I^'eAC on £o,l] . We shall
 6,1]- C(*)

 prove that Oļ9*" , F^»-*" ^ A(2> on 3? ^1)» since A(1) + A(2)
 s A(2), it is sufficient to prove that F^*"- £A(2) on C(*0. By
 it follows that if a,vcOM tben there exists and such that

 Fj^"(Uu»v3 rtC(-0) c jłUJ2 and J ♦ ļJ2ļ^ I***" (v) - Ik»^M(u).

 Since I^'^'ôAO, by Lemma 4, it follows that e A(2) on C(*0.
 We sball prove that the sets of points of 0(»<) at which F^*** and

 F^'*" are approximately dif f erentiable , are null sets. Let B =
 {zéi i F*?'"*" is approximately differentiable at x]. By (1), B x

 {xa A t *1'"" is approximately differentiable at x}. By Lemma 3

 together with lFÍ»K"(B)l s )f*'h"(B)' = 0, it follows that

 (Fí'*M)áp(x) = (F2,"")«p(x> s 0 a*e* on B# By (1)» 8ince

 = b/a on A, it follows that |B| =0. By £.3] (p. 222-22 3) it follows
 that Fj*^", Vf!**"* Ä(l). If *" satisfies condition (###) the
 assertion for G"*" follows easily by (4). We shall prove without

 condition (##»0 that G**'** e A (2) on C(<*). Let O^v-u, u^gOW.

 Let s be the first natural number such tbat [u,vj contains an open

 interval Oe * * * e (<k) s (uijV^), from the step 0. Then [u,vj ¿2, 1 * * * s-l
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 R_ _ (*). Let u5,v5 2 ¿ €. C(-<) sucb that G(u-0 ¿ = inf G(x), el*"es-l _ 2 ¿ ¿ xe^.u^aC^)
 S- 1 O©

 G(vp) 2 = sup G (x) , Up 2 = S e<Ci 1 1 + S eie., 1 1 , v9 2 = v-, 1 +
 2 = *€[?!, sup V3AC(«*) , Up 2 i=l e<Ci 1 1 i=l 1 1 , v9 2 = 1

 2 eVc-i* 1 1 Łe-t; b**'"* (x) = S e^(x)cV 1 1"1 , x€C(«<), c" 0 = 2. Extending i=s+l 1 1 i=l 1 1"1 , 0
 Ntt Kll

 h • linearly on each interval contiguous to CO*) we have b '

 defined and continuous on [o,ļ] , h",oc (0) = Or b"*'* (1) = 2 ,

 (h**'**- )'(x) = 2b/a a.e. on C(<x) (see tbe proof for I"»"* ), h(C(®<))

 = C («.") + £l + C(«*")l» b is strictly increasing on ļbjaju
 and constant on £a^,b J , be<,*Ł e. AC (see tbe proof for I*»"* ) on

 [C,l]. We bave G"»""^) - G-,~"(u2) = S (1- +
 2i- 1-ř- s

 2 (1- e¿i)c£, ¿1 i 1 < S Cl- epi-l>c?i-2 ¿i 1 21 2 + S (1- epi)c2i-l ¿1 1 2i»s ¿1 i 1 2i-l^s ¿i 1 21 2 2i»s ¿1 1

 = X (1- eí¡)c^ -, = b*1'"* (u-.) A - b*,K (up). ¿ Analogously, G*1"' (vP) * Ò ^ s " " A ¿ *

 - G"*""^) ^ b -•'t,,(v2) - b^^'ív^. Henee G * ' **" ( [u , vj O C (* ) ) C

 lGÍu2),Gtu1)jU [Gtv1),Gtv2)] and G"»","(u1) - G*'" (u2) + G" (v2)

 - G"'"4 (v^) ^ b**" (v) - b"*"* (u). By Lemma 4 it follows tbat G"'"*
 „{łl

 €A(2) on C(»<). We sball prove tbat G * bas finite or infinite
 mi. k"

 derivative at no point of C(*0 and G mi. » has not a finite

 approximate derivative a.e. on C(*). Let x_ = ^cr eacb
 £=i

 natural number n we bave four situations:

 (I) Suppose = e2n = O. I«t ieae1...e2tó0l'*<í, ?s

 ae1...e2D_210°°^)* ,tonVI<J ; G-'-"(i)>G-'-"(i0) ¡ G->-"(j)

 >G">" (x0), bence (GK*"*"(x) - G"'"" (x0))/(x-*0) - (G"'" (j) -
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 G*'*n(x0))/(y-x0) >• (G"<*"4"(x) - G"'*<"(y))/(y-Xc) :> 3a£n+2/a2n_2

 -*3b/16a. Let xß = xQ + c2n-1 then (6"»" (xQ) - G*»" (*0))/

 (*n-xo) = (a2n-l " a2n>/(a2n-2 " ģ2n-l) ~>W2š'

 (II) Suppose e^.! = O and e2n = 1. Let y€

 Äel--e2tt-21°("<)* Tbeû X<iXo^7; G" Gw'""(yH
 G"* •"*" (xQ) ; (G"»""(X0) - G* *"*" (x ) ) / (xQ-x ) > i1¡/*2b^1 - V2a and

 (G-**"(y) - G*,»*,"(x0))/(y-x0) <0.

 CIII) Suppose e2 x = 1 and e2n = 0. Let xeR0 e -Ol(o<)' yfi
 1 ¿X&*d

 Re e ll^* Theû x<ï <ji -> G"t""(x )î G* 9 ""l'i)*

 G" ' (xQ ) ; (G"»** (y) - G*»" (xc))/(y-x0) > a2n/s2n-l~~ »b/2a and

 ((f •■*"(*) - G-'*,"(x0))/(x-xc) <0.

 (IV) Suppose e^! = e2û = 1. Let x6Rei...e2n?.2l0(,<)' 76

 **e i# . . ®2n_2° 111 ^ # Ib6ny<x¿x0¡ G^-(x0)>G-.-(x) ; G~'~"(x0)

 >G~>~"(j); (G-'-"(x0) - G"'mU(x))/(x0-x) - (G"'""(x0) - G^Cy))/

 (x0-y) > (G" i€t (y) - G*'»"<,,(x))/(x0-y) > 3a^n+2/a2n_2 -»3b/16a.

 Let xn = xo * a2n-l tben =

 a2n/a2n-l * b/2a*

 By (I), (II), (III) and (IV) it follows tbat G-»-" bas finite or
 - «C1*

 infinite derivative at no point of 0(*<). Also G * bas a finite

 approximative derivative at no point x0«0(*<), x0 a point of
 density of 0(«). Clearly G"»*^ Ä(l) (see [13] , p. 222-223) .
 c) Tbat F^»"4 and belong to S follows by •)• Suppose tbat
 g"*"* fi OjS#J on [o,l] tben it follows tbat there exists (u,v)
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 such tbat (u,v)no(«) 4 0 and G*** is 3* on (u,v)ncM, There

 exists Ra (•<) c (u,v) such tbat G"***4" is S, hence Tļ 1 on 1* * 2k 1

 Re ...e (•<). By (2), b) and Theorem 6.2, p. 278 of [l3j , it X ...e 2k

 follows tbat G**»" 4 1 on R a (•<), a contradiction. 1 ei«*»e2k a

 d) Since •<" is of type (*)» each yeC(«<") has an unique

 representation y = Se.(y)cV 1 1 and (G"'"")"1(y)no(*<) s i=l 1 1
 - OO |f

 1 .2^21.1 (y)c2i + e2i^y^c2i-l^J » hence G* •** is bijective on C(«).

 e) If k" is of type (+*), but not of type (*) and ycCO*") has

 two representations, y = Je^y)^ = S eļ(y)c£, then

 (G"»" )"1(y)nC(®') = i S^e2i_1(y)c2i + e2i(y )c2i- 1^ *
 O*

 + 82i(y)o2i-i)î-

 f) Let (u,v)no(x) be a portion of 0(<*). Then there exists a

 2k 2k

 E«1...e2kC") c <u'v>' Le* ■ S^i0! * s2k»l • x2 = f?xei°i +
 ąt

 c2k+l > *5 " j?!6!0! + a2k tben I1-«X2'Ä3C3 belo!« *°

 and g">""(Xi) ï-g">""(x2) <.G-'""(*3).
 g) Let x-cy belong to C(<*) and let k be the first natural number

 such tbat (x,y) contains an open interval 0Ä a from the
 1##* k-1

 step k, with 2i<k^2i+2 for some natural number i. Then Jx,yJc

 bence 7-x > ak-l - 2ak> mi*la2i+l * 2a2i+2 » a2i ~

 2a2i+li and - G«'"W(x)l < a^. It follows that G**»""
 satisfies condition L with constant M«

 b) By c) and a), clearly G"»*"€ T2- N. We prove that G***"*'« M.
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 Tbe proof is based on an ideea of J. Foran of [ß](p.85). In order
 11

 to show tbat G • satisfies Foran' s condition M, by Theorem 1 of

 [8], it suffices to shew tbat if KC(«<) and Cr"*"* is monotone on
 «* w"

 A then G • satisfies Lusin's condition N on A. Suppose tbat
 mC

 G mC * is increasing on Acc(«<), Clearly a_ ô (*") are nonover-
 «l#

 lapping intervals and |r. . C*")! = a ij._ é l/łk. Let

 = { » • • • t ^ ^ ###e • 3y (2) it X 21c

 follows tbat IjCjXC^. . .xOkll ^3k, be nee (G"»"<"(A)| ^ (3/4) O .

 Since 5" + Í = ï c. N and G"*1" N it follows tbat at least one

 of tbe functions F^'" and FļJ*"* does not belong to 3r on [o,l3.

 i) Let COO = 0 ( «■* ) = 0 tben (see g)) and G*' *""e MHt2.
 If |C(*")J >0 tben I"»*4 is increasing on C(*0 and I0*'" é on

 C("). Since by (3) it follows tbat M«L £ M.
 j) If |C(*")1 > 0 and JcC-*' )l >0 then G*' »*" 6 ï(2) (see b)).

 If |C(«)| = 0 then by h), G"»K'e (K HT2)- N, but i-»*4" i M on
 C("). Since 3T(2)oMZ>M, by (3) it follows tbat Ī(2)®M£M.

 Proof of Theorem 2« a) By Theorem A, S = NPIT^ = K°*H T^.

 Since IîcKcN°* = Łi>t by [/ł-J (Remark l,e), Theorem 6 and Theorem 1,

 g)), it follows tbat S = NHTļ = = N~n ^ = M^O T^
 b) $(l)c[GS*J. Indeed, let f:[o,l]- >3, f € ¿CG ftá . It follows

 tbat there exist PQ = Pn sucb tbat [0,1] = UPn and fp 6 ACC3,

 hence f 6 ļG3#J . By Theorem l,a),b), S - ACG ¿ 0, hence ACG ^ |G 3^1

 on [0,1], Ęy [13] (p. 279), AOG - S / 0, bence S^jGS*] on [p,l].

 c) By a) and tbe definitions of [GS*] and [GTļļ it follows tbat
 [GS#J <C [gtJJHN d [gtJ](ÌM. Let f6 lTnLGTj]nM on [o,lj. It

 follows tbat there exist P„ n = P_ n such tbat fr,€ 1 s 1?ns n = n Pn 1
 (see a)), bence f€ [GS#] on [o,l]. Tben [gS#J s N s
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 there exist P„ = P„ and natural numbers N_ sucb tbat f e A(N_) on n n n n

 fQ. By definitions, f 6 S on PQ, hence 3r s[JF]c [GS] on [o,l]«
 3y Theorem l,b),c) it follows tbat Ï-CgS*] ¿ Çf, bence [GS*]Jí[gs]
 on [o,l]. By Theorem l,a),b) it follows that £ - % / 0» bence

 % ß iĢSļ. Clearly [GS] <= GS <= N. To prove that [gs] £ GS we sball
 construct the following example. At first we construct a

 continuous function g:JO,i] - >[o»l] > using tbe notations of c).
 We suppose that |C(*)1 > 0. Let n-(x) = I*(x), xCC(*)î g(x) =

 e(aj) + (i/2s)-r((x-af)/(cf-af)), x€ [af,c£]; g(x) = g(cj) -

 (l/2s"1)tlw((x-c®)/ (d|-c|)) , xe [cf.djl; g(x) = g(dj) + (1/2S>
 28-l

 i*((xHjf)/(b?-d?)), 111 X € [df.bj]. 11 Let P, A = C (•< ) U ( u U ICCcf-a 1 ļy 111 11 A 3=1 Í=1 1

 C(«)+ay U [(d®-c|>C(«*)+c®] U [(b®-d|)C(«<)+d|]}). We show tbat

 g(O) = 0; g(l) = 1} g is constant on each interval contiguous to

 Pļī g is AGG on [0,1] ; g'^Cy) is infinite for each ye [0,lļ.
 Using tbe function g, we can construct a continuous function f^i
 [o,l] - > [0,1] and a nowhere dense, perfect subset of |0»l]

 with positive measure, such tbat f^(0) = f j(l) « Oî inf(Q^) s 0,
 sup(Q^) = 1; fļ is constant on each interval contiguous to ;

 f x € ACG ; f"X(y) is infinite. Let {lļln = ļ(uQ,v^)3n be tbe

 intervals contiguous to Qx. Let Qk = Q^UCU (n^^+Cv^*1-«^"1^)) ,
 Uri

 Ir Ir

 k = wbere (unfvn)f n = lf2f ••• are the intervals

 contiguous to Qfc. Let ffc+1(x) =0, x 6 Q^; fk+1(*) = (l/2n+k+1)*

 ^((x-a^/Cb^-a^)), x € C«n»b^], k = 1,2,... . Let ř(x) = 2 fk(x).
 Ife X

 op

 Let H = [0,1] - U F€ AGG on and ļF(H)ļ s 0, bence
 m=l
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 F € GS C N, But Fé [gTj] because F is not on any interval,
 hence by d) f4 Egs1; but clearly F 6 GS,
 f) Since VB = B(l) on a set E it follows that VBG = fc(l). Let

 fîJjDjl] - *R, f € ^rvVBG. Then there exist Pn = such that fp®

 VBCT1 ([I3l,p .279). It follows that for continuous functions on
 [0,l] , VBG = [VBGj =£$(1)] C [Gli]. Since [VUG]/! NO^ = [ACQlfVé

 ([13], Theorem 6.8,p.228) and [gtJJDN = [GS*] (see c)) on [o,l],
 by b), it follows that Bfc(l)]<£ [gt£1. By [9] ((ii) ,p.560) ,
 By [9] ((iv), p. 360) and [l3](p.279), it follows that [&lC [gtJ .

 Each of the functions F^, defined in the proof of Theorem 2 of '2, ] ,
 belongs to ^ -[J], hence M^[gt1 . Clearly [GTjlejjTjl CT2.
 By c),d) and e) it follows that £gT*J ^ 1gT^3 • Let F be the
 function defined in e). Then F€ N -{[GS} , hence F<S Tg (see 0-5].

 Theorem 7«3»P«284-). But F £ [GTjļ , hence |[GTļ] <£■ Tg»

 Theorem 3. For continuous functions defined on closed

 intervals we have : a) H*VBG C. H ®(ģt13 C H<*£gbJ] = [OBjJisee [7],

 Question 4); b) 1Ï«ACG C "5 °[gS*1 = |GS*J(see to. Question 8) ;

 Moreover [gS*J • [GS*] = [GS*] ; c) H*VBG C C (gs'J *1gtJ3
 (see [7], Question 9) ; Moreover Jgs'J «£gT*J = JgT*]î d) [GS3«[gs]

 = [GS] and GS*GS = GS; e) [GS*.]»!! C [GS*J«[gtJJ = [GT1J and {GS3

 oH C [GSj^GTjl = [GTjl ; f) [GS'^Joh C [GSi#J*[gtJ] C [GBJJ =
 [GB|J«H ; ,g) GL°H = ACG»H = VBGoH = VBG and GL»! = AOGolî = AGG.

 Proof. Let f:[a,bj - ¥ R, g:[c,dj - > R, g([c,d3)C £a,bj and
 let F = fog , -f,ge^5 .

 a) The two inclusions are evident. We shall prove that HofGB^J =

 [gb£J. It suffices to show that H® [GB^l^ fG^j. Suppose that f6 H,

 g€ [GBg]. Then there exist Kn = such that £c,dj s U ®n and
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 gE € b£. Clearly * n€H. 3y Remark 4,1)» f ,E xogE 6 B2. By
 n * n ® n n

 Lemma 6 and Lemma 7, F g € Bg*
 ^ •

 fe) Clearly loAOG c H •[GS'1'] . To prove that [GS*J s H«|&S#] s [GS^J

 • [GS*J , it suffices to show thst [GS*J • (GS#J c £gS*J . Suppose

 that f,g e [gS#J • Tben there exist EQ = EQ such that (a,!)] = ^En

 and fg € S. Let Tn s g~*(En). Tben Tn is closed, {p,dj = U TQ and

 there exists a sequence of closed sets TQ ^ such tb«t TQ s U TQ
 and gm € S. By proposition 2 or Remark 4,f), it follows that

 n,k

 fg(T )#®T k €. S» Lemma 6 and Lemma 7, € S. H|k nf k n^lc

 c) Clearly H«VBGc. H ®[GTJJ e [GS*] e(GTjJ. To prove that [GS#J® [GTJJ

 s [GTJJ , see the proof of b) , Remark 4,i), Lemma 6 and Lemma 7*

 d) See the proof of b) and Proposition 2, a),

 e) The first part follows by c). To prove that ļGS3«[&Tļ3 s [GTj] ,
 see the proof of b) and Remark 4,i),

 f) The first inclusion is evident and for the second see the proof

 of b) and Remark 4,k). To prove that (G B^ 3 °H = [ŠBgJ, it suffices

 to show that ļGB^J0 H c [GB^J* Suppose that f€ [OBIJ and g€ H»

 Then there exist EQ s B such that ļa#bj = U EQ and f-g fe Bg. Let

 Tn s g"1(En). Tben Tn = TQ, [c,dj = U TQ and gT €. H. By Lemma 6

 Fļ, s fg ogjp and by Remark 4,m) it follows that Fm e Bp.
 n n n n

 g) Since HAN = H and VBG ON = AGG we have to prove only that

 GL°H = ACG«H = VBGoH = VBG. Clearly GL« H C. ACG«H c. VBGoH = VBG, so

 it remains to prove that VBG c. GL*H, Let F:[0,lj- *R, FêVBGA^ •

 Then there exist En = 1n such that yEn = 10,3,1 and Fg ^ is
 VB on [0,1] • Let bQ(x) = An(x)/l»n , xc [0,1], where ^(x) is the

 total arc-length of the graph of Ffi ^ from 0 to x and I»n s

 An(l) ( [lj,p.l25>. Let bt[0,lj - > [0,1], b(x) « 2 hn(x)/2n . Let
 n=l
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 [gtJJoM Oll [0,1]. To prove that [gtJ]HM£ [GT^rtN00 vie

 construct the following example: for C(«) let = (a®,b®) ,
 s- 1

 i = 1,2,..., 2 be the open intervals from tbe step s, numbered

 from the left to the right. Let c| < d® belong to j|(*). •*" -

 {l/2kJ, k£0. Put i"»"" = I*. Let f:[0,l]- » [o,l] be defined as

 follows: f(x) = l"(x), x«0(«)j f(cf) = (i-D/28"1, f(d|) = i/23"1,
 S- 1

 i = 1,2,..., 2 , s = 1,2,... . Extending f linearly on each

 o* 2s"1
 interval contiguous to 0(°<)U ( U LJ fe?, x d?}) x we have f defined s=l i^l x x

 and continuous on Ü),l] (see fig.l for tbe representation of tbe
 first three steps in tbe construction of tbe graph of f). The

 continuity follows by tbe fact that 0(f;Ra _ (*)) = 1/2S. Since
 I" • s

 2s-l
 f ( u J?(*0) 1 = [o,l] and f~^(y) A0(®<) bas at most two points, it i=l 1

 follows that f (y ) is denumerable for each ye [o,]] . Moreover,
 tbe set f^Cy) AH. " _ (•«) is infinite for each aģ For x_£C(*0

 " ļ • • • "g O

 and for each s there exist e,,...e_ such that x„eßa « («*). It
 1 o O • * 3

 follows that 0 is a derived number for f at xQ. Since
 lim 0(f;Rft A (•*))/ 1 RA « (*01 > 1, f bas a finite or
 s-*oo ei"*es A er--es «

 infinite derivative at no point of 0(°O, bence f£N**. Olearly

 f e [gtJ]- M on [0,1] if 13(~)1 = 0. If |0(<*)|>0 then f£A0G - B2,
 bence by Remark 4-,j) it follows tbat f € AOG - S'.

 d) By Lemma 2, |gs] = [gTj] H N. By Theorem l,b) it follows tbat

 [gtJ- N 4 0. Since [gtJO N C [gtJom, it follows tbat [GTJ 0 N

 ü [GTjn M. By c) , ([ctJ fl N- )- II / 0, hence [gtJH [GTJ 0 N" .
 e) Clearly [gS*]<^ [gs] . By [9]((ii),p.360), if fe Í on ļo,l] then
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 a <b, a,b€En, then 2^(F(b)-F(a)]/(bn(b)-bn(a)) <2^1^. Let

 b(s) = c and b(b) » d. Then jp-b^d) - F'b^c)] /(d-c) ¿ 2n- LQ.
 Tbus F«b~* is a Lipscbitz function, with constant 2n»I*n.

 We are indebted to Professor Solomon Marcus for bis belp in

 preparing this article.
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