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The algebra generated by derivatives
which are continuous almost everywhere

In 1982 Zbigniew Grande posed several questions concerning algebras gener-
ated by different classes of functions. One of them was:

Problem 1. (Problem 9 of [1]). What is the smallest algebra of functions
containing all almost everywhere continuous derivatives? Is it the family of all
almost everywhere continuous Baire 1 functions?

In this paper we answer both parts of this problem in the positive. Our result
is very closely related to David Preiss’s theorem concerning the algebra generated
by all derivatives. (The only difference is that we have not proved whether our
function h can be chosen to be Lebesgue or not.)

Theorem 2. (Theorem of [4]). Whenever u is a function of the first class
there are derivatives f, g and h such that u = fg + h. Moreover one can find
such a representation so that g is bounded and h is Lebesgue and in case u is

bounded, such that f and h are also bounded.

First we develope notation and state some known results which we use later.
Then we state our main theorem after a few lemmas used in its proof.

The real line (—o0, +00) is denoted by R. The word function means mapping
from R into R. The words measure, almost everywhere (a.e.), integrable etc.
refer to Lebesgue measure in R. For each set A C R let intA be its interior, clA
its closure, A° its complement, x4 its characteristic function and | A | its outer
Lebesgue measure: if z € R and A C R, then p(z,A) = inf{| y —z |: y € A}
denotes the distance between = and A; symbols like f: f or [, f will always mean
the corresponding Lebesgue integral. A function f is in the first class of Baire
(B!) iff it is a pointwise limit of a sequence of continuous functions: it is called a
derivative iff there is a function F' (called a primitive of f) so that F'(z) = f(z) for
each z € R. A point = € Ris a density point of A C Riff limy_o | A°N(z—h,z+
k) | /(2k) = 0. A function f is approximately continuous iff for each z, € R and
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each € > 0 z, is a density point of {x € R :| f(z)—f(zo) |< €}. We denote by aVb
(aAb) the larger (the smaller) of the real numbers a and b. If f is any function and
z € R, then w(f,z) = inf{sup{| f(y) — f(2) |:| y—z|<e, |z2—z|<e}:e>0}
is called the oscillation of f at z. We let || f || = sup{] f(z) |: = € R} and
D(f) denotes the set of points of discontinuity of f. We write ¥, fn, U, 4An
etc. instead of 3",en fny Unen An when there is no possible misunderstanding.
Finally by F we denote the family of all sets A C R such that | A —intA |= 0.
(Note that each interval and each set of measure 0 belong to F.)

Symbols like 1., 2. etc. denote the corresponding lemma, theorem or corollary,
while (1), (2) etc. refer to conditions marked in the text.

Theorem 3. (Theorem 4.14. of [3]) If H C [0,1], | H |= 0 and u € B!, then
there is a derivative f so that f(z) = u(z) for z € H.

Theorem 4. (Lemma 4.4. of [3]) Assume that H C [0,1] is nowhere dense
and closed and f is a derivative. Then there is a derivative g so that g is
continuous in [0,1] — H and f(z) = g(z) for z € H.

Corollary 5. Whenever u € B', H C R is closed and | H |= 0, there is a
derivative f so that f is continuous in H¢ and f(z) = u(z) whenever z € H.

Theorem 6. (Remark to Theorem 1. of [2]) Let H C [0,1] be élosed, |H|=0
and let u € B! be bounded. Then there is a bounded approximately continuous
function ¢ which is continuous in H* so that ¢(z) = u(z) for = € H.

Remark 7. Combining the proofs of Theorem 3.2 of [3] and of Theorem
1. of [2], and using that each bounded approximately continuous function is a
derivative we get easily that if the assumptions of §. are met, then we can find a
bounded derivative ¢ which is continuous in H° and moreover | ¢ || < || u ||

Lemma 8. Assume that A, BCR, Aisclosedand B € ¥. Then B—A € F.
Pro

| B— A—int(B — A) |

| B— A—int(BN A°) |=| B— A - (intB N A°) |
= | BN A°N((intB)°U A) |=| BN A°N (intB)° |
< |B-intB |=0.

Lemma 9. Whenever A € F is an F,-set, there are closed sets A;,A4;--- € F
so that A =, 4,.
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Proof. Using that each open interval is a countable union of a family of closed
intervals we get that there are closed intervals By, B,, - - - such that intA =, B,.
(Certainly B, € F for n € N.) Since A — intA is an F,-set, there are closed sets
C1,C,, - such that A — intA = |J,Cn.. We have for each n € N | C, |<
| A—intA |= 0. Thus C, € F, which together with the previous observation
completes the proof.

Lemma 10. Whenever v € B! is an almost everywhere continuous function
and ¢ > 0, there is an almost everywhere continuous function v; € B! so that
D(v,) is closed and ||v — v || < e.

Proof. Put By = {z € R: (k—1)e < v(z) < (k+ 1)} for k € Z. Since
v € B! and since | D(v) |= 0, for each k € Z By is an F,-set and By € F.
By 9. let B, = U;By;, where each By, is closed and By, € F. Make a sequence
{Cn:n€eN}ofallsets By, k€ Z, lEN. Put C, =0, C,=C,U---UC,_, for
n > 1 and let v;(z) = ke if for somer e Nz € C,, — C. and C, C By. Note that
Ua(Cn —Cr) =U, Cr = Ui Bx =R.) Then

1) v; € B! because for any a € R {z € R : v;(z) > a} is the union of {C,—C, :
Cn C By and k > a/e} so it is an Fi-set, while {z € R: vi(z) < a} is the
union of {Cp, — C,, : C, C By and k < a/e} so it is also an F,-set.

2) D(v) is closed since it is equal to {z € R : w(vy,z) 2> €},
3) | D(v1) | £ |Un(Cr = C — int(Cr, — C,,)) |= 0 since by 8. all C,, — C, € F.
The statement | v — v, | < ¢ is obvious.

Lemma 11. Assume that u € B! is continuous almost everywhere. Then
there are almost everywhere continuous functions u,,u,,--- € B! so that

i) D(u;), D(usg),... are closed,
i) JJue || < 27%if k> 2,

i) u=3,ux

Proof. For k=1,2,...use 10. withv=u—u; — - —u, (v=uif k=1)
and ¢ = 3~%-! writing the result as u;. Then i) is met.

luell < lu—ur—--—wpmy—w || + lu—uy = —ue,y ||
< 3F1ygtkcot (k22
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proves ii) and
| “_;“k | < inf{llu—ws—- - —un || + || tas ||
+ [ltnsa || +---:n €N}
< inf{3 14214224 ..ineN} =0
completes the proof.

Lemma 12. Assume that A C R is closed and nowhere dense and v is a
function so that D(v) C A. Then there is a closed set B C R so that

i) each ¢ € A is both a left and right limit point of B — A.
ii) B — A is isolated.
iii) B¢ = |J, Gn, where {G, : n € N} are pairwise disjoint, nonvoid, bounded
open intervals,
iv) ¢n =| vxa, || < +o0,
v) if
1) fi1, fa2,... are summable derivatives,
2) fa(z)=0ifz g G, (n=1,2,...),

3) Rfn=0 (n=1,2,...),
4) there is N € R so that for n = 1,2,... || fa ||< N(cn V /Cr), then
f =X, fa is a derivative and D(f) C AUU, D(f,).

Proof. Choose within each open interval contiguous to A a sequence of real
numbers increasing to its right endpoint and another one decreasing to its left
endpoint. Let E equal the union of all those sequences. Let {(ex1,ex2) : £ € N}
be components of (A U E)°. Due to the choice of sequences it is clear that
{ex1 : k €N} = {ex2: k €N} = E C (D(v))°. So Mk =|| vX(epy,exs) || < +00. Put
di = p(ex1, A) A p(ek2, A) for k € N and let

B=AUEU {en +id2/(1V M) :i < (ers —en)(1V My)/d2, i,k eN}.
Then conditions i) - iv) are met. To prove v) examine the function

I Y s if t€G, n=1,2,...
F(e) = { 0 otherwise. '
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We will prove that F'is a primitive of f. Choose any =y € R. If 2o € G,, for some
n € N, then for each z close enough to z,

F(z)— F(zo) _ [Zfa —s )
c—20  T—20 n(2o) = f(2o).

If zo € B — A, then there are n;, n, € N so that z¢ € clG,, N clG,,. Then for
each z close enough to z,

Lﬂ& (z € Gm)

T—x0

F(z) — F(zo) _

T — Xg

2=z 0 = f(2o).

IZ tn
= (z € Gn,)

Finally if zo € A, then for each z
- r € B implies £&=F(=0) — g = f(zo),

z—zo

- if there is n € N such that £ € G,, then there is k € N such that z €
(ekys€k;)- So

&)= F@o)| _ |Futs|_ Joalfal _ 1 fallGnl
z — To z—xzo| " |z2—20|~ |z—120]|
d?
N(M vV Mk
< MMV VmE g,
|:L'—:L'o|

< N|z—ao]| sz 0= f(z0).

The rest of the proof is easy.

Lemma 13. Assume that B is closed, A =cl(B—-—A)—-(B—-A),B—-Ais
isolated and v is any function. Then there is a function 3 so that
i) ¥(z) =v(z) if z€ B—-A,
i) Y(z)=0 if z€ A,

iii) D(y) C 4,

iv) ¢ is a derivative,
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v) if E is a closed interval whose endpoints belong to B and if vx g is bounded,
then 1 xg is also bounded and moreover || ¥x& || < || vxE ||-

Proof. Let B—A = {b,..v: n € N}. Forn € Nput ¢, = d, A W%ﬂm’ where
dn = p(bn, B — {b,})/3 and D,, = p(b, — dpn,4) A p(by + dy, A). Put

( 0 z € (—o0,—1]U(1,400)
r+1 z € (—1,0]
e(z)=¢ —8zr+1 z € (0,1/4]
-1 z € (1/4,1/2]
| 2 -2 z € (1/2,1].
Then e is continuous everywhere, || ¢ || = 1 and [ge = 0. Put ,(z) = v(by)e((z—

bn)/cn) (n=1,2,...) and ¥ = ¥, ¥». Then i), ii) and iii) are satisfied. To prove
iv) examine the function
Z o ¥n ifz € (by — Caybn+c¢n), n=1,2,...

0 otherwise.

¥(z) = {

We will prove that ¥ is a primitive of 3. Choose any zo € R. If zo € (b, —
Cny bn + ¢,) for some n € N, then for any z close enough to z,

¥(2) — ¥(z0) _ S5 tn —

T — 7q z — 7g z—z0 ,.(zo) = ¢(:co)

If £o = b, — ¢, for some n € N, then for each = close enough to zg

- if z > x9, then

YU(z)— T sy —,
(12 — mo(zo) = zzo—,‘io z—zo 1;I’n(iﬂo) =0= ¢(wo),

- if £ < zo, then !-(53:—:)@1 =0 = ¢(=zo).

Similarly if zo = b,, + ¢, for some n € N, then
L U(@) — (o) _

T30 T — T

If zo € A, then for each z € R
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- if ¢ € (by — ¢p,bn + ¢,) for some n € N, then

(&) = ¥@0)| _ | Faston| _ [forca ¥
T — To T — 9 T — T
Boen 19n | _ 260 [l % |
T lz—ze| T |z—20]
_ 2 lv(b)| __ D 2]vby)]
|z —z0| ~ 2|v(bn)|V]1|z—20]

< D,<|z—x0| sz 0= tp(xo),

- 2o & Upn(bn — ¢, by + ¢) implies ¥(z)-¥(z0) _ = Y(zo).

T—z9
Finally zo € int(Un[bn — ¢n,bn + ¢4])¢ implies that for each z close enough to

To !_(_{3:_;1}3_0)_ =0= Qb(zo).

Now take a closed interval E with both endpoints belonging to B such that
vXEg i1s bounded. Then

| ¥xell = sup{|%(bs)|: bn € E,n € N}
= sup{|v(b,) |: bn € E,n € N} < || vxg ||,

which completes the proof.

Lemma 14. Assume that G = (a,, a;) is an open bounded nonvoid interval,
functions f, f, go and § are summable over G and w is so that wxg is a bounded
summable derivative, | wxg || = C. Then there are functions g and k continuous
everywhere and a summable derivative f so that

i) wxg = fg+h,

ii) f(z) = g(z) = h(z) = 0 whenver z ¢ G,
i) fof=Jrg=Jah=lr(f9) = [r(f9) = fa(9f0) = Ja(9f) =0,
iv) | £ <50(CVVC) [lgll < 1AVT, | < T73C.

Proof. For i =1,...,5 put e;(x) = sin(iz)x[o,2r) and put

e(z) = zs:a.-e,- (21r T )

i=1 a —a
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where a,,a;,...,as are some real numbers. There are ay,az,...,as so that

Jr e? =| [cw | and Jge = [p(ego) = [r(ed) = Jr(efo) = fn(ef) = 0. Indeed,

Jre =0 for any ay, a,...,as and the following system of equations

(2, e (2‘"’3——%) go(z)dz + -+ + x5 [ es (27"3'—%) go(z)dz =0

a—aj1 a3—ai1

T fger (ZWHL) g(z)dz + -+ x5 [es (Zwﬁk) g(z)dz =0

az—a; az—a;

az2-—ag az2—a1

T [ger (2%2-‘&) fo(z)dz + -+ z5[es (27rm) fo(z)dz =0

| 1rer (27rﬂk) f(z)dz + -+ z5[es (211"—‘—“1-) f(z)dz =0

a2—ay az—ay

is linear, homogeneous and the number of unknowns exceeds the number of
equations so it has a non-zero solution, say g, 0s,...,3s. Since

— — 2
/(.Blel (21r$ al)+---+ﬂses (27r$ al)) dz
R a; — ay a —ay

= T— o e T—a

= ﬂf/nef (2waz_al)da:+ ,Bg/aeg (27ra2—a1)dz
= Pi(az—a1)/2+ -+ B(az — a1)/2

= (Bi+:+63)az — a1)/2,

1/2
2| w| . .
oy = vP1y...,as = vPs, where vy = ((42-01)(‘2’{""" +ﬁ§)) satisfy our require-

ments. For: =1,2,...,5 we have

af(a; - a1)/2 < (a¥+°°°+a§)(a2—a1)/2=/;e2

= | [wls(a-a)llwxe | = (a2 - a)C.

So | a; |< V2C. Hence || e |=| a1e1 + - + ases | < 5vV2C. Put f(z) =
_ e(z)Sgn(f w) _ .
5v2(v/C V 1)e(z), g(z) = W\ﬁ)_ and h = wxg — fg. Then i) - iii) are

obviously satisfied and the following proves iv) completing the proof:
lgli=llell /(5VEVT V1)) < 5v2C/(5v3(VT V1)) < 1A VT,

| FII< 5V2(VE V1) | el|l<5V2C x 5v2(VC V1) < 50(C v V),
| Rll=]lwxe—FfolISC+ || Fllllgll< C+50C <51C.
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Theorem 15. Whenever u € B! is continuous almost everywhere there are
derivatives f, g and h which are continuous almost everywhere so that g is

bounded and u = fg + h and in case u is bounded so that f and h are also
bounded.

Proof. By 11. there are functions u,,u,,... with the properties described
there. Now we will define inductively (on k) almost everywhere continuous deriva-

tives vk, Yk, fk, ks fr, Gk and hg, sets Ag, Gy, and positive numbers ¢, and Ci,
(k=1,2,...;n=1,2,...) so that:

(1) uk = figk + hi + o + Vs,

@) o IS I fillS 25742, [l gu | S 2272, || hi || < 27F (k = 2),
(3) D(fk) C Ak, D(gx) C Ak, D(hi) C Ax,

(4) i=g1i=f=§ =0,

(5) fe = fe-1+ fr-1, Gk = k-1 + Ge (k > 3),

(6) sets By, {Gin : n € N} and numbers {ci, : n € N} are picked to the set A;
and function uy — ¢ according to 12.,

(7) Cin =l (v — & —¥4)XGin |l (n=1,2,...),

(8) frdk, grfr, figr and g; fi are almost everywhere continuous derivatives.

First step. Put A; = D(u;). Since | A; |= 0 and since A; is closed, it is
nowhere dense. According to 5. there is a derivative ¢, so that

(9) {x €R:p1(z) =us(z)} D A, and D(¢p) C A;.

Hence D(u; — ¢1) C A;. So we can use 12. with A = A4; and v = u; — ¢
getting a closed set B;, a family of open bounded intervals {G1, : n € N}
and a sequence of real numbers {¢;, : n € N} satisfying 12. i) - v). By 12. i)
A; C cl(By—A,)—(B1—A4,) and since B, is closed, cl(By—4,)—(B1—A4,) C B,—
(Bl —Al) =AlnBl = Al. Hence we can take A = Al, B =Bl and v = Uy — 1
in 13. and find an almost everywhere continuous derivative ¥; satisfying 13. i) -
v). By (9) and 13. iii) D(u; — ¢ — %) C Ay, so by 13. i) (41 — @1 — ¥1)Xa,a 18
continuous everywhere. Put C, = || (u1 — 1 —¥1)xeia | (n =1,2,...) and
note that by the above and 13. v)

(10) Cln S " (ul - ‘Pl)xGm " + " '»leGm " S 2cln (n = 172’° . )
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Forn =1,2,...use 4. with G = xg,,, fo=f=fi=go=§ =g, =0 and
w = u; — 1 — Y, getting functions fi,, g1, and h,, satisfying 14. i) - iv). (Note
that C = Cin.) We will use 12. v) for each of the sequences {fi, : n € N},
{g1n : n € N} and {hy, : n € N}. We check the assumptions:

1) fin, g1n and hy, are continuous everywhere (n =1,2,...),
2)-3) are included in 14. ii) - iii),
4) by (10) and 14. iv) we get

" fln " S 50(Cln \' V Cln) S 1Oo(cln \ \/cln)’

| g1n | £ 1ACin £ \/5(6111 V V/¢in),
” hln ” S 510111 S 102(cln \ \/E)

Hence fi = X, finy 91 = Lng1n and by = Y, hy, are derivatives and D(f,) C
Ai, D(g1) C Ay, D(hy) C A;. Certainly the other requirements are also met.

Inductive step. Assume that we have already defined functions ;, ¥, fi, fi, ¢i,
Gi, hi, sets A;, B;, Gi, and numbers ¢;, and C;, for: =1,2,...,k—1;n=1,2,...,
where k£ > 2. Put Ay = By_,UD(uy). Ay isclosed and | Ax |=0, so it is nowhere
dense. According to 7. there is a derivative ¢, so that

(11) {z € R: pi(z) = ur(z)} D Ak, || o || £ || ux || and D(pr) C As.

Hence D(ur — ¢x) C Ax. So we can use 12. with A = A; and v = u; — ¢, and
find a closed set By, a family of open bounded intervals {Gi, : n € N} and a
sequence of real numbers {cin : n € N} satisfying 12. i) - v). By 12. i) we get
Ag C cl(Br—Ax)—(Br— Ax) and since By is closed, cl(Br—Ax)—(Bx—Ak) C Br—
(Bx—Ax) = ArNB), = A;. Hence we can take A = A, B = By and v = uy—y; in
13. and find an almost everywhere continuous derivative v satisfying 13. 1) - v).
By (11) and 13. iii) we have D(ux— @i —%x) C Ak, so by 13. 1) (ur — @k — ¥k)XGin
is continuous everywhere. Put Ci, =|| (ur — ox — ¥x)XGia | (n =1,2,...) and
note that by 13. v)

(12) Crn < ” (ur — ‘Pk)X'Gim " + " VEXGin ” < 2¢a (n=1,2,...).

For n =1,2,... use 14. with G = Gin, fo= fi,go =g, f = fo = fa+ - + fa-1
and § =gy = g2+ -+ gk-1 (If k =2, then f = f, = g = g, = 0.) getting
functions fi,, gkn and hy, which satisfy 14. 1) - iv). (Note that C = Cy,.) We will
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use 12. v) for each of the sequences {fi, : n € N}, {gkn : n € N}, {htn : n € N},
{fing1 : n € N}, {ginf1 : 7 € N}, {fingk : n € N} and {gkn fi : n € N}. We check

the assumptions:

1) for n = 1’ 2’ ... functions fkvu Gkn, hlm, fkngl’ glmfl’ flmgk and glmfk
are continuous everywhere.

2)-3) are implied by 14. ii) - iii)
4) from (12) and 14.iv) we get

" fkn II < 50(Clm \ VCIm) < 100(61"3 V /Ckn),

" Gkn " S 1A V Ckn S \/é(ckn \ Vckn)7
II fkngl " S " fkn " " (731 " S 150(C]m \ VCkn )’

I grnfi I S 1l gon 1l F1XGun | S 1| fixGon || V2(ehn V v/Ckn),
(Note that D(f;) C Ay C A, so || fixew, || < +00.), and by (2) and (5)

I flm.¢7_k | < (k=2)| fin || £ 100(k — 2)(ckn V v/Ckn),
| genfi |l < (K=2) [l gkn | < (k= 2)V2(ckn V V/Ckn)-

Hence fi = Yy finy 9k = Lnbkns Pk = Tnhin, fidk = Talfindr), ufr =

En(glmf_ k) kg1 = 2n(fing1) and gifi = Y ,.(gknf1) are almost everywhere con-
tinuous derivatives and

I fill < sup{ll fin ll: 7 € N} < 100(ctn V /Gom)
100(]| e — @ | Vi/ll ux =k )
< 200()] i Il v/l ux [}) < 25742,
lokll < sup{ll gun ll: n € N} < V2(ckn V +/Gom)
= V2l wk = or I /Il ux — i )
< 300wl v/l Il < 2242,
| ke || < sup{|| hn ||: » € N} < 51Ckn < 102¢kn

102 || uk — ¢ || < 277
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Now using the uniform convergence of all the rows below we get

u = Y up = (fegr + he + @i + ¥i)
k k

= (; fk)(; gk) — ;(fkgk) - ;(gkfk) - h kz gk — g:(fkyl)
+ D R+ D ekt ke
P % %

Put h = Tp he+ 2k e+ 2k Y=Lk (fege) —Zi(grfi) —fi Thma k=91 Ti=a fr, [ =
Yife and ¢ = Yigk. The functions Tk fi, Tkgk, Ti(fede)y Ti(grf),
Yreo(fr91)y, Tk bk, Yk and Yi i are almost everywhere continuous deriva-
tives (They are limits of uniformly convergent rows of such functions.) so we
need only show that f; 332, g« is an almost everywhere continuous derivative to
complete the proof. We will use 12. v) with A = A,, B = By, ¢, = c1, for the
sequence {fin 5o, gk : 1 € N}. We check the assumptions:

1) fin is continuous everywhere and ) 32, gx is a bounded derivative. So
fin Z3Z2 9k is a derivative and | D (fin 232, 9%) | S| Ui, 4 |=0 (n =
1,2,...),

2) if ¢ Gin, then (fln 2?:2 gk) (1’) = fln(m) =0,

3) for each n € N Jg (fin Ziz2 9%) = Liz2 [a(fingk) = Tz 2 fo,,.(flngkz) =
0, because for each k > 2 and each | € N we have either Gy; C Gy, or

Gu C G$,. So [g(fingki) = 0 either by 14. iii) (the way we have chosen gx;)
or by the previous condition,

4) | finZiZage | S Il fin | 222 1 g6 | S 1| fin || S 700(c1n V V/fe17).-

All the assumptions of 12. v) are met. So fiY 32,9k = L. (fin Lie29k) is a
derivative and |D (fi 152, 9%)| < |URZ, Ak] = 0. Hence f, g and h are almost
everywhere continuous derivatives and u = fg + h.

In case u is bounded we can also take functions uy, @k, Y&, fi, gx and hi to be

bounded (k = 1,2,...). Proceeding in the above way we easily prove that the
functions f,g and h are also bounded, just as we claim.
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