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Finite Representation of Continucus Punctions, Nina Bary's

Wrinkled Functions and Foran's Condition M,

In [1)(pp. 222;229;227;611), Nina Bary shows the following
chain of inclusions: quasi-derivable ; S + Sg €=5+5+8,
for continuous funetions on [0,1].

It can be shown that above, Banach's conditiosn S can be
replaced by GE(1X) ']?lg'E 5, where GE(1l) is defined using ccndition
E(1l) of [6].

In our paper we define conditions GAG,D] & GaC,D; € GE(1)NT,
for continuous funetions on [O,l], with wbich we improve the above
results. (Following Nina Bary's prscf of [1] ,p.222, conditions
GAG'D‘;_ and GAC,D; are very natural,)

To prove that 3 + S # € , Nins Bary introduced the wrinkled
functions W (she called them "fonctions ridées", [1] ,p.236) and
showed that W # @ (see the example of [1],pp.241-248; see also
[3) or [3]) and WN(W + quasi-derivable) = ¢ (see [1],p.237),
hence WN(N + N) = @, for continuous functions on [0,1].

In our paper we give characterizations of the wrinkled
functions whiech show that between Foran's condition M (introduced
in 1979 in [8]) and these functions there is a very close
relationship. So we improve Nina Bary's results on wrinkled
functions. Finally we construet a wrinkled functien which is
approximately derivable at no point of [0,1] and for which each

level set is perfect.
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et € = fF 1+ P :s continuous}. Banach's conlitions T1s Tos
S, Lusin's condition N and conditions VB,, VB, AC_, AC, VBEG_, VEG,
ACG,, ACG are defined in 3]s B(N) and € in [6].

Definition 1,([1],p.236). Let § be a measurable real set and
let f:@q—R. £ is a wrinkled function, feW, if for every measur-
able subset Ac g, |4] > 0, £ is monotone on some BC A, where |B| =
0, £(3) is measurable and If(B)I > 0, (Without loss of generality
4 may be supposed toc be perfect, since a measurable set is the

union of a Fv-set and a null set.)

Definition 2,([1],0.178). A continuous function f1[0,1]—R
is quasi-derivable if on each interval f'(x) exists and is finite

at every point x of a set which has positive measure.

Definition 3.([8]). 4 continuous function fulfils Foran's
condition M if it is AC on any set on which it is VB.

Definition 4.( 2] ,p.406). A function £ is D; (resp. D}) on
a set E if for every € >0 there exists a sequence {I;} of
nonoverlapping closed (resp. 5f open) intervals which ccvers E
and %O(f;EnIi)<& (resp. §0(f;11)<e )e

A function f is By(1,1) on E if f£€D, on 2, whenever ZCE, [z] = 0.

Remark 1, a) In [12] , Lee calls condition Dy, D;(1) and he
sbows that E;(1,1) and E(1) (see [6]) are equivalent (see 12,
Remark 14,p.416). Another ccndition which is equivalent with
E(1l) is given by Iseki (see [12] ,pp.415=416).

b) Clearly D] C Dy.

Definition 5.( 12] ,p.416). For a function property P (resp.
for function properties P, and P2) on sets we say that a function
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f is generalized P (resp. generalized PyP,) on E, writing feGP
(resp. £€GPP,) on E, if E can be written as the unlon of
countably wmany sets on each of which f is P (resp. f is Py or £
is Py). Thus we have properties like GD] 4 GD; § GAG,DJ ; GAC Dy;
GE(1).

Remark 2, a) GD] = D] on a set.

b) If feD; on a set B then [£(®)| = 0 and £e B(1l) on B. Hence,
if f€GDy on E ghen [f(E)| = O and feGE(1) E.

I5 I8

c) If £ is a Darboux function and fe GD; on interval then f i

/]

8 constant.

d) Let f be a nonconstant continuous funmection on [0,1]. If 4 is a

countable dense subset of [0,1] then £¢ D] cn [0,I] and £€D] on -
e) €NGACD;C Ty on an interval (see [13], Theorem 7,2,p.230,

Theorem 6,2,0.278 and Remark 2,b)).

Remark 3, For continuous functions on [0,1], we bave:

‘é(g N %)H (g) quasi=derivable (g) S+S (;) quasi-derivable

(6) (7)
+ quasi-derivable = 6 = S+S+35.

Proof. For (1) see [6],p.208; for (2) see [8] ,p.84 ; for (3)
see [8) ,p.87; for (4) see [1],p.222,p.229; for (6) see [1],p.599,
bence (5) follews by (6) and [1] ,p.227; for (7) see [1],p.61l.

Proposition 1, For continuous functions on [0,1] we have:

. (D (2) (3) (4)
GAG‘Dl g GAG'DI [l GE(l)ﬂTl (- -50'1‘1 g Se

Proof. For (3), see the definitions and for (&) see [€],p.
208. Clearly GAG}D'{ C Gac, Dy C GE(1)NT; (see Remark 2,e)). It
remains to show that (1) is strict. Let T be the Cantor ternary
set and let ¥ be the Cantor ternary function. Let {I:}, n=

1,2,...,25"1 ve the open intervals excluded at the step k in the
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Cantor ternary process. Let ch be the middle pcinmt of IX, Let
£:[0,1—R, £(x) = 0, x€C; £(c) = 1/2%, Extending £ linearly,
we have f defined and contimwous on [0,1]. Clearly fe€ GAC,D; on
[0,1) ,and feaCG, on [0,1]~ C. Suppose that fe€GAC,D] sn C. Then
there exists a sequence of sets {E } such thet G = E, and either

fEAC* cn E_or fe D1 on E

n . Let p be a natural number such that f

n

is 4C, on E'p. Since f€ € it follows that £ is AC, on 'i"'p
that £€ D] on F:p. et & >0 and let & be given by the fact that

feAc, cn Ep. Since f € € and li"pl = O we can cover Ej with a

sequence of ncnoverlapping intervals {I } such that 3|I | <& and
20(£3I,) < € . Hence feDl onTE‘p

hence feDl on ., we show that f£¢ Dl on C., let CC igl(ai’bi).

« We prove

. It follows that f£€GD] on C,

For each i let Ji be the greatest excluded open interval (in the
Cantor ternary process) contained in [aj,b)] , where aj =
in:r((ai,bi)ﬂc) and bi = sup((ai,bi)ﬂc). Suppose that J; is
excluded at the step k., Then

kel s oo Ke1

(2 e/5 + T 2/50, T ey/3 + 2/30). Let

Iy

' Kel kel oo i
3= 2 e;/3 A ey /3 + . 2/3"]. Then [a},b]]C I} ,

bence CC UJ}. %e bave O(£3Jy) = 0(£33}) = [@(IP)| = 172,

4 = P@C UPE)), bence 3 0(£:(ag5)) > % 0(£:3,) =

00
izll\P(Ji)l > 1 and £¢D} on C.

Theorem 1. Let F:[0,1]—R, Fe €Nquasi-derivable. Let
8>0, P [0,1] be a perfect nowhere dense set and let D
{xe [0,1)- P : P is derivable at x}. Then there exist a se

4

O
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F}'&ZEQ, Q€ D, i1Ql

such that: 8) F(x)

ID| and two continuous functicns f, and f,
£1(x) + £5(x) gn [0,1] s b) fl,faeD’i on Qc
= [0,]- Qs ¢) £,,f,€406, on g3 d) |£5(x)| < 3a on [0,1] and
f2(0) = f2(l) = O.

Proof, Let P, be a perfect nowhere dense subset of D, |P,|>0.
iie shall construct a strictly increasing sequence {P,}, k = 2,3,..,
of nowhere dense perfect subsets of D such that Pk" Pk—l is a
ncwbere dense subset of positive measure in each Tg’l and 1Q| =

|D|, where IE are the intervals contiguous to Py, k = 2,3,... 2nd

oo
Q= Ul Pp. Let gy ! [O,l]——)R be a continuous function such that:
k=

gl(x) = F(x) on Py3 g7 is a bounded derived number on each Ix]i‘ g1

is constant on each IS ; |by(x)l < a/2™! on each I} , where by(x)

= P(x) = g)(x). The existence of g, follows by [1] ,pp.222-224.
Since by = O on P, by [13] (Thecrem 8.5,p.232), it follows that hy
€AC, on Py. By (13 (Theorex 1¢.5,p.235), F€ACG, on P,. Clearly
g, €AC, on each I,. Since gy = F= by it follows tbat gj€ 40, on Fy,
bence g, ACG, on [0,1] . Since F€aCG, on P, it follows that hy€
&CG* on P,. Since b;= F is constant on each 1121, it fcllows that

b; is derivable on D= P,. Replacing F by by we construect a con=-
tinuous functicn B2 snalcgously tc the construction cf g, such

that g; = b; on P,, g, is 406G, on [0,1], g, is ccnstant on each

2
n ?

- g?_(x). Then hz(x) = 0 on Fy; b, is AGG' on PB; by is derivable
on D= P3z |h2(x)| ya 3/22 on [O,l] o« Continuing in this way we

interval I amd |by(x)| < a/2™2 on each I2 , where by(x) = hy(x)

obtain two sequences of continuous functions [gs}, {by}, 1 = 2,3,..
such that:

A. g; =Dby_, onPy; gy €ACG, on [0,1] s g4 is constant on each
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'
B. by =0onPys |by(x)| <a/2™ on1d; beucs, onry, ;)
hi = hi-l- 81 is derivable on D= Pi‘l-l .

Clearly

(1) Ib; (x)| < 8/2t on [0,1].

Then we have F(x) = gl(x) + cee + g;m(x) + b-(x), for each natural
e

nurber m snd by (1), izz;lgi(X) converges uniformly to F(x). Let

Fi(x) = 15;'.1 €21.1(%) 3 Fo(x) = El gp4(x) 3 Ry(x) = En(hi(x) -

bi+1(x)). Then Fl,erf on [0,1] and F(x) = Fy(x) + Fy(x).

We have

k
(2) Fy(x) = 12=:1 €r5-1(X) + Ryp(x)
N .
(3) Fa(x) = i§1 821(1) + R2k+l(x) {
(4) Ri(x) =0 onPy j
(5) 3. o(ryiId) <as2iv?,
n=1
By (4), (5) snd [13] (Theorem 8.5,p.232) it follows that
(6) Ri(X) is AC' on Pi °

2k

n o+ 1t follows that

k
Since 121 B24.1(X) 1s constant on each I

Zk)

2k
(7) 0(Fy3Ig ) = O(RyIp ).

By A., (2) and (6), it follows that F; is AOG, on P5y. Hence F,

(- J
is ACG, on Q = U P,. Anslogously F, is ACG, on Q. Moreover,
* i=1 ¥

oo
(8) || = Ry ()] < El\hi(x)\ < a.
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Let £€>0 and let k be a8 natural number such that a/22k< € .

Then Cc U 12K+2

= and by (5) and (7) it follcws that
n=

(-
51 O(Flglgk*z) < a/22k< & , bence Fl is D‘{ on Qc. Analocously,

¥, is Dj on ¢°. Therefcre we obtain: F = Fy+F, on [0,1]; Fy,F,

are D} on &3 F,F, are 4CG, on ¢ |Fo(x)| < a on [0,1]. Let

X
H(x) = Fp(0) + ((Fa(1)=F,(0))/1P4l) g Kp (646 , where K, is the

characteristic function of P,. Clearly H is 4C on 0,1 |H(x)\
<2a § His constant on each I, Let f, = F, = H and £, = F + H
on [0,1] .

Corollary 1. Let a>0 and let P be a perfect nowhere dense

subset ¢f [0,1]. Let F:[0,1]—R, Fc€ . Then there exist two
continuous functions Fy,F, on [0,1] such that: a) F = F, + F, gn
P,0: b) FyeD} on P and F1€Dy on P 5 ¢) Fo(0) = Fp(l) = O
d) |IF,(x)l<a gn [0,]].

Procf, Let £:[0,1]—>R be a continuous function defined as
fcllows: f(x) = F(x), x€PU {0,1] ; £ is linear on the closure
of each interval contiguous to PC [O,JJ « By Thecrem 1, £ = f,+f,
cn [0,1] 3 £1,£,€€ on [0, £1,£,€D] on ¥ ; £5,(C) = £5(1) = C;
1f5(x)| <@ on [0,1]. Let F, = f, and F; = F = £,. Then F; = f;
on P, bence F1€D, on P.

Qorollary 2, let a>0 and let P be a perfect npwhere demse
subset of [0,1]. Let F:[0,1]—>R, Fe€ . Then there exists a
perfect nowbere dense set Q DP such that @ P is a perfect
nowhere dense set of positive measure in each interval contiguous

. P and there exist two continuous functions Fl,F2 on [O,]J such

451



that: a) F = F) + F, on [0,1]; b) F;,F,€D; on P ; F; is 4C gn each
interval contigucus to P; F; is constant on each interval contipuous
to Qi ¢) Fa(o) = Fa(l) =03 4d) \Fa(x)\ < a on [0,1] .

Prcgf. By Corollary 1, for a/2, there exist two continuous
functions fl,f2 on [0,1_] such that: a') F = fl"'f?. on [0,1] $ b') f2
€D] on P and £,€ D) cn P; ¢') £5(0) = £5,(1) = 0 3 @') |£,(x)| < a/2
on [0,1). Let {I_} be the intervals contiguous to P with respect to
[0,1]. For each natural number n there exists a perfect nowhere
dense subset Q, of I,, |Q,| >0 and & contimous function F; on
[0,1] sueb that: Fy(x) = £1(x) on 5 F;(0) = F(C); Fy(1) = F(1);
Fle AC on each In; Fl is constant cn each interval contigucus to
Gp With respect to I, ; |Fo(x)| < a on [0,1], where Fy(x) = F(x) -
F,(x). These follew by [1],p.609-611 (if we put I,=6&; £, =7
f,=9Y :F;=PsF, =Y ; 8/2= €/2). By a') and c¢') it folloms
tbat Py(x) = £,(x) on PU {0,1}, bence F,(x) = £,(x) on PV fo,1}.

It follows that F2(O) = Fa(l) = C and by b'), F14F,€D; onP.

Rewmark 4, a) Thecrem 1 extends Nina Bary's thecrew of [1],
p.222 and Cocrcllary 1 extends Nins Bary's theczrem of [1],p.603
( instead of condition "|Fy(P)| = |F,(E)| = 0" we put conditicn b)).
b) Corcllary 2 is an extension of Nina Bary's Corollary of [1],
P .€09.

Remark S5, Fcr continuous functions on ([0,1] we hbave:
quasi-derivable ¢ GAC,D] + GAC,D] < GAC D] +GAC Dy 8¢S
(see Theorem 1 and Prcpocsiticn 1). We don't know if the inclusions
are strict.

Proposition 2. Fer contimuous functions on [0,1] we bave:
quasi=derivable &GAC*DI + GAC'DI.
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Prccf, The inclusicn follows by Remark 5. Tc prove that the
inclusion is strict we shall construct two continuous funeticns
f,e:[0,1]—[0,1] such that f,geGAC,D; and f+g is not derivable
a.e. on [0,1]. Then f+g is not quasi-derivable cn [0,1] « let Py
be a perfect nowhere dense subset of [0,1], symmetrical with
respect tc 1/2 such that 0,1€F; and |P;| = 1/2, We sball ccnstruct
2 strictly increasing sequence of subsets of [0,1] , Py, k22. Iet
ik
[c,1]. Suppose that Py,...,P, have been defined and let's define

= (ag,bg) be the intervals contigucus tc Pk with respect to

Py, - let Pg be a perfect nowhere dense subset of T: such that

s, bEePs , |PX| = |151/2 and BE is syumetrical with respect to

(-]
¢S = (af + b5)/2. Then P, = PkU(nL_)lpg) = P, Us®™l, By (1],pp.

229-230 (for & = IL, Q= Pr and &= 1/2™K), there exists a

continuous function £,:[0,1]— [0, 1/2¥] witb the following
propertiess £,(x) = 0 on Py ; £, is ACG on each In; |£,(x)| < 1/27*K

kel

on Igs fk(x) = 0 on P:; fk is AC on In

i Ty is constant on each

oo N
1542, ¢ is not derivable on PX. ILet 4 = P,U( LU s2i*ly | B -
n k n 101

:J 2t B - [0,1] = (aUB) = [0,1] - (i(')lpi). Then |AUB| = 1.

oo 0o
let f(x) = 121 fZi-l(x) and g(x) = izlfzi(x). Clearly £, g and

f+g sre contimmous c¢cn E),l] « It follows that: 8) f is ACG* on A
and f is not derivable s.e. on B; b) g is ACG, on B and g 18 not
derivable a.e. on A; ¢) £€GD; on B; £e D] on B; ge€D) on A; ge
D] on B. By a) end b), f+g is not derivable a,e. on [0,1]. By a)
and c¢), £ €GACD; on [0,1] and by b) snd ¢), gi.GAC'Dl on [0,1].
We prcve only the part with f. Let R2k+1(x) = Ek f21+1(x). Then

453



k
f(x) = i?l £55.1(X) + Ry (x). We bave

(10) 3 0@y, iTg™h <1722t
n=

hence, by [13] (Thearem 8.5,p.232) ,
(11) 32k+1 is AC, on P2k+1‘

K
since 2 f,, _;(x) is constant cn each 12K+l 4t follows thst
i=1 7 n

(12)  o(£;I12%Y) = 0(Byy, 1312 Y).

By (9), it fcllo&s that
(13)  £(x) = 3 fp5(x) onPpy,;.

8) Since f(x) = Ry(x) on [0,1], £ €AC, on P;. Since WS SYPRRIL PYNSY

2k K

are AC, on each IZ", it follsws that i%l £,;.1(X) is AC, cn each

Pik. By (11), f is Ac* on each Pﬁk. Therefore f is ACG‘ on S

kel
Since 12—:1 fZi-I(X) is constant cn each Iﬁk'l, f?.k-l is nct

2k+1

derivable on Pik'l and Rzk.+1 is derivable s.,e. on P2k+l’ It

f.llows that £ is nct derivable a.,e, on Szk.

o2k=-1

¢) Let & > 0 and let k bte 3 natural number such that 1/ & .

Since EC Ul 12k+1 | by (10) and (12), it follcws that
D=

S 2k+1 * k=1

S O(f3I7 7)< €, bence £€D] on K. Since 3 f£,,_,(x) is

n=1 i=1

ccnstant on each Iik*l and £, _,(x) = O on each P%k"l, it follows
that £ 1s constant on each Pﬁk'l, bence f€ Dy on SZt. Thus f € GD,

on B,
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Using Corsllary 2 instead of Nina Bary's Corollary [1],p.
609, the following thecrem can be proved:

Theorem 2., (An extensicn of the thecrem of [1],p.611).
€= GAC_D; + GAC_D; + GAC D; for continuous functions on [0,1l.
Remark 6. We don't know if Thearem 2 remains true if GAC D,
is replaced by GAC‘D' .
Theorem 3, (An extension of the theorem of [1],p.237). Let
P be s perfect set, Pc [0,1], |P| > 0 and let F:P— [,1]. If F

€WNE then F cannot be written as the sum of two continuous

functions Fy and F, such that F,€ k and F, is approximately

differentiable on 8 set of positive measure. Hence WN (K + M) = ¢

for continuous functions on [0,1] (see Remark 7).

Proof. Suppose that there exists a set ECF of positive
measure such that F2 is apprcximately differentiable on E. By
[13] (Theorem 10.14,p.239) F, is ACG on E. Since FE W there exists
B,CE, |Ey| = 0 such that F(E;) is measurable, |F(E;)| > O and F
is monotcne on E,. Then F; = F-F2 is VEG ¢n E;. Since F,€k, Fie
ACG on E,. Hence Fy+F, 1s ACG on E, and |F(E1)| =0, a
contradiction.

Remark 7, If P is & perfect nowhere demse set of positive
measure, P< [0,1] then there exists a continuous function in D}
on P which is approximately differentiable on no set of positive

measure (see Theorem 1 and Theorem 3).

Coerollary 3. let F:Pc[0,1]—[0,1], wsbere FE€WNT and P i

a measurable set of positive measure. Then F 1s approximately

differentiable on no set of pcsitive measure,
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Thearem 4. 8) Let F:[0,1]—R, Pe€ and let Pc [0,I) Dbe a
measurable set, [Pl > 0. Then FeW on P if and only if FeM on

no closed subset Q 3£ P, [Q| > 0.
b) let £:S—R, fe €, where Sc[0,1] is a measurable set. Then

re W if and only if for every subset ACS of positive measure,

f is strictly monztone on some perfect subset BCA such that
I£(3)| > 0 and [B| = O.

Procf, a) "=>" Let 3 be a clcsed subset of positive measure
of P. Since FEW on P it fcllows that there exists QC Q \Ql\ =
O such that F is monotone on Q;, F(Q;) is measurable and IF(Q1)|
>0, hence FEéM on g,

"¢&=" Let A be a perfect subset of P of positive measure. Singe
F¢lk on A, by Theorem 1 of [8](p.83), it follows that there exists
Bc A such that F is monctone on B and FE AC on B, Since F €€, F
is monctone on B, We prove that [B]

and |F(B)| > 0. Suppose that |F(E)|

0, bence F(B) is measurable

O then Fe €NVBNN on B

and by Theoream 6.7 of [13](p.227), F€ AC on B, hence F €AC on B,
a contradietion. Suppose that |B| > O then F is approximately
differentiable on a measurable set ECc B, |E| = |B|, hence Fe ACG
on B, It follows that there exists a closed set ¢, QcE, |Q| >0
such that Fe ACGc M ¢cn @, a contradiction,

b) "=" is evident.

"&=" Let A be a perfect subset 5f S, |A] > O, Since £ €W, there
exists B; C A, [B;| = O, lel is monotone, f£(B;) is measurable

and |£(B;)| > O. We prove that |B;| = 0. Suppose that IB3] >0 .

Since fe€ , fl-ﬁl is monctsne., Hence f is approximately derivsble

3.8, on 731, a contradicticn (see Scrollary 3). Let C = {ye f(ﬁl) :

f'l(y)nTB'I contains wore than one point}. Then ¢ is countable.
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Suppose C = [¥sTpseeele Lot € < (I£(B))|)/4, a, = inf(*élﬂ
£l ,)), by = sup(BN£71(5,)). Since €€ it follows thet
thars exist &, > O such that f(§1ﬁ (8= &y byt §))C

b+ &n) . Hence

1
(7= 820, g 270 Let & = U (ay &y,

|£(B;NG)| < €. Let B be the set of pcints of accumulation of the

clised set By=- G. Then 3B is a perfect subset of 4, |Bl = 0, f|g
is striectly wonctone, f(E) is a compact set (since £e¥ ) and
£ > (3/#)1£(B)| > 0.

Lenna 1, Let A be a perfect subset of [0,1], |al > O and

let f:A—R, fe€ . Let E = {xea 1+ £ is aporoximately

differentiable at x and £] (x)> 0}. If E has positive measure

then there exists a perfect subset B of E, [B| = 0, such that

f|g is strictly increasing.

Procf, That E is measurable follows by [13],0.299. let E, =
{xeB t 0<h <1/n izplies|{t : 1/n < (f(t)=f(x))/(t=x) , O<
\t=x| < b}| > (3/4)-2n}. Let E;, = B N[i/n, (1+1)/n] for each
natural number i. Then T = u U Zy,- Let p,j such that \E l>’)
If x¢y, x yeEpa then f(y)-f(x) > (1/p) (y=x). Since fef 1t
follewns that f£(y)=f(x) > (1/p)(y=x), for x<¢y, X, yEE .. Let B

“pJ

be a perfect subset of positive measure of Ts.‘pj. Then £ is strictly

incr2asing on B.

Theorem 5. Let P be a perfect subset of [0,1], |P| > 0. et
F:Pé»lp,lj, FEWNE ; giP—>Q, e(®) = Q; ge€ s £:1q—[0,1]
and Dy, = {x€Q + £ is approxicately differentiable at x}. If
F = fog, fc€ and |f(Q Dap)l = O then geW,

Proof. The prosf is similar with that of [1](Theorem of p.
228), using Lemma 1 instead of the lemma of (1], p.2329.
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Let 4 be a perfect subset of P, \A| > 0. 3ince Feii, by Thecrem
4,b), there exists a perfect subset B of A, |B| = O, such that
F|p is strictly monotcne and |F(B)| > O. Let B' = g(B). By [13]
(Theorem 10.14,p.239), it follows that £ € ACG on Dap’ Since

(f(& Dap)l = 0 it follows that £ €N on Q, hence |B'| > O, Indeed,
if |B'| = O then |F(B)| =\f(B')| = 0, a contradiction, Let D =
{xeq : £3,(x) = 0}, By [13](leama 9.2,p.290), it follows that
|£(D,)| = 0, hence B'= D, is measursble and |B'= D [> 0 (if

[B'= D,| = O then \F(38)| = 0, a contradiction), It follows that B!
contains a subset EC.Dap cf positive measure where fa'p dges.not
chanre the sign. Suppose that fép(x) > 0, for each xeE. By

Lemzma 1 there exists a perfect subset C' of B, |C'| > C, such that
£|g+ is strictly incressing. Let C = g1(C'). Simce F is strictly
monotone on G, it follows that g is strietly monotone on C, [C]| =

0 and |g(C)| = |C'| > 0, hence g€V,

Remark 8, Thearem 5 is an extension of the theorem of [1],
P.238 (there, f€ AC).

Theorem 6. Let P < [0,1] be 3 perfect set, |P| > 0. Let
FiP—[,1]s geP—RcP,1], Q= g®); 1Q|>0; £1q—[0,1] and
let Dy, = {x€P 1 g is approximately differentiable at x}e If
F = fog, Fyg,f €€, FEW and |g(P- Dy)| = O then fEW.

Proof, Let 4 be a perfect subset of Q, |Al > 0. Let 4; =
g'l(A), then A, is a closed subset of P. But g is ACG on P, ‘nence
g satisfies lusin's ccndition N on P. It follows that “1\ > 0.
Since |Al > 0, Dy = {x€P 1 Bap (X) = 0},|e(d,)| = O and [g(P-Dap)[

= 0, it follows that AIO Dap

measure where f;p doesnt change the sign, Suppose that f;p(x) >0

for all xe®, By Lemuma 1 it follows that there exists a perfect

contains a subset E of positive
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subset C ¢f B, (Gl > O such that g)g 1s strictly increasing. PEW
implies that there exists a perfect subset B of C such that |B| =
0, F|p is strictly monotone and IF(B)| > 0. Let B; = g(B) c A,
Since g is 40G on D, it follows that |B;| = 0. Since g|p 1s
strictly increasing and Figis strietly monotone it follows that
£ B, is strietly monotone and |f(Bl)| = |2@®) = |#@®)| > o,

hence £f€ W on Q.

Definition 6. Let F:[0,1]]— R, Fe€ . F 1s said to be W if
for every subinterval I of [o,ﬂ , there exists a perfect subset P
of I, |[P| =0, F|p - monotone, such that |[F(P)| > 0. Clearly W w.

Remark 9. By Corollary 2 of [2] (p.213), & typical continuous
function £1[0,1]—” R does not have finite or infinite derivative
at snoy point. By [8] (Theorem 3,p.87), if £ is a continuous func=-
tion on IC [0,I] and if {xe€I : f£'(x) exists} bas measure O tben
there is a perfect set P, |P| = O such that £ is incressing on P
and [£(P)| > O. Hence a typicsl .continuous function ig W. Is W
typicsl for continuous functions on [0,1] ?

Remark 10, There exists s function ge W = W. By [10] (Exsmple
2,p.41), there exists s contimuous function g defined on [0,1]
whose graph bas YV = finite Hausdorff length snd such that g is
nowbere differentisble but has spproximate derivative O almost
everywbere (g will satisfy condition T;). Since the set B = {x:
g'(x) = +o0} has measure O (see [13], Theorem 4.4,p.270), by [e]
(Theorem 3,p.87), it follows that g € W, By Corollary 3, g ¢W.

Leuma 2, There exist & continuous funetion F:[0,1]— [0,1]

and 8 gymmetric perfect nowhere demse subset Q of [0,1], 0,1€Q,
|IQl = 1/2, such that: a) PeW on P; b) For each ye [0,1], QN

F-l(’) is & nonewpty perfect subset of Q; ¢) FIQ bas finite or
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infinite derivative at no pcint xe Q; 4d) F|Qp_a_§ finite
approximate derivative at no point x€Q; e) F is linear and
Strictly decreasing on each interval contiguous to Q.
1+l
Proof, #e sball define the set Q. Let a5y = (1 - EZ I/Zk)/“-i

= 1/(2-6Y) + 1/(2:8Y), 1205 8y ) = 28y, 131, 6y = 8y, -4, ,

e
i i
i>1, Then 8~; = € = X c c = 1/4~ + 3/8%, i1
2i 2i k=il k * Y2i=l ’ ’
[~
8541 = E—.:ai cge Let Q={x : There exists e;(x) taking on 0 or 1

and x

3 e;(x)es}. The open intervals deleted in the s-step of

S=1 S=1
the constructicn of ¢ are Cel...e - (izleici + ag, iEleici +¢g),
Se = =

(91’ oo °°s_]_) € 10,1} s-1

0e veu® £ @ iff s = 2p=1, p>1 and in
1l Sel

this case |0 ] = 2/8P. The remaining intervals of the s=-
e1...62p_2

5 s
step are Rel“‘es = [1§1eici , 1%16101 + a_], where (e1,...,8,)€

o

{0,1}%. Then ¢ = lw 2%a_ = 1/2. Let F(x) = X e, (x)/2, xe€Q.
S—boe i=1

Extending F linearly on eacb interval contiguous to Q we have F

defined and ccntinuous on [0,1]. We bave:

8 i S i
(14) F(Reloooeas) = F(QnReloooeas) = £i§1621/2 ’ i%lezj'/z +

1/2%] .

(See fig.l for the representation of the first two steps in the
cocnstruction of the graph of F.)
a) Let o = 1/2*1 4 174341, 130, ¢f = 85 ; - 8], 131, hemce

c{ = 1/21"'1 + 3/41"'1. Let P = {x : There exists oi(x) taking on O
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or 1 and x = Zei(x)ci}. Clearly P is a symmetric perfect nowhere

dense subset of [0, 3/4]. The cpen intervals deleted in the s=-
s=1
step of the construction of P are Oél"‘es-l = (i?l esci + 81 ,

Sel
.Zleici + cé), (el.....es_l)e{o,lis'l and the remaining intervals
1=
S 8
cf the s-step are Rél"’es = [El ejed 1E=: e,ci + al], where
(61se-08) €40,14° , IP| = 1iw 2%a! = 1/2. Let Fy(x) =
: 8 =)o

§1e21(x)/21 if xeP. Extending Fl linearly on each interval
1=

contiguous to P, we have F; defined and continuous on o, 3/4]
(see [5])e If s is odd (resp. even) then F, is linear and strictly

. Let hiP— Q, b(x)
S

00 [ -]
= h(izlei(x)ci) = 12191(1)01. Extending b linearly on each inter=-

decressing (resp. ccnstant) cn each 09'1.,.9

val contiguous to P we have h defined, continuous and increasing

on [0, 3/4], b(0) = 0, b(3/4) = 1; b = constant cn each

if s is even; h(®PN Ry .. e ) = QNR
*Ts

-
L]

S

0
eloooes-l eloo Oe

b(R . Ve prove that beaC on [0, 3/4]. Since

3/4
b is increasing it suffices to shcw that j b'(x)dx = 1, bence
0

) = R
1°° oes eloooes

j‘Ph'(x)dx = |Ql. The function b is derivable a.e. on P. Let x €P.

R

be a point at wbich h is derivable. Then b'(x,) = N V4
1‘.. s

lim|

8 —Pv>

‘Rél“‘e | = 1, bence .fPh'(x)dx = |Q|. Since F;(x) = F(b(x)) and
8

FLEWonP (see Lemma 3 of [5]), by Theorem 6, FEW on Q.

b) Let ye [0,1]+ If y is uniquely represented in base 2, y =

462



Eyi/Zi, then Ay =ixeQt F(x) =y}={xeq: °Zi(x) = yi} is a
nowbere perfect subset of &, If y bas two representations in base
2, ¥ = Zyi/ai = Eyi/Zi then ly = {IEQ t F(x) = y} = {XGQ $
053 (x) = 3,3 Uf{x€eQ s e54(x) =y} is a nonewpty perfect subset
of Q.

c¢) By b) it follows that O is a derived number for r,Q at xe Q.
Let-xoe G+ Then for each sa1 there exist ©10000905 such that x €

c
Reysese, s Simce O(FiQAR, o ) = 1/2°% and (1/2%)/a,,— = ,
s— o0 1t follows that F‘ Q has finite or infinite derivative at
no point X, € Qe
d) Let x,€§ , and for each s21, let e;,...,8;, such that x €

- : R E:». i S i
ﬂel”‘eas. Then eitber (1) F(x,)€ [i%,lezi(x)/z , i§lezi(x)/2 +

s . s .
1/25*1] or (11) F(x,) [.Zl“’ai(")/?l* 1725+ Il2‘,1e:,,_1(x)/21-+ 1/2%].
1= =
Suppose for example (i). Let E = QN(R (W)
p eloooezs Q el...e250101

R 1111)+ Ther IE |/

UR UR
910009250111 eloo .6251101 31000323 el...ezs

R | — 1/4 snd if Y€ Ee1°°°ées then 1F(ys)-1«"(xo)\ /a25>,

€e0e€p
(1/25*2)/325_’ ©© |, bhence F has a finite approximate derivative
at no point xoe Qe

e) Let s = 2p=1, p>1, then

s=1 : =1
(15) F(Eleici + a) - F(E_:leici +cg) = Fag, ) = Fley, )

- S e,) = 1/2P7L,
ke

Theorem 7, There exists a continuous function f:[O,l]—*['O,IJ
with the follcwing properties: a) feW; b)Fcr each ye [0,1],
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£=1(y) is a nonempty perfect set; c) For each xe [0,1], £'(x) dges
not exist (finite or infinite); d) f is approximately derivable at
no point xe [o,1] .
Proof. In what follcws we use the notations introduced in

the proof of Lemwms 2. Let I = [s,b]< [0,1] and let by:[0,1]— [s,1],
b;(x) = (‘b-a)x + 8. Let Q; = by(Q) = a + (b=a)°Q. It follows that
lsgl = (1/2)+(b-a), a,beq; and ¢ is a symmetric perfect nowbere
dense subset of [a,b], which can be obtained on [s,b] exactly as

g was cbtained on [O,ﬂ « The open intervals deleted in the s=-step

]

of the construction of Q; are (OI) =8 + (b=a)0

el...es_l eloooes_l

which are nonempty if and only if s = 2p=l, p=>1l. In this case

(1€) = (b=-a)-(2/8P),

(cy)
I1761ece€5
The remaining intervals of the s=step are

Qa7) (Rl)el’”es = a + (b=a)R .

el‘. Oe

Let g1 = Fobfl « By Theorem 5, gIew on QI. (The graph of E1 is
similar to the graph of F, see fig.l) We bave:

(18) gI(a) =03 gI(b) 1; gI(I) = [0,1] and

S
(19) EI((RI) ) SI(QIn (RI) ) = [Eleai/2i ’

91000928 91000328

S
S e /2%« 1/28].
e ]

By (15), for s = 2p=1, we have

(20)  0(grs©Opdg 0 ) = 1/,

Let Q; = Q¢ We shall construct s strictly increasing sequence

Qe » k=2, of nowhere dense perfect subsets cf [o,ﬂ and denote
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by Ig = (ag,bk), k»1, nz1l, the intervals contiguous to Q  with
respect to [0,1] . Let A = [an,c §,= [cg,bg], where cg is the

widdle point of IS ne Then Q = QU ( U (Q WUQ ))e Let £, = F
Ay By
on [0,1] « Suppose that £, _,:[0,1]— [0,1], k> 2 bas already been

defined and let's define f,:[c,1]— [0,1] as follows: £, (x) =

£, 1(®), X€Qgs £(X) = £, 5 (a5h) o (£, (kD)2 (aE7h)):

e k1 (1) 5 XEATT 4 £ = g (enT) (£ (0f =E g (ef D)
n

g k-l(x) y X& Bg-l
Bn

sequence of continucus functions on [O,l] « Clearly fl€'@ on [0,1] .

Suppose that f, €6 , k»2 on [0,1]. #e prove that fke'@ on [0,]:_] .
Since £, = £, _; on Q._; it follcws that £,€ € on g _;. We have

« wWe prove that {fK} is an uniformly comvergent

C ORI S Chutd W SN CLund PIE ¢t NPT S ¢ PRE (¢ g B
k-l(bk-l) 3 £,_; is lipear on [sl‘ 1 bk'l_]

(See (18) and the definition of £, on A1 and B¥71.) also,

(22) £ L5 = £, (5 = [fk-l(ax]i—l)’fk-l(ci-l)]'
g5y g (35 - [, kL £y 5]

where [x,y]” is either [x,y] or [y,x] (see (18)). By (21) and (22)

O(fk.[k-l k-1 D = O(f lg[ak-l ke 1]), bence f, € €on [0,1].

Suppose that |f, ) (a5™1) - £, (bE™H)| £1/2572 | k2 and let's
prove that
(23) \fk(ak 2, (65| < 172571,

Let (a ) ) be an open interval of Q.. Then (a bg) is an open
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interval either of (i) Q kel ©F of (i) Q kel » fOT some natural

number p. Suppose (i), then by (21) snd (22) it follows that
k k K= - kel
2 (ag) = 2,0l <lg,  (A5H] 212 aE ™Y -2, 5Dl /2<

1721, since £,(x) = £,_;(x) = 0 on QU ( g‘{‘:.l,l) (see (20)

and the definition of £,), by (21), (22) anmd (23), it follows that

(24) | £ (x) = fk_l(x)l < 1725 on [0,1]. Let £(x) = et lim(fk(x))
Then by (24), £,—> £ [unif] on [0,1], hence f&€on [,1].

a) Since fk(x) £(x) on Qe by Lemma 2 ,8) it follows that feW
on Q.. Since |UQ.| =1, feW on [0,]].

b) Suppose that there exists y, € [0,1] such that B, = fxelo,1] :
0
£(x) = y,} bas an isolated point X,» Since £(x) = £ (x) on Q, by

Qo
Lemma 2,b) it follows that x e[0,1] - u1 Qce Since x, is isolated,
k=

there exists &> O such that (x,-&, x+& )ﬁEy = {xo'j. Let k
o

be a natural number such that ng C (xo-S,xo+&). Ve may suppose

without loss of generality that xﬁeA};

o Lot zg = gk (x,) €[0,1].

k
By Lemma 2,b) Ezo = {chﬁk : gAk (x) = zoi is a perfect nonempty
n
k

sets But B, < Ank c (xo- S—,x°+£) and f(Ezo) .-.{;J , 8 contradice-

o
tion.

e) If x; & UQ since £ = £, on Q, by Lemma 2,c) it follows
that £'(x ) does not exist finite or infinite. Let xoe[o,ll -

(Elqc). Then there exists a sequence of natural mmbers {n.},

k>»1l, such that x, and I1 312 D.ee o Por {nk}, k>1

k_lnk n, By

there exists & sequence of natural numbers {pk}, k >1 such that
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Pqteec e+D Pitese+d
(25) |15 |.2/e1 ko aE =88 |=1mt K ang
k B
Pl"’“ o+pk pl"ooo'.’pk

k

O(f3I, ) = 2/2
Dy

Indeed, for Dy there exists pl>’1 such that l‘]il is an open interval

, bence o(fugk) = ocrsank) = 1/2

from the step 2p;-1 of the construction of Q), bence |I1 | =28 F1,

p;-1
By (15), O(£3I1 D= |2, (on - £,(ap )| = 1/2 17, Gontiming, for

D, k>2 there exists p, 1 such that Iuk is an open interval from

the step 2p, -1 of the construction of Q kel (resp. Q kel ) for
o,y Py

k-l k-ll(z/a y =

X, € A5l (resp. x o€By ). Hemce lI | = |a

nk-

Pyteee+D) _14P - Pi-l
2/8 1l k-1"*k and by (20) O(f;:[gk) = o(f;Agkll) «(2/2 k ) =

p1+. o.+pk
2/2 « By b) it follows that O is a derived number for f

at x . By (25), 0(f61§k>/|1§kl e

not exist, finite or infinite.

d) It X, € U Qe since f = fk on G, by Lemma 2,d) it follows that
fap(xo) does not exist finite. let x € 0, - (Ug). 3Suppose
that £ (x ) = t o It follows that tbere exists a measurable set

Ex sucb‘ tbat d(Ex ' Xy ) =1 and 1lim (f(x)-f(x ))/(x -X ) = t

(o)
(] X—’Xo

erx
o
(Here d(E;x) denotes the density of the set E at x.) Let k be a

=l N 3l/13] > 5/F2 for
o
.*pk

y k—»o=, hence f'(x,) does

natural number such-tbat [t | <4

P
each interval J with x € J, 17| «1/8 1

ak 1 ‘| x=x

and [f(x)=£(x,)| <

for xeE NJ., We may suppose without loss of
]

cenerality that xougk. By (19), either (1) € (xg) € [0, 1/2)
Dk

ol »
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or (11) g , (x) € [1/2 ,1]. Suppose for example (i). Let H, =
A
o,

(RAk )OIOIU(R‘II )0111 U(RAK )IIDIU(RAK )1111 o Then HKCA
o o e o

¢,k (B €[4, 11, Il /|A]&‘§k|.-_-.4..a4 = 5/%28, bence Ky N, # 0.
n
k .

k
o ’

p1+...+pk

By (18) and (25), 1f(c§k)-f(a‘l§k): =1/2 . Tt follows that

pl+o. o+pk
there exists erxon H, such that [f(x)-f(xo)l =>(1/4)(1/2 )

k
n,

and so lf(x)-f(xo)l;> 4k-¥|x-x°|.
diction.

+ o oD Pyteeet+D -
ky. g1 k 1

Honoe [£(x)=£(x )l /145 | > A/8)(a/2 > 4K

k

For J = ‘n we have a8 contra=-
k

We are indebted to Professor Solomon Marcus for his help.

in preparing this article.
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