Péter Komjáth, Department of Computer Science, Eötvös University, Budapest, P.O. Box 323, 1445, Hungary.

ORDERED FAMILIES OF BAIRE-2-FUNCTIONS

We call a (partially) ordered set (X, <) Baire- α -representable if it is possible to associate a Baire- α function f^x to each element $x \in X$ such that x < y iff $f^x < f^y$. Here, for two real functions f and g we write f < g to denote that $f(x) \leq g(x)$ for every x and f(x) < g(x) for some x. A classical result of Kuratowski says that $(\omega_1, <)$ is not Baire-1-representable [5,6]. Obviously, $\mathbb R$ is Baire-0-representable. An ordered set quite different from $\mathbb R$, from well-ordered or inverse well-ordered is a Souslin-line, i.e. an ordered set which is not separable but there does not exist an uncountable family of pairwise disjoint intervals. The existence of a Souslin-line is independent from our usual axiom system. See [2,3,4]. G. Petruska and J. Gerlits asked if a Souslin-line may be Baire-1-representable.

Theorem 1. No Souslin-line is Baire-1-represented.

Proof. Assume that V is a model of ZFC set theory and (X, <) is a Baire-1-represented Souslin-line in it. It is well-known that there is a Souslin-tree (T, <) consisting of some intervals of (X, <) with the reverse ordering. For these arguments as well as the forcing notions, see [3] or [4]. We generically extend V by (T, <). In the resulting model, there is a cofinal branch in T which gives rise to an ω_1 -type subset of X, represented by Baire-1 functions. As (T, <) is ccc, the old ω_1 survives. As we forced by a Souslin-tree, new reals will not be introduced, and so the representing functions will still be Baire-1. These statements, however, contradict Kuratowski's theorem.

The class of order types represented by Baire-2 functions is much richer. D. Fremlin pointed out the following reduction by which some results originally proved by the author may be deduced from some known set theoretical theorems. For $f, g: \mathbb{N} \to \mathbb{N}$. (N is the set of natural numbers) we put $f \leq g$ iff $f(n) \leq g(n)$

holds for all but finitely many $n \in \mathbb{N}$. For $f : \mathbb{N} \to \mathbb{N}$ we put $A(f) = \{g : \mathbb{N} \to \mathbb{N}, g \leq f\}$ an F_{σ} set, when the $\mathbb{N} \to \mathbb{N}$ functions are identified by reals.

Lemma 2. For $f, g: \mathbb{N} \to \mathbb{N}$, $f \leq g$ iff $A(f) \subseteq A(g)$.

Proof. Straightforward.

This lemma enables us to quote results about (partially) ordered sets represented in $(N \to N, <)$. An easy induction shows that every set of size \aleph_1 is so represented. By Parovičenko's theorem (see [2]) this holds even for partially ordered sets. If $MA(\kappa)$ holds, then every partially ordered set of size κ as well as $(\kappa^+, <)$ is so represented. It is consistent that $c = \aleph_2$ and still every ordered set of size $\leq c$ is so represented. See 26Kf and 21Nb in [2] and [7].

We prove some negative independence results.

Theorem 3. If V is a model of ZFC + CH, $(X, <) \in V$ is an ordered set of size \aleph_2 , and if we generically add $\kappa \geq \omega_2$ Cohen reals, then (X, <) will not be Baire- α -represented in the enlarged model, for any $\alpha < \omega_1$.

Proof. Let $\{r_{\xi}: \xi < \kappa\}$ be the Cohen reals. For $A \subseteq \kappa$, let P(A) denote the partially ordered set adding the Cohen reals r_{ξ} for $\xi \in A$. Assume that some condition p forces that the Baire- α functions f^x are ordered similarly to (X, <). Every Baire- α function can be coded by a real. (See the similar coding for Borel sets in [3, Section 42].) By ccc, for every $x \in X$ there exists a countable set $A(x) \subseteq \kappa$ such that the real coding f^x is in $V^{P(A(x))}$. By the Erdoós-Rado theorem (See Theorem 2.1.6 in [4].), there is a set $Z \subseteq X$ of size \aleph_2 and a set A such that $A(x) \cap A(x') = A$ for $x, x' \in Z$. As $\aleph_2 > c$, there are x < y, $x, y \in Z$, and a bijection $\pi : A(x) \to A(y)$ such that if a statement about f^x is forced by some element in P(A(x)), then the π -isomorphic copy of it forces the same statement about f^y in P(A(y)). If $G \subseteq P(\kappa)$ is the generic filter, let $H \subseteq P(\kappa)$ be gotten by interchanging $G \mid P(A(x) - A(y))$ and $G \mid P(A(y) - A(x))$. H is generic by the product lemma (Lemma 20.1 in [3]), and in V[H] the actual f^x is what f^y is in V[G] and vice versa. But then x < y and $f^y < f^x$, a contradiction.

Corollary 4. It is consistent with $ZFC + c = \aleph_2$ and

- (a) $(\omega_2, <)$ is not Baire- α -represented for $\alpha < \omega_1$;
- (b) there is an ordered set of cardinality \aleph_2 , not containing subsets of type ω_2 , ω_2^* which is not Baire- α -represented for any $\alpha < \omega_1$.

Proof. (a) Apply Theorem 3 with $(X, <) = (\omega_2, <)$. (b) Apply Theorem 3 with the set of $\omega_1 \to \{0, 1\}$ functions as X, ordered lexicografically. It suffices to show that (X, <) does not contain subsets of type ω_2 or ω_2^* after adding Cohen reals. It is enough to show this about the set of all $\omega_1 \to \{0, 1\}$ functions in the new model. This is proved in [1, Lemma 2], see also [3, Lemma 29.4] but is probably a result of Sierpiński.

References

- [1] P. Erdös, R. Rado: A theorem on ordered sets, J. London Math. Soc. 28 (1953), 426-438.
- [2] D.H. Fremlin: Consequences of Martin's axiom, Camb. Univ. Press, 1984.
- [3] T. Jech: Set theory, Academic Press, 1978.
- [4] K. Kunen: Set theory, an introduction to independence proofs, North-Holland, 1980.
- [5] K. Kuratowski: Une remarque sur les classes L de M. Fréchet, Fund. Math. 3 (1922), 41-43.
- [6] K. Kuratowski: Topology I, Academic Press, 1966.
- [7] R. Laver: Linear order in $(\omega)^{\omega}$ under eventual dominance, Logic Colloquium '78, North-Holland, 1979, 299-302.
- [8] W. Sierpiński: Sur un ensemble linéaire non dénombrable qui est de première catégorie sur tout ensmble parfait, Comptes Rendus Soc. Sc. Varsovie III, 25 (1932), 102-105.
- [9] W. Sierpiński: Sur l'existence des suites transfinies décroissantes d'ensembles F_{σ} , Comptes Rendus Soc. Sc. Varsovie Cl.III, 26 (1933), 85-89.
- [10] Z. Zalcwasser: Un théorème sur les ensembles qui sont à la fois F_{σ} et G_{δ} , Fund. Math. 3 (1922), 44-45.

Received 14 November, 1988