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ORDERED FAMILIES OF
BAIRE-2-FUNCTIONS

We call a (partially) ordered set (X, <) Baire-a-representable if it is possible
to associate a Baire-a function f® to each element z € X such that ¢ < y
iff f* < fY. Here, for two real functions f and g we write f < ¢g to denote
that f(z) < g(z) for every z and f(z) < g(z) for some z. A classical result
of Kuratowski says that (w;,<) is not Baire-1-representable [5,6]. Obviously,
R is Baire-O-representable. An ordered set quite different from R, from well-
ordered or inverse well-ordered is a Souslin-line, i.e. an ordered set which is not
separable but there does not exist an uncountable family of pairwise disjoint
intervals. The existence of a Souslin-line is independent from our usual axiom
system. See [2,3,4]. G. Petruska and J. Gerlits asked if a Souslin-line may be
Baire-1-representable.

Theorem 1. No Souslin-line is Baire-1-represented.

Proof. Assume that V is a model of ZFC set theory and (X, <) is a Baire-
1-represented Souslin-line in it. It is well-known that there is a Souslin-tree
(T, <) consisting of some intervals of (X, <) with the reverse ordering. For these
arguments as well as the forcing notions, see [3] or [4]. We generically extend V
by (T, <). In the resulting model, there is a cofinal branch in T which gives rise
to an w;-type subset of X, represented by Baire-1 functions. As (T, <) is ccc, the
old w; survives. As we forced by a Souslin-tree, new reals will not be introduced,
and so the representing functions will still be Baire-1. These statements, however,
contradict Kuratowski’s theorem.

The class of order types represented by Baire-2 functions is much richer.
D. Fremlin pointed out the following reduction by which some results originally
proved by the author may be deduced from some known set theoretical theorems.
For f,g : N — N. (N is the set of natural numbers) we put f < g iff f(n) < g(n)
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holds for all but finitely many n € N. For f : N — N we put A(f) ={g:N —
N, g < f} an F, set, when the N — N functions are identified by reals.

Lemma 2. For f,g:N —= N, f<giff A(f).C A(g).
Proof. Straightforward.

This lemma enables us to quote results about (partially) ordered sets rep-
resented in (N — N, <). An easy induction shows that every set of size R, is
so represented. By Paroviéenko’s theorem (see [2]) this holds even for partially
ordered sets. If M A(x) holds, then every partially ordered set of size x as well
as (s, <) is so represented. It is consistent that ¢ = R, and still every ordered
set of size < ¢ is so represented. See 26K f and 21Nb in [2] and [7].

We prove some negative independence results.

Theorem 3. If V is a model of ZFC + CH, (X,<) € V is an ordered set
of size R,, and if we generically add x > w; Cohen reals, then (X, <) will not be
Baire-a-represented in the enlarged model, for any a < w;.

Proof. Let {r¢ : £ < k} be the Cohen reals. For A C k, let P(A) denote
the partially ordered set adding the Cohen reals r; for £ € A. Assume that
some condition p forces that the Baire-a functions f* are ordered similarly to
(X, <). Every Baire-a function can be coded by a real. (See the similar coding
for Borel sets in [3, Section 42].) By ccc, for every z € X there exists a countable
set A(z) C & such that the real coding f* is in VP(4()), By the Erdoés-Rado
theorem (See Theorem 2.1.6 in [4].), there is a set Z C X of size R, and a set A
such that A(z) N A(z') = A for z,2’ € Z. As R; > ¢, there are z < y, =,y € Z,
and a bijection m : A(z) — A(y) such that if a statement about f is forced
by some element in P(A(z)), then the 7-isomorphic copy of it forces the same
statement about fY in P(A(y)). If G C P(k) is the generic filter, let H C P(k)
be gotten by interchanging G | P(A(z) — A(y)) and G | P(A(y) — A(z)). H is
generic by the product lemma (Lemma 20.1 in [3]), and in V[H] the actual f7 is
what fY is in V[G] and vice versa. But then ¢ < y and f¥ < f*, a contradiction.

Corollary 4. It is consistent with ZFC + ¢ = R, and
(a) (w2, <) is not Baire- a-represented for a < wy;

(b) there is an ordered set of cardinality R;, not containing subsets of type
w2, wj which is not Baire-a-represented for any a < w;.
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Proof. (a) Apply Theorem 3 with (X, <) = (w;,<). (b) Apply Theorem 3
with the set of w; — {0,1} functions as X, ordered lexicografically. It suffices to
show that (X, <) does not contain subsets of type w, or wj after adding Cohen
reals. It is enough to show this about the set of all w; — {0,1} functions in
the new model. This is proved in [1, Lemma 2], see also [3, Lemma 29.4] but is
probably a result of Sierpinski.
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