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 Porosity in Convexity

 §1 Introduction.

 The Baire category theorem was for a long time and continues to be an

 important tool in analysis used for distinguishing between "small" and "big"

 sets or simply for proving existence theorems. In geometry, the first rise of the

 Baire category theorem in the space of all convex bodies (endowed with the

 Hausdorff metric) seems to have been in V. Klee's paper [18] published in 1959.

 For an up-to-date survey of generic results in convex geometry, see [47].

 The notion of first Baire category is based on the notion of a nowhere dense

 set. The latter was strengthened by E. Dolzhenko [8] in 1967, who introduced

 the notion of set porosity, a notion essentially already known to Denjoy. After

 Dolzhenko's introduction, both porosity and the related o -porosity were used to

 strengthen theorems involving Baire categories, once again in analysis first. It

 was natural to think about using porosity to extend results in convex geometry

 as well. It is the intention of this paper to present a survey of such results,

 which have all appeared during the past few years. This line of research has in

 fact just started, many questions are still open, and much work remains to be

 done.

 §2 Definitions and Notation.

 A set in a topological space is called nowhere dense if its closure has an

 empty interior. A countable union of nowhere dense sets is said to be of first

 category. If a set is not of first category, then it is of second category. A

 topological space in which each open set is of second category is called a Baire

 space. A set in a Baire space is called residual if its complement is of first

 category.
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 In the course of this paper we shall meet several Baire spaces: the space

 $td with the Euclidean distance, the space K of all compact sets in with

 the Hausdorff distance, its subspaces T and K * of all starshaped sets (always

 presumed compact) and of all compact convex sets respectively, the subspaces

 of K of all convex bodies and of all convex surfaces (i.e. d-dimensional members

 of K* and their boundaries respectively), any convex surface with its intrinsic

 metric.

 We say that most , or typical , elements of a Baire space enjoy a certain

 property if those not enjoying it form a set of first category, i.e. if those enjoying

 it form a residual set.

 In a metric space (Xyp) we call a set M porous at x Ç. X if there is a

 positive number a such that for any positive number e, there is a point y in the

 open ball B(x, e) with center x and radius e such that

 (*) B(y,ap(x,y)) DM = 0.

 A set which is porous at all points of X is simply called porous [8]*. If for some

 x € X the above number a can be chosen as close to 1 as we wish, the set M

 is called strongly porous at x. A set which is strongly porous at every point of

 X is said to be strongly porous.

 A directionally stronger version of porosity was proposed by Agronsky and

 Bruckner [1]: A set M C X is totally porous at x € M if there is a positive

 number a such that for any e > 0 and for any z ^ x, there is a point y € B(x, e)

 such that

 B(y,ap(x,y )) C B(z,p(x,z))

 and (*) hold. A set which is totally porous at each of its points is called totally

 porous. Much stronger along the same line is the following notion: A set M C X

 is hyperporous at x Ç. M if there is a positive a such that for any z ^ x, there

 * Editor's note: This is different from the notion of porosity used by real

 analysts where a set is porous if it is porous at each of its points.
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 such that (*) holds. The hyperporosity of M is defined analogously.

 A countable union of porous sets is called a- porous. We say that nearly all

 (real analysts say virtually alt) elements of a metric Baire space have a certain

 property if those which do not enjoy it form a a-porous set [36]. Every porous

 set in is of measure zero, by Lebesgue's density theorem. Therefore, any a-

 porous set in 9td is both of the first Baire category and of measure zero. Thus,

 <x-porosity is a convincing smallness attribute and has the advantage of being

 available in spaces like K* with no geometrically meaningful Borei measure (see

 C. Bandt and G. Baraki [4], Theorem 3).

 We shall also use the following notion of dimension. We say that the set

 M C %td has local dimension k < d at x € M if k is the smallest integer for

 which there is an affine fc-dimensional subspace A C through x such that

 for any e > 0 there is a u > 0 for which

 M D B(x, u) C B(A + euU),

 where the "U" denotes the unit ball and the "+" Minkowski addition. We write

 ldimxM for the local dimension of M at x. Then the local dimension of M is

 defined by

 Idim M = supxgM ldimxM.

 For k = 0, i.e. A is a single point, these definitions make sense in any metric

 space.

 The following implications are easily checked: Every set M C 9td with

 ldimxM < d is totally and strongly porous at x. If X is a connected metric

 space, M C X, and ldimxM = 0, then M is strongly porous at a;; if x 6 M has

 a neighborhood which is convex in Menger's sense, M C X, and Idim XM = 0,

 then M is hyperporous at x.
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 §3 Smoothness and Strict Convexity of Convex Surfaces.

 A convex surface is said to be smooth if at each of its points it has a unique

 supporting hyperplane, and strictly convex if it contains no line segment.

 Any convex surface is smooth a.e. with respect to the (d-l)-dimensional

 Hausdorff measure (see [21], [2]). Klee's result mentioned in the introduction

 asserts that most convex surfaces are smooth and strictly convex. We have the

 following stronger result which uses the notion of porosity.

 THEOREM 1. ([35]) Nearly all convex surfaces are smooth and strictly con-
 vex.

 Not yet investigated is the question whether nearly all convex curves on a

 smooth convex surface in X3 are smooth, as is true for most of them (see [37]

 for definitions, the result and an analogous problem about strong convexity).

 We conjecture that Theorem 1 can be strengthened via hyperporosity in

 the case of smoothness, but not in the case of strict convexity.

 §4 Conjugate Points on Convex Surfaces.

 Any shortest path between two points of a convex surface in itd is called

 a segment. A curve which is locally a segment is called a geodesic (see [7], p.77

 for a precise definition). Two points of a convex surface which are joined by

 more than one segment are called conjugate. A point of a convex surface which

 is not an interior point of any segment is called an endpoint of the surface.

 Concerning the conjugate points of a convex surface in X3 we have the

 following result.

 THEOREM 2. ([46]) Let S be any convex surface in 3ft3 and x 6 S. Then

 nearly all points of S are not conjugate to x.

 In higher dimensions the results now available leave much room for im-

 provement. Only in case the convex surface S C is typical [11] or class C3

 [47] is it known that for any point x G S most points of S are not conjugate to
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 X. On the other hand, it is known that on a typical convex surface S C and

 for any i6 5, the set of points conjugate to x is dense in S (see [11], [46]).

 Not yet investigated is the possibility of extending the following noteworthy

 results of P. Gruber [12] and the author [32], [45] by using porosity:

 THEOREM 3. ([32]) On most convex surfaces in X** most points are end-

 points.

 THEOREM 4. On most convex surfaces in X3

 (i) there is no closed geodesic ([12])

 (ii) there are arbitrarily long geodesies without self-intersections ([45]).

 §5 Normals to Convex Surfaces.

 All convex surfaces considered in this section will be smooth, as most of

 them are. A normal to a convex surface is a line passing through a point of the

 surface, orthogonal to the supporting hyperplane at that point. For any usual

 surface the points lying on infinitely many normals are exceptional. However,

 this is not true for typical convex surfaces; on them most points of lie on

 infinitely many normals ([31], [34]).

 Let ^(x) be the set of directions (unit vectors) of all normals to a given

 convex surface passing through x G 3řá. It was natural to ask more about the

 structure of this set, besides its being infinite. I. Bárány and T. Zamfirescu

 provided an answer :

 THEOREM 5. ([5]) Let Z C*td be a countable set. For most co nvex surfaces

 the following holds: For any point x G Z the set 'ř(a:) is perfect and for any

 point x the set ^a:) is porom in S*-1.
 Recently M. Laczkovich [20] succeeded in showing that for most convex

 curves, most points in X2 lie on uncountably many normals. Unfortunately, his

 proof is not extendable to higher dimensions. To date, this result has not been

 extended to d > 3 and Theorem 5 is not known to be true for nearly all convex

 surfaces.
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 §6 Diameters of Convex Bodies.

 A diameter of a convex body K C 9^ is a chord of K such that K admits

 parallel supporting hyperplanes at its endpoints. From a result of A. Kosiński

 [19] it follows that every convex body has a point lying on at least three diame-

 ters. In the typical case many more diameters meet together. For most convex

 bodies K C most points of K lie on infinitely many diameters ([33], [5]).

 Let $(x) be the set of all directions of diameters of K passing through

 X € K. Again, it was natural to further investigate the set $(x).

 THEOREM 6. ([5]) Let Z C.ftd be countable. For moat convex bodies K C X**

 the following is true: At each point x € Z fi K the set $(x) is perfect and at

 each point x £ K the set $(x) is porous in S ú~l.

 In 1965 P. C. Hammer [17] raised the question whether there is a convex

 body K with an interior point z such that the set R(z) of all ratios into which

 z divides the various diameters through z is uncountable. A.S. Besicovitch and

 T. Zamfirescu [6] answered the question by providing such a convex body and

 an appropriate interior point. In fact, this is a generic property:

 THEOREM 7. ([5]) If Z c Std is countable, then for most convex bodies

 KC&1, at each point x € Z fi K the set R(x) is uncountable.

 Let Ma (respectively Ta) be the set of all interior points of the convex

 body K C lying on at least (respectively exactly) a diameters. Generic

 connectivity properties of Ma have been established: For most convex bodies in

 is connected for any at most countable a and Ta is totally disconnected

 for any finite a [33]. Until now no attempt has been made to improve these

 results using porosity.

 §7 The Nearest Point Mapping.

 Let K C be a compact set. We shall consider the nearest point mapping

 PK defined on %td as the multivalued function

 Pk(x) = {y € K : ''x - y'' = minzç.K''x - z'') .
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 In particular, the set K can be convex. In that case (and only in that case) the

 function pk is single valued everywhere. A natural question to ask is about the

 proportion between the set on which pk is single valued and the set on which

 Pk is properly multiple valued. The answers are known from both the measure

 theoretic and Baire category points of view, and these answers agree: For any

 compact set K 6 K, pk is not single valued on a set which is both of measure

 zero and of the first category [24].

 THEOREM 8. ([44]) For any compact set K € K the nearest point mappi ng

 PK is single valued at nearly all points of it1.

 It is known that for most compact sets K the mapping pk is not single

 valued at densely many points [44], but it remains unsettled whether this is

 true for nearly all compact sets K as well.

 The differentiability properties of the nearest point mapping axe also of

 considerable interest. As E. Asplund proved in [3], pk is not only single valued

 a.e., but also Fréchet differentiable a.e. From the viewpoint of Baire category

 the situation changes: For most convex bodies K C pk has no Fréchet

 derivative at most points y £ K and, for most planar convex bodies, pk has no

 directional derivative in any nonnormal direction, at most points y $ K [43].

 Once again we do not know whether "most" can be replaced by "nearly all" in

 the preceeding result.

 §8 Starshaped Sets.

 Several generic results on starshaped sets have been established by P. Gru-

 ber [16] and the author [40]. Among these we mention:

 THEOREM 9. ([40]) Most starshaped sets T € T have a kernel consisting

 of a single point k(T ) and are not locally connected at any point different from

 k(T).
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 THEOREM 10. ([16], [40]) For most starshaped sets T € T , the set of
 directions

 {||S - k(T)''~'x - k(T )) : a; € T'{k(T)}}

 is dense, uncountable and of the first Baire category in Sd_1 .

 THEOREM 11. ([16]) Most starshaped sets in T have Hausdorff dimension

 1 and non-a-finite 1-dimensional Hausdorff measure.

 Concerning porosity, the generic aspect is given by the following theorem.

 THEOREM 12. ([16], [40], [48]) Most starshaped sets T € T are nowhere

 dense but not porous at k(T). They have ldimxT=l (whence they are totally

 and strongly porous) at any point x / k(T).

 No results on nearly all starshaped sets have been obtained thus far. In [41]

 several generic properties of starshaped sets with kernels of positive dimension

 were discovered but there were no porosity results among these.

 §9 Compact Sets.

 Typical compact sets in $td are thin: standard arguments show they are

 both measure zero and first category. This suggests that they might even be

 porous. This is indeed so, as is revealed by the following theorem of P. Gruber

 which improves an earlier version by the author [36], in which the underlying

 complete metric space was convex in Menger's sense.

 THEOREM 13. ([13]) If X is a complete metric space, then most compact
 sets K C X have local dimension 0.

 It follows from this result that most compact sets in a complete metric

 space X are hyperporous if X is convex and strongly porous if X is connected.

 Regarding nearly all compact sets, we have the following result.

 THEOREM 14. ([36]) In a Banach space, nearly all compact sets and nearly

 all closed bounded sets are strongly porous.
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 Here we take the opportunity to mention that L. Zajíček [27] proved that

 in any Banach space first category and <7- porosity are truly different notions.

 In a complete metric space it is known that most compact sets are Cantor

 sets, but no analogous result for nearly all compact sets has been discovered.

 Also, the following results obtained by J. A. Wieacker for typical compact sets

 in 3 have not been extended via porosity: For most K € K, bd conv K is

 of class C1 but not of class C2, ext conv K is a Cantor set and exp conv K is

 homeomorphic to the set of all irrational numbers [26]. (Here conv A, bd A, ext

 A, and exp A denote the convex hull, boundary, set of extreme points, and the

 set of exposed points of A respectively.)

 §10 Epilogue.

 There are several topics in generic convexity in which the use of porosity

 has not been investigated. Examples include: the study of convex tomography

 (see A. Volčič and T. Zamfirescu [25]), the study of billiards (see P. Gruber

 [10]), the approximation of convex bodies by polytopes (see P. Gruber and P.

 Kenderov [14] and R. Schneider and J. Wieacker [23]), the description of the

 set of contact points with inscribed or circumscribed spheres, ellipsoids etc.

 (see T. Zamfirescu [30], P. Gruber [9] and A. Zucco [49]), the study of the

 shadow boundary (see P. Gruber and H. Sorger [15], T. Zamfirescu [39], [42])

 and curvature properties of convex surfaces (see T. Zamfirescu [28], [29], [38] and

 R. Schneider [22]). Thus, the few achievements of the past look tiny compared

 with the big tasks of the future, f

 t I am grateful to Paul Humke and Alan Schoen for their great help con-

 cerning the style of this paper.
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