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 WEIGHTED SYMMETRIC FUNCTIONS

 In [11], I studied the classes of weighted symmetric

 functions, which are a generalization of the classes of

 symmetric and symmetrically continuous functions. By

 definition, we call a weight system of order n a set- of real

 numbers

 Wjj {w_|ļ, ... iW.ļiWQfVļi ... jVřjj}
 h.

 such that ^ wk = 0 and |wn| + |w_n| >0 .
 k--^i

 We say a weight system is even if

 w-k = wk k =0 , 1 , . . . ,n
 x *

 with 2 wk ł then w0 = -2^wk 4 0
 k~i R=/

 and a weight system is odd if

 w_k = -wk k =0,1,..., n

 with ¿wk f then wg = 0 .
 k-i

 We call symmetric difference with respect to a weight

 system Wn of order n for a finite real-valued function f (>:)

 the following expression

 Af (x;Wn,h) = J" Wyf(x+kh/2).
 k--h

 A finite real-valued function f is said to be symmetric with

 respect to a weight system Wn if

 lim Af (x;Wn,h) = 0, h->0.
 In this paper, we generalize the properties of

 measurable symmetric functions proved by Mazurkiewicz [7] ,

 H. Auerbach [2], and C. J. Neugebauer [8] to functions
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 symmetric with respect to an even weight system and we

 modify the proofs in those papers. It should be noted that

 Theorem 10 of this paper is a consequence of a more general

 result obtained via a different approach by Lee Larson

 [5, Theorem 1] . First we give a very useful proposition,

 which Zygmund has proved and used in many proofs [6] , [10] ,

 and J. M. Ash has generalized [1] using the interval [u,2u] .

 We state it here in a slightly more general form with the

 interval [mu,(m+l)u], 0<m<=l.

 Proposition 1 : Let 0 be a point of density for a measurable

 set E. Let m be a fix^rf nnmher . 0<m<=l and let {a¿.b¿},

 i=1.2.....n be a set of real nnmh^rs such that b¿ = 0. i=

 1.2....n. Then for all positive u sufficiently small, there

 is a v in [mu.(m+l)ul such that

 aju + bjV č- E

 The proof is completely similar to that of Lemma 1 in

 [1] . Note thst this proposition is true for u<0 and v in

 [(m+l)u,mu]. It is also true if 0 is a point of outer

 density for a nonmeasurable set E. To prove this, we

 consider a measurable set which contains E and which in

 every interval has the same measure as E has outer measure

 and then the proof in [1] is valid. Zygmund has proved such

 a case in [10, Lemma 2] .

 C. J. Neugebauer has stated [8] :

 Theorem 1 : If f is measurable and c in (a.b) , then f

 is bounded in a neighborhood of almost every point of (a,b) .

 n i /



 Marcinkiewicz and Zygmund have proved a similar lemma

 [6, Lemma 5, p. 13] . M. Ash has also stated a similar one

 [1 , lemma 3] .

 We generalise this theorem to:

 Theorem 2: Ii f is finite measurable and symmetric with

 respect to a weight system of order n in (a.b), then f is

 bounded in a neighborhood of almost every point of (a.b) .

 In fact, we prove the following stronger theorem:

 Theorem 3: If f is finite measurable in (a.b) and if for

 each x in (a.b)

 Af(x:Wn.h) = 0(1) h- >0.
 then f is bounded in a neighborhood of almost every point of

 (a-b) ■

 Proof : Let

 E*m = {:< : I f (x) I < m and | Af (x;Wn.h) | <m for 0<|h|<i/m}.

 Then we have _
 _ 00

 (a,b) d (J E*m .
 » I

 Since f is measurable, E*m is measurable. We show that f is

 bounded in a neighborhood of each point of density of E*m.

 For the weight system Wn, we may assume wn £ 0 since

 |wn| + |w.n| jé o.

 If wn = 0 and w_n ^ 0. we have a similar argument.

 Without loss of generality, we suppose x = 0 is a point of

 density for E*m and that u is small enough so that Prop. 1

 applies.

 That is 0<|u|<n/2m.

 Then there is a v in (a,b) such that

 O 1 R



 for u<0, 2u <= v <= u

 for u>0 u <= v <= 2'i

 and v+k(u-v)/n = [ku+(n-k) v]/n Č- E*m , k=-n, . . . ,n-l .

 Let h=2(u-v)/n , then |h|=2|u-v|/n < 2|u|/n < l/m.
 . *

 and Z-f(v;Wn,h) = ¿ wkf (v+kh/2)
 k:-A

 = wkf (v+kh/2) + wnf (u) .
 K=-H

 Thus

 |wn| * |f(u)| <= I Af(v;Wn,h)| + 2 l*kl * |f(v+kh/2)|.
 A k*~*

 But I ßf(v;Wn.h) I < m

 and I f (v+kh/2) I < m f k = -n,...,n-l.

 Then

 |wn| * |f (u) I < m(l+ ]T l*kl)
 and

 H-/

 |f (u) I < m(l+ ^ |wk|)/|wn| .
 *---h

 That is, f is bounded in a neigborhood of x = 0.

 It is well known [4, p. 174], [9, p. 129] that almost all

 the points of E*m are points of density for E*m. Since
 <o

 (a,b) CT 'J E*m, f is bounded in a neighborhood of almost
 »in

 every point of (a,b) .

 Mazurkiewicz [7] and H. Auerbach [2] have shown:

 Theorem 4: If f is bounded in Ta.b] and .«avmmftt.ric jņ (a.b).

 then f is continuous a.e. in (a.b) .

 We generalize this theorem to:

 Theorem 5: If f is bounded in fa.bl and symmetric with

 respect to an even weight system Vn in (a.b) . then f is

 continuous a.e. in (a.b) : hence, f is measurable in (a.b) .

 Proof : Since f is bounded, we set in the sense of Darboux
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 G(x) = J' f(t)dt , g(x) = J f(t)dt.
 We have _ __

 G(x+h) -G(x-h) = / f (x+t)dt + / f(x-t)dt.
 Jo -fkk So Jkk

 G(x+kh) -G(x-kh) = / f(x+t)dt + / f(x-t)dt
 7~k ° 7k

 = k J f (x+kt)dt + k i f (x-kt)dt.
 ■"a "-<»

 Since Wn is even,
 H

 ¿'f(x;Wn.2h) = Jwkf(x+kh)

 = ¿wk[f (x+kh)+f (x-kh)-2f (x)] .

 For 0 <= t <= h, we have

 I A.f (x;Wn,2h) I < £ for h sufficiently small.

 Then __ _

 I ¿ *k if ^ f (x+kt)dt+ f f (x-kt)dt-2f (x)h} I < £h ^ Ď J*

 I 2 { [G(x+kh)-G(x-kh)]/2kh-f (x) } | < £/2. (1)
 I

 On the other hand, let

 M(x) = lim sup{f(t): x-e < t < x+e> e->0

 m(x) = lim inf{f(t): x-e < t < x+e> e->0.

 According to Caratheodory [3, p. 459], we have

 G(x) = f*M(t)dt

 g(x) = f*m(t)dt.
 "iv

 Thus G(x) and g(x) are absolutely continuous and almost

 everywhere dif f erentiable [9, p. 105] . But the existence of

 the ordinary derivative implies the existence of the

 symmetric derivative and the two derivatives are equal. We

 have thus

 lim [G(x+h) -G(x-h) ]/2h = M(x) a.e. A.-* 0,

 lim [g(x+h) -g(x-h) ]/2h = m(x) a.e. k-* 0,

 If the symmetric derivative of G(x) exists at x, we have
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 lim [G(x+kh) -G(x-kh) ]/2kh = lim [G(x+h) -G(x-h) ]/2h h->0.

 (1) shows that lim [G(x+h) -G(x-h) ]/2h = f (x) a.e. h->0.

 Similarly,

 lim [g(x+h) -g(x-h) ]/2h = f (x) a.e. h->0.

 That is M(x) = m(x) = f (x) a.e.

 Now since M(x) and m(x) are Riemann integrable, they are

 Lebesgue integrable. The condition M(x)=m(x) a.e. shows that

 the two Lebesgue integrals of M(x) and m(x) are equal :

 (L) f * M(t)dt = (L) r* m(t)dt .
 Jo.

 But

 f M(t)dt = (L) f M(t)dt and f m(t)dt = (L) f m(t)dt.
 ^ r* r* *- Thus P r* M(t)dt = / r* m(t)dt

 ■¿t

 and G(x) = g(x) .

 The function f (x) is therefore Riemann integrable and

 continuous a.e.

 Neugebauer has proved [8] the following:

 Theorem 6: If f is measurable and symmetric in (a.b) . then f

 is continuous a.e. in Ca.b) .

 We generalise this theorem to

 Theorem 7: If f is measurable and symmetric with respect to

 an even weight system tfn in (a.b). then f is continuous a.e.

 in (a.b) .

 Proof ; By theorem 2, f is bounded in a neighborhood of

 almost every point of (a,b) . Hence, there is a set

 E C. (a.b)

 with |EJ = b-a
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 such that with each xé-E there is associated a £x > 0 so
 that f is bounded on

 Ix = [x-<Tx, x+ cTx] .

 We may assume IX<Z [a.b] .

 Let {J} be a collection of closed intervals J such that for

 some xíE, J C Ix

 By the Vitali covering theorem, there is a sequence of dis-

 joint intervals Jm in {J} such that

 IE - OJ«I = 0.
 *= ' «o

 Since I E | = b-a, we have ^JJml = b-a.
 A-*»

 But f is bounded on Ja, by Theorem 5, f is continuous a.e.

 in Jm, m =1, 2, ...

 Hence, f is continuous a.e. in (a,b) .

 Mazurkiewicz has shown [7] the following theorem:

 Theorem 8: If f is bounded in Ta.bl and symmetric in (a.b) .

 then f is Baire 1 in (a.b) .

 We generalize this theorem to

 Theorem 9: If f is bounded in ia.bl and symmetric with

 respect to an even weight system Wn in (a.b). then f is

 Baire 1 in (a.b) .

 Proof : By Theorem 5, f is continuous a.e. in [a,b] .

 Since f is bounded, continuous a.e. in [a,b] , f is Riemann

 integrable in [a,b] . Set

 Fix) = f f(t)dt.
 We have by an argument similar to that in the proof of

 Theorem 5 :
 *

 I X. wk{ [F (x+kh) -F (x-kh) ] /2kh - f (x) } | < 2-/2; that is

 -*1 0



 A M
 lim / Wy[F(x+kh) -F (x-kh) ]/2kh = f (:•:) wk h->0
 K k*t k=t

 with wk ¿ 0. Since F(x) is continuous, the function
 kr- I XI

 J>^wk[F(x+kh]-F(x-kh)]/2kh is continuous.
 k=t

 Let {hp} be a sequence which converges to 0 . Then
 Vl w

 lim JTwk[F(x+khp) -F(x-khp) ]/2hp = f(x)¿wk hp->0.
 k=i

 That is, f is Baire i in (a,b) .

 Heugebauer has extended Mazurkiewicz ' and Auerbach ' s

 theorems to measurable symmetric functions.

 To generalize Neugebauer 's theorem, we need the

 following lemma, whose proof is similar to but more general

 than Neugebauer's [8].

 T.*mma ; If f is measurable and symmetric with respect to an

 even weight system in (a.b) . then the set

 E = {x: osc(f.x) - oo> is countable.

 Proof : Let Em = (x:osc(f,x) >= m} . Then Em is closed
 eo

 and E = fÌEm is also closed. Assume E is uncountable.

 Then E contains a perfect set P so that E-P is countable.

 Since f is continuous a.e., |E| = 0.

 Thus, G = (a.b) - P ^ fi.

 Let (c,d) be a component of G, say c&P and (c,d) C'P = ß(.

 For every h > 0, the set (c-h,c)riE is uncountable. Since f

 is symmetric with respect to an even Wn, there exists p,

 0 < p < (d-c)/(2n-i) such that

 I Z'f (w;Wn,h) I < i for 0 < h < p. where w is the

 midpoint of (c-p,d) . Let Ep= E C' (c-p,c) and u€-Ep. Let v be

 the reflection of u about w, u+v=2w. Then with h=(v-u)/n,

 all the 2n-i points w+kh/2, k=- (n-1) , . . . ,n, (kj¿0) , which we

 ion



 will call the multi symmetric points of u about w, are in

 (c,d) . To see this, we study the positions of u, v, and the

 point y=w-(n-i)h/2 closest to u among the 2n-i multisym-

 metric points of u. It is clear that v<d, c-p<u<c with

 p< (d-c)/(2n-i) . Then

 y = w - (n-i) (v-u)/2n

 = (c-p+d)/2 + (n-i ) u/2n - (n-l)v/2n

 > (c-p+d)/2 + (n-i) (c-p)/2n - (n-l)d/2n

 > tn(c-p+d) + (n-i) (c-p) - (n-i)d]/2n

 > [ (2n-i ) (c-p) + d]/2n

 > (2n-i)c/2n - (2n-i)p/2n + d/2n

 > (2n-i)c/2n - (d-c)/2n + d/2n > c.

 So y is in (c,d) . But the other multi symmetric points of u

 are to the right of y; that is, for u in (c-p,c) , all the

 2n-l multi symmetric points of u are in (c.d) . Now since

 osc(f.u) = oo, we can choose a sequence {u¿} converging to u

 in (c-p,c) such that | f (u¿) -f (u) |- >00. For each u¿. let v¿

 be the reflection of u¿ about w and h¿ = (Vi-u^/n. Then

 |wn|*|f (Ui)-f (u) I <= I A f (w;Wn.h) l + l f (w;Wn,h¿) | +

 'Z. I*kl*lf (w+khi/2)-f (w+kh/2) | .

 Since I wn I i 0 and |f(ui)-f(u)| - > 00. we have
 M.

 X ' I * I f (*+khi/2 ) - f (w+kh/2 ) J - > 00.

 We see then for each u in Ep, the oscillation of f is

 arbitrary large at one of the multi symmetric points of u

 about w; for if f has finite oscillations at all those 2n-i

 points, the expression

 X l*kl*lf (c+khi/2)-f (c+kh/2)| must be finite, u^u.
 (H-l)
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 Moreover, let t be a multi symmetric point of u about w, then

 for some k, t=w+kh/2. Thus

 u = w-n(t-w)/k, k = - (n- i ),..., n k=0.

 That is, there are at most 2n-l points u in E0 which have a

 common multi symmetric t about w. Each point u in Ep is the

 representative of a finite set of points that have a multi -

 symmetric point in common. Thus for all the points u in Ep,

 the set of multi symmetric points at which f has arbitrary

 large oscillations is uncountable : contradiction with the

 fact that (c.d)ÌÌE d E - P, which is countable.

 Theorem 10: If f is measurable and symmetric with respect

 to an even weight system in (a.b). then f is Baire 1 in

 <a-b).

 Proof : Set E = {x : osc(f,x) = 00} . Then E is closed

 and countable. The set G = (a,b) - E is open. Let xeG.

 Let (c,d) be a component of G and In = [c+l/n,d-i/n] . Since

 osc(f,x) < 00 in In, f is bounded in In; hence, f is Baire 1

 in In. Let Ea = {x : f(x)<a}, Ea = {x : f(x)>a}. Then Eaf'ln

 and EaO In are sets . Hence the set

 Ean G « u U (Eamn),
 . . K

 where VJ is extended over all the components of G, is an F^-
 (*,4)

 set. Since E is countable, Ea is also an F^ set. Similarly,

 Ea is an F^ set. Therefore, f is Baire 1 in (a,b) .

 This paper is a complement to the author's dissertation

 and special thanks are extended to Professor James Foran and

 the referees for their suggestions.
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