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 BOREŁ MEASURABLE SELECTIONS

 AND

 APPLICATIONS OF THE BOUNDEDNESS PRINCIPLE

 This paper is mainly an expanded version of the talk given by Hauldin

 during the real analysis conference at Michigan State University, June 14 -

 17, 1989. The results of section 6 were presented by Schlee.

 Ve wish to promote some classical and modern techniques in descriptive

 set theory and by the way present some selection theorems and a group of four

 unsolved problems.

 As a starting point let B c X*Y and assume that each X-fiber of B, Bx is

 countable. By the axiom of choice, B can be expressed as the union of

 countably many graphs. It is a fact that if B is a Borei set (or analytic)

 set, then B can be expressed as the union of countably many Borei (analytic)

 graphs. The descriptive set theoretic techniques exposited here lie at the

 heart of the proofs of these facts. These techniques and the analysis of sets

 with countable sections form the first five sections of this paper.

 In section 6, we extend some of the results obtained for sets with

 countable fibers to sets with compact or <7-compact fibers. Ve state the

 definitive result of Saint-Raymond, reprove a crucial part of the argument in

 terms of the boundedness principle and state some unsolved problems.

 In sections 7 and 8, we discuss the possibility of filling up Borei sets

 with uncountable fibers by disjoint Borei graphs or even disjoint Borei

 isomorphisms and state more unsolved problems.

 A fundamental tool in descriptive set theory is the first separation

 principle of Souslin. A less well known, but very useful tool, is Novikov's

 generalized first separation principle. Novikov's theorem and the modern

 version of the Lusin-Sierpinski index theorem: the boundedness principle for
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 monotone coanalytic operators (or, equivalently, analytic derivations) are the

 basis for several deep results in selection theory. Ve hope to exposit their

 usefulness here. Ve also want to report on a recent result of Saint-Raymond

 and Debs concerning 1-1 selections that is quite intriguing. Ve refer to the

 reader the general survey of Vagner [23, 24] and the article of Levi [11] for

 a listing of results in the field.

 1. The setting and separation principles. Let I and Y be Polish spaces

 (separable topological spaces with a compatible complete metric). Let p be a

 metric for XxY. In addition, let 3 (XxY) and jí (XxY) denote the collection

 of Borei and analytic sets of X*Y respectively, let f denote the collection

 of all Borei graphs in XxY, and let ý denote the collection of all

 countable unions of elements in ý . Given E c X*Y and x 6 X, we denote by Ex

 the set { y | (x,y)eE }. Let denote the collection { Ke (XxY) | Vx Kx is

 compact }, and let tf denote the collection of all countable unions of

 elements in . Also, by Jí (X), we denote the space of compact subsets of X

 given the exponential topology.

 First Separation Principle. (Souslin, 1917 [22]) Let A and E be disjoint

 analytic subsets of a Polish space X. Then there are disjoint Borei sets B

 and D such that A c B and E c D.

 For Novikov's generalized first separation theorem two different types of

 proofs have been given: one, in the original style of Novikov [10, p. 510] and

 the other by Saint-Raymond [20] .
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 Novikov' s Generalized First Separation Principle. (Novikov, 1934 [18]) If
 OD

 {An}1" ļ is a sequence of analytic subsets of a Polish space X with 1] An = 0,

 then there is a sequence {Bn}00 ^ of Borei subsets of X such that Bn 3 An and

 if»» = i.

 2. Sets with countable sections and preliminary results. Our first two

 theorems apply the separation principles to sets with countable sections

 consisting of no more than one point or else isolated points.

 Theorem 1. Let A be an analytic graph in X*Y. Then A c G G p . In

 other words, every function p from E C X into Y with <p (= Gr ¡p) an analytic
 fSJ

 subset of X*Y may be extended to a Borei measurable map $? from a Borei set E

 D E into Y.

 Proof. Let E = projj(A) and tp: E -» Y with Gr (p = A (of course, E is an

 analytic subset of X). Note that <p is relatively Borei measurable. If U is

 open in Y, then

 ^_1(u) = 7rx((XxU)nA)

 and ^_1(Y'U) = 7rx(X*(Y'U)nA) .

 The first separation principle implies there is a Borei subset B of Y such

 that <p *(U) C B and B fi <p *(Y'U) = 0. Thus, tp *(U) = BflE. Consequently, by

 an extension theorem of Kuratowski [10, p. 434], there is a Borei set D D E and

 a Borei measurable map y:D -» E . Let G = Gr <p. Q.E.D.

 In order to generalize the first theorem, we use Novikov' s generalized

 first separation principle.
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 Theorem 2. If A e jí (IKY ), Vx Ax consists of isolated points, then

 A c G e fū.

 Proof. Let {Vn}S=i be a base for the topology on Y. For each n, let

 Tn = { x I card(Vn H Ax) 2. 2 }.

 Each Tn is analytic, since

 Tn = U [ Tx(Sn n (XxVœ)) n *x(Sn n (IxVp))]

 where Sn = (X*Vn) n A and where the union is over all pairs (m,p) such that

 Vm il Vp = 0. Next, for n > 1, let

 Zn = [(Tn*Y)nA] U [(Xx(Y'Vn))nA]
 ao

 Each Zn is clearly analytic and £| Zn = 0. By Novikov's separation
 CD

 principle, there are Borei sets Bn such that ļ] ^ Bn = 0 and for each n, Zn c
 Bn. For each n, let

 An = [(X*Y)'Bn] n A.

 Note that each An is analytic and for each x, card(Anx) < 1. Thus, by Theorem
 GD

 1, for each n there is Gn e p such that An C Gn. Also note that A = 1J ^n-
 GD

 Therefore, A c 1J ^Gn e Q.E.D.

 3. Operators and the boundedness principle. In order to continue a

 deeper analysis of sets with countable sections we need a powerful tool. Ve

 use the boundedness principle for analytic derivations or monotone coanalytic

 operators. Let us define what this means and recall the boundedness

 principle. The theory of these operators as presented here is fully developed

 in [4] . A treatment of analytic derivations is given in [6] .

 By an operator on X, we mean a map from the power set & (X) to ^(X).

 An operator T is said to be monotone if for any K c 1 C X, T(K) c T(M). The

 dual operator D of an operator T on X is defined by
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 D(A) = X'r(X'Á).

 Let A c X and let T be an operator on X. Ve define

 r°(A) = A,

 ra+1(A) = r(ra(A)) for all ordinals a,

 rA(A) = [J ra(A) for limit ordinals A.
 a<'

 The set C (r ; A) = [J Ta(A) where the union is over the set of all ordinals is
 a

 called the closure of T on A. For some ordinal a < card(X) + , Ta+*(A) =

 ra(A) = CI (r ; A) , and we denote the least such ordinal by | T ; A | . Also, we let

 I r| = I 1 , and we let Cl(r) = Cl(r;0).

 An operator A over a Polish space X is said to be Borei (or A}) if it is

 defined in one of the following ways:

 (a) A(K) = B, where B is a fixed Borei subset of X;

 (b) A(K) = f (K), where f is a fixed Borei map from X to X;

 (c) A(K) = X'K;

 (d) A(K) = Ai(A2(K)), where Aļ and A2 are previously defined Borei

 operators;

 CD

 (e) A(K) = [J An(K), where the An are previously defined Borei
 n = 1

 operators.

 An operator T over a Polish space X is analytic or E} (respectively

 coanalytic or II}) if there is a Polish space Y and a Borei operator A over

 X*Y such that for all x and K:

 X £ r(K) iff (3y) (x,y) e A(K.Y),

 (respectively) (Vy) (x,y) e A(K*Y).

 Note that T is an analytic operator if and only if its dual is coanalytic.
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 Boundedness Principle for Monotone II ļ Operators. (Cenzer and Mauldin, 1980

 [4]) If r is a coanalytic monotone operator with closure C, on the

 coanalytic subset P of X, then for any analytic subset A of X with A c C,

 there is some countable ordinal a such that A c Ta(P) .

 By an analytic derivation, we mean an operator whose dual operator is

 monotone and coanalytic. If D is an analytic derivation, the set f] Da(A) is
 a<u i

 called the kernel of D on A. The boundedness priniple for analytic

 derivations given below follows from the boundedness principle for monotone

 n} operators.

 Boundedness Principle for Analytic Derivation <?. If D is an analytic

 derivation on the analytic set A with kernel K, then for any coanalytic subset

 C of X with K c C there is some countable ordinal ß such that D^(A) c C. In

 particular, if D is an analytic derivation on X with |"| Da(X) = 0, then there
 a

 exists a countable ordinal ß such that D^(X) = 0.

 4. Sample applications of the boundedness principle. The following

 theorem was stated by Lusin. A proof is given in [15]. However, this theorem

 follows almost immediately from the boundedness principle.

 Theorem 3. Let Â e i (X*Y) and suppose that for every x, Ax is

 scattered. Then there exists some a < u)' such that for each x, Ax = 0.

 Proof. Define T: 9 (X*Y) -» 9 (X*Y) by

 r(E) = [J {x} x Ex
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 /

 where Ex is the ath Cantor-Bendixon derived set of Ex. Then T is an analytic

 derivation [4, p. 61], and ("] ra(A) = 0. By the boundedness principle, there
 a<ui

 is a < ui such that ra(A) = 0. Therefore, A* = 0 for each x. Q.E.D.

 Theorem 4. Let A be an analytic subset of J6 (X) and assume each set in
 Ol

 A is countable. Then there exists some a < u)' such that if K € A, then K Ol =

 0.

 IN

 Proof. Let F be a Borei measurable map of J = W onto A. Let

 B = {(x,y) : y G F(x)}.

 Then B E i (X*Y). Applying theorem 3 to B noting the fibers of B are the

 elements of A, the theorem follows. Q.E.D.

 Let us give another example of the use of the boundedness principle.

 Theorem 5. (Bourgain [2]) Let X be a Banach space. Suppose that for

 each a < wi, C(a) can be isomorphically embedded into X, i.e., C(a) ^ X Va <

 ui. Then C ( [0 , 1] ) «=-» X.

 Proof. By C(a) we mean the Banach space of all continuous functions on

 the ordinal space { ß ' ß < a } with the order topology. To show that

 C( [0, 1] ) «=-> X, it suffices to show that C(K) «=-► X where K is some closed

 uncountable subset of [0,1]. It is well known that for each a < (Ji, there is

 an order preserving homeomorphism of a onto a subset of the rationals.

 This can be proven by transfinite induction.

 Thus, we consider

 A = { K G .*([0,1]) I C(K) ^ X }.
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 Ve claim that A is analytic. Before demonstrating this let us make a few

 observations. C(K) X if and only if there exists a continuous one-to-one

 linear map F: C(K) -» X whose inverse is also continuous.. Also, a continuous

 map is determined by its values on a dense subset. In particular, a

 continuous map F on C(K) is determined by its values on the set of all

 polynomials with rational coefficients on K. Our map F is linear if it

 respects addition and rational scalar multiplication on a dense subset D of

 C(K) which is closed under addition and multiplication by rational scalars.

 Finally, F has continuous inverse provided there is b > 0 such that b • ||x|| <

 ||F(x)|| " for all x 6 D. Let {fn)1" 1 and {rn}<1' be enumerations of all " 1 Jn=l n=l

 polynomials with rational coefficients and all rational numbers respectively.

 Ve have that C(K) ^ X if and only if there exists F: C(K) -»X such that

 (1) Vn,m F (f n I K + fn|K) = F(fn|K) + F(fm|K)

 (2) Vn,m F(rn-fra|K) = rn-F(fm|K)

 (3) 3 a,ß > 0 Vn a*||fn|g|| < PCfnlj) || i /Ml^nl^H-
 Therefore, to verify that A is analytic, for each n,m,p 6 IN, let

 IN

 Bnjinjp = {(®?{xn}) € J6 ([05l])xX ļ fn|jj + f m | j| = f p | j| ^ xn + xm = xp} 5
 IN

 Cnjmjp = {((^?{xn}) € J6 ([0,l])*X ļ rn'fm|j = -^plj ^ rn'xm = xp }> and
 IN

 Dnjmjp - {(M>{xn}) G *36 ([0,1])*X | rn,rm > 0 and

 Tit ||fp|M|| < ||xp|| < rm. ||fp|M||}.

 Let us note that each of the above sets are Borei. Ve have now that

 ^ = ^^Iļmjp ^n,m,p ^ ^ ^ Jil m 9 p ^ (ļļmiiļ ®n'm'p)))'
 Therefore A is analytic.

 The set H = { M e ^([0,1]) | M is uncountable } is analytic [8]. Now

 if A c H , then, according to theorem 4, there is some countable ordinal ß

 such that for every MeA, the derived set order of I is less than ß. However,
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 the derived set order of the ordinal uP + 1 is 0+1 [21] . Thus , the derived

 set order of is ß+1. By assumption, e A. Therfore, we have a

 contradiction. Consequently, A must contain an uncountable element. Q.E.D.

 5. Sets with countable sections revisited. Ve continue our analysis of

 sets with countable sections.

 Theorem 6. (Novikov [17] and Lusin [12]) Let B € 3 (X*Y) such that Vx

 I Bx I < u. Then B 6 p .

 Proof. Since B is Borei, there is a continuous bijection <p: H l-t-Ì B

 where H is a closed subset of J = IN . Let M = {(x,t) | 7ij(y>(t)) = x }.

 Note that M is a closed subset of XxJ. Define i: M B by í(x,t) = <p( t).

 Then i is continuous and f maps the fibers of H onto the fibers of M onto the

 fibers of B. Hence, it suffices to show that I c (j^ (XxJ))^, since i maps

 Borei graphs to Borei graphs.

 Define D: 9 (XxJ) 9 (XxJ) by

 D(B) = U W » E».
 xa

 /

 where Ex is the Cantor-Bendixon derived set of Ex. Since M is closed, Mx is

 closed for each x. Thus, for each x there is some ax < such that the axth

 derived set of Mx is empty. Consequently, DWl(M) = 0. Furthermore, since D

 is an analytic derivation, there is some a < u)' such that Da(M) = 0. Also,

 if E e (XxJ), then D(E) is analytic. Thus, the sets Dr(M) , r < a, are

 analytic. In addition, f] Dr(M) = 0. Therefore, applying Novikov's
 T<a

 separation principle, there are Borei sets Br, r < a, such that (~| Br = 0
 T<a

 and for each r < a, Dr(M) c Br. For each r<a, let A^ = Dr(M)'Br+*, and

 note that each A T is analytic and each A^ consists of isolated points (or is
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 empty). By Theorem 2, A c G € ]? . Ve claim that M = (J A^, from which
 T<a

 it follows that X e . Clearly, A^ c M for each t < a. Thus, suppose pel.
 There is some r<a such that p € DrW ' Dr+1(M). Hence, p f. Br+*. Let 7 be

 the smallest ordinal such that p i B^+*. Note that 7 < r. Therefore, p e

 A^, and the claim is verified. Q.E.D.

 The strongest theorem concerning covering analytic sets with countable

 sections by countably many graphs is the following theorem first given by

 Lusin in 1930. Ve will express this as a faithful separation theorem which is

 a refinement of the first separation principle. In general this means if A

 and E are disjoint analytic sets in XxY and Vx Ax has property P then there is

 a Borei set B, A c B, BflE = 0 and Vx Bx has property P.

 Theorem 7. (u-FaithJul Separation) (Lusin, 1930 [12], Mauldin, 1978 [15],

 Maitra, 1980 [13])

 Let A, E e jí (XxY) and Vx |AX| < cj and Ax fl Ex = 0. Then 3 B G p such

 that A c B and E fi B = 0.

 In case each Bx is countably infinite , theorem 7 has a particularly nice

 formulation: B can be expressed as the union of countably many disjoint Borei

 graphs .

 Theorem 8. (a ¡-Parametrization theorem)

 Let B č i (X*Y) and Vx |BX| = u). Then there is a Borei isomorphism
 1-1 1-1

 i: XxIN -h» B such that Vx #(x,-):W -»-» {x}*Bx.
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 Proof. Applying Theorem 4 to the sets B and X*Y'B, we have that B e ý .
 OD

 Hence, B = M Bn where each Bn 6 ý . Let Gi = Bi, and for n>l, let
 n-l œ

 Gn = Bn' ļj ^ Bm . Then B = [J^n, GnnGm = 0 for ntfn, and for each n, Gn € $•

 Next, using the fact that each Bx is countably infinite, define the sequence

 {Pn}1" t as follows: for xeX, let Fix = Gnix where ni is the smallest natural

 number such that Gnix £ 0> and for m>l, let Fmx = Gnmx where nm is the

 smallest natural number such that nm-i < nm and Gnmx # 0- Ve have that B =
 00

 U*n » FnHF,,, = 0 for B#n, and each Fn is a Borei graph whose projection is X.

 In fact,

 Fi = Gì U [Vi 1(X'tt1(G1)) fi G2] U [iri 1(X'7Ti(G1UG2)) D G3] U . ..,

 and for n > 1,

 Fn = [Gn'U Fk] U [7rr1(X'7r1(Gn'U Fk)) fi ( Gnłl'U Fk)] U
 k<n k<n k<n

 [TT!-1 (X'tti( (GnUGn+1) ' U Fk)) fi (Gn+2'U Fk)] U ... .
 k<n k<n

 Now define #: X*1N -t L by ł(x,n) = (x,y) where {y} = Fnx. # is
 OD

 surjective since [J ^Fn = B, and ł is injective since the Fn's are pairwise
 disjoint. Furthermore, for each x, the map i(x,-): IN -» B is injective and

 maps IN onto {x}xBx. Q.Ë.D.

 Problem 1. Let C be a coanalytic subset of X«Y such that for each x,

 I Cx| < u'. Can C be written as the union of countably many coanalytic graphs,

 or E2 or PCA graphs? Vhat role do the axioms of set theory play here?

 6. Sets with compact and tr-compact sections, measurable

 multi-functions. The theory presented for Borei sets with countable sections

 has some analogs for Borei sets with <r-compact sections. The deepest result
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 in this direction was obtained by Saint Raymond (theorem 12 below) . Since the

 techniques are delicate, we will only recall some portion of the methods. Ve

 show that a certain crucial portion of Saint-Raymond's argument can be readily

 obtained from the boundedness principle. First, let us recall Novikov's deep
 QD CD

 result. Now, in general, fljiļljEn) ^ 11 /x^11)* However, if each Enx is
 QD œ

 compact and if for every n, En c En+i, En) = Novikov

 exploited this fact to prove the following theorem.

 Theorem 9. (comp act- faith fui separation theorem) (Novikov, 1939 [19])

 Let A, E e jí (X*Y) and assume that Vx there is a compact subset Kx of Y such

 that Àx c Kx and Kx il Ex = 0. Then 3 Borei sets {Hn} such that
 kn

 (1) Vn Hu - ļj _ ®nļx Knļ Kn¡ compact

 (2) A C B = fi Hn and E n B = 0.

 Moreover 7Tj(B) = fļ 5Tj(Hn) is a Borei set.

 Corollary 10. If B e 3 (X*Y) such that Vx Bx is compact, then Hj(B) is
 a Borei set.

 Proof. Take A = B and E = (X*Y)'B in theorem 9.

 Let us take a moment here to apply Novikov's theorem to multif unctions.

 The main fact is that a compact-valued multifunction F: X -* JS (Y) is

 measurable if and only if its "graph" is a Borei set.

 Corollary 11. Let B C X*Y with Vx Bx is compact. TFAE

 (1) B is a Borei set

 (2) F:X -» X (Y) given by F(x) = Bx is Borei measurable.
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 Moreover, if B is a Borei set, B has a Borei selector.

 Proof. Recall that sets of the form C(U) = { K e J6 (Y) | K c U} and

 I(U) = { K e J6 (Y) ļ K (1 U H} where U is open in Y form a subbase for the

 topology of J6 (Y) .

 (1)-»(2). To show that F is Borei measurable it suffices to show that for

 each open set U of Y each of F_*(I(U)) and F~*(C(U)) are Borei. Thus, let Ü

 be open in Y. Note that F-1(I(U)) = 7Tj(X*U il B) which is Borei by Corollary

 10. Next, observe that F_1(C(Ü)) = X'F-1(I(Y'U)) = X'ttx(Xx(Y'U) n B) which

 is Borei. Therefore, F is Borei measurable.

 (2)-»(l) . Since F : X -» (Y) is Borei measurable,

 Gr(F) = {(x,y) | y 6 Bx} = B is Borei. Q.E.D.

 Theorem 12. ( cr-compact faithful separation theorem) (Saint-Raymond, 1976

 [20]) Let A, E € ¿6 (X*Y) and assume that Vx there is a a-compact subset Kx

 of Y such that Ax c Kx and Kx D Ex = 0. Then there are Borei sets Bn e #

 such that A C B = (J Bn and B n E = 0.

 Proof of theorem. In demonstrating this, Saint-Raymond [20, p. 392] uses a

 derivation operator which we define below. Let A and E be two disjoint

 analytic subsets of X*Y. Let <p be a continuous surjection of some Polish

 space P onto A.

 For each subset Z of P define D(Z) to be the set of points z of Z such

 that for each neighborhood V of z,

 V>(VnZ)n({x}xY) fi E ¿ <f>, where x = 7Tj(^(z)).

 Saint-Raymond then gives the following recursion [20, p. 393]

 Z° = P , Za+1 = D(Za) , and ZA = f] Za if A is a limit ordinal.
 a<A

 and then proves the following lemma and corollary.
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 lemma. If B is a Borei subset of P which contains Z , a < a>i, then

 there is H e íř containing y(P'B) and disjoint from E.

 Corollary. If 3 a < lji such that Za = 0, then there is H e tř such

 that A c H and H n E = 0.

 Consequently to prove the above theorem, it suffices to show that for

 some

 a < ui, Ia = 0 given that for each xeX, the section Ax is contained in a K^.

 disjoint from E. In order to prove this, Saint-Raymond gives an indirect
 fu

 argument by showing that if the Z are nonempty then there is a compact set

 K contained in a section of AUE and such that no K can contain KflA without
 a

 meeting KflE. Below we give a different argument which involves the

 boundedness principle for monotone coanalytic operators and the Baire Category

 theorem.

 Claim 1. D is an analytic operator. Consequently if Z is analytic, then
 Ol

 Z Ol is analytic for a < a>i.
 P P

 Proof. For each meIN, define the operator Affl: 2 -» 2 as follows:

 xeA mv (Z) ' IFF mv '

 xe 7Tļ ^»(zn^yíeZxZ^xE Vn[d(z,zn)<l/m A 7rļ(y>(zn))=7r1(^(z))] A v(zn)-»yļ,
 where d is a metric for the topology on P.

 Ve then have

 zeD(Z) IFF VmzeAm(Z).

 Consequently, it suffices to show that each is analytic. Let ip be a

 continuous surjection of some Polish space () onto E. Fix meN. For each

 keN, set

 Bk = 1(z,(zn),w)ePxPW*q|d(zk,z)<l/mJ,

 Cfc = {(z»(zn)5w)ePxPINxqļ7rļ(^(zk))=7r1(y(z))| and

 ' = {(z>(zn),w)eP*PW*q p(y>(zk),V(w))<l/kļ.
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 For each k, is open, is closed and is open. Next define for each k,

 fk: PxP^Q-.PxP^Q by

 ft(z»(zn),w) = (zk,(zn),w).
 P P

 Note that for each k, f^ is continuous. Now define A: 2 -»2 by

 A(K) = n (B^C^nf-V))-
 k = l

 Since for each k, B^C^ and are Borei and since for each k, f^ is Borei
 measurable, it follows that A is a Borei operator. Finally,

 MAm(Z) IFF (3((Ï„),»))(Z,(Z„),w)€A(Z«F"«1).
 Therefore, is a E* operator. Q.E.D.

 Now let r be the dual operator of D, i.e., T(B) = P'D(P'B).

 Note that Va < uu Ta(0) = P'Za.

 Claim 2. r is an inductive, monotone II ļ operator.

 Proof. Suppose B c P. Then D(P'B) c P'B. Thus,

 B = P'(P'B) C P'D(P'B) = r(B).

 Therefore, V is inductive.

 To show r is monotone, suppose that B c C. Then P'C c P'B. Hence

 D(P'C) C D(P'B) . Thus, r(B) = B'D(P'B) C C'D(P'C) = T(C).

 Lastly, since D is Si, T is īl}. Q.E.D.

 Next, we make use of the Baire Category theorem.

 Claim 3. If for each xeX, Ax is contained in a disjoint from Ex,

 then for each nonempty Z c P, D(Z) £ Z.

 Proof. Fix xeX such that ip{ Z)x ^ 0. There is a sequence of compact
 00

 sets {Kn}® such that Ax c JJ Kn and ((J Kn) n Ex = 0. Thus,
 n=l n = 1

 V_1(Ax) c ^(U In) = U ¥>"Vn)

 Since <p ^(Ax) = y>_1({x}xY) , p-1(Ax) is a closed subset of P. Also note

 that for each n, ip *(Kn) is closed. Now set
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 c = z n v»_1(Ax) .

 Since (p{ Z)x # 0 , C # 0 - Furthermore, C is Polish and C c (J ^~^(Kn).

 Therefore by the Baire Category Theorem, there is neN such that int^, <P 1(Kn)

 # 0. Consequently, there is an open subset V of P such that CílV ^ 0 and

 CnV c <p ~*(Kn). Choose zG ZnVflyT*(Ax). Since y>(ZnV)n({x}*Y) c Kn, zgD(Z).

 Thus D(Z) £ Z. Q.E.D.

 Claim 4. If for each xeX, Ax is contained in a K^. disjoint from Ex, then

 there is a < Uļ such that Ta(0) = P.

 Proof. Since T is an inductive, monotone, coanalytic operator, |r|<wi

 [4, p. 59]. Thus r(U ra(0)) = [J ra(0). Consequently by the claim,
 a<ui a<u)i

 [J ra(0) = P. By the boundedness principle, there is a<Ui such that P C
 a<Uļ

 ra(0). Hence ra(0) = P. Q.E.D.

 An immediate consequence of claim 4 is: If for each xeX, Ax is contained

 in a K^. disjoint from Ex, then there is a < wj such that Za = 0. This

 completes the proof of the a-compact faithful separation theorem.

 In order to raise an unsolved problem concerning selectors, let us recall

 a basic selection theorem.

 Theorem 13. The space of compact subsets of Y, MY), has a Baire class

 1 selector.

 Proof. By embedding Y in [0,1] it suffices to prove the result for

 ^([0,1]"). Let <p: [0,1] -» [0,1] w be a continuous map of [0,1] onto [0,1]^.

 Also, let s: Jśf([0,l]) -» [0,1] be a continuous selector for Jśf([0,l]).

 Define š: ([ 0,1] w) -* [0,1] w by š(K) = ^(s(yT^(K)))) . š is a Baire class
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 1 selector for ([ 0,l]w). Q.E.D.

 A natural question which naturally arises is how many disjoint selectors

 are there for the uncountable compact sets? Ve can formulate this question as

 follows:

 o

 Problem 2. Let Be 3 ([0,1] ) such that Vx Bx is compact and

 uncountable. Does B have 2W pairwise disjoint Borei selectors? (B does have

 Ni pairwise disjoint selectors [16].) In particular, what about the a-compact

 set B constructed in [16]?

 7. Parametrizations: Filling up sets with selectors. In Theorem 8 we

 showed that if B e 3 (X*Y) and for every x, |BX| = u, then B has a Borei

 parametrizai ion, i.e., a Borei measurable coding of disjoint Borei selectors

 of B which fill up B. It is natural to ask whether there is an analogous

 result with each Bx uncountable. In other words, if B e 3 (XxY) and Vx Bx is

 uncountable is there a Borei map f of X*J onto B such that for each x, i(x,*)

 maps J onto B? If i exists, then for each a e J, f(X*{a}) is a Borei graph.

 i is a Borei measurable coding of a family of pairwise disjoint selectors

 filling up B. Now, in general, this is not possible. In [9], Kallman and

 Mauldin gave an example of a Borei set B c [0,1] *[0,1] such that for each x,

 Bx is an uncountable set and yet B does not even have a Borei selector.

 However, necessary and sufficient conditions for the existence of a Borei

 parametrization have been given:
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 Theorem 14. ( Parametrization theorem) (Mauldin, 1979 [14])

 Let B € S (X*Y) . TFÀE

 (1) 3 Borei set 1 c B such that Vx Mx is a Cantor set.
 i-i

 (2) 3 a Borei map i: I* [0,1] -h» B such that

 Vx ł(x, •) : [0,1] -h» Bx.

 (3) 3 atomless conditional probability distribution x -» ßx € Pr(Y)

 Vx /¿x(Bx) = 1.

 In [16], Mauldin gave an example of a a-compact subset B of [0,1] *[0,1]

 such that for each x, Bx is uncountable and yet B does not contain a Borei set

 each section of which is an uncountable compact set. According to 1 above,

 this set does not have a Borei parametrization.

 8. One-to-one selections and parametrizations. Let us motivate this

 section by slightly modif ing a set considered by Hadamard [1] .

 H = {(x,y)elR*IR I x,y are transcendental and x,y are not algebraically related}

 Does H contain a Borei graph? This is the question considered by

 Hadamard. It can be answered affirmatively on the basis of several theorems.

 In fact , H has a Borei parametrization. This is a corollary of Theorem 14.

 Does H contain a Borei isomorphism? The answer is yes. It follows from the

 theorem of Debs and Saint-Raymond, theorem 18.

 Problem 3. Does H have a parametrization of Borei isomorphisms? (open)

 Before stating the results of Debs and Saint-Raymond, let us give some

 measure theoretic results concerning one-to-one selections.
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 Theoren 15. (Graf and Mauldin, 1985 [7])

 Let X = Y = [0,1]. Let B € » (X*Y) such that Vx Vy | B* | , ( | > u .

 3 C, D C [0,1] such that '(C) = -1(D) = 1 and a Borei isomorphism ņ: C -»-» I)

 such that Gr p C B.

 In order to give an example to show that the conclusion of theorem 15 is

 the most one could hope for In the direction, we need the next lemma.

 Lemma 16. Let h: AC [0, 1] -» Xn = | K € X ([0,1]) : J(K) > 1- 1/ n j be
 Borei measurable and x € h(x) Vx 6 A. Then h is not onto.

 Proof. Suppose h is onto. For each t > 1 - 1/n, t$l, let Et ~ { K € A'„

 ļ -ł(K) = t}. We claim that >ł(h *(Et)) £ 1-t for each t. Suppose

 J (h_1 (Et ) ) < t. There is K C [0, l]/h_1 (Et ) such that J(K) = t. By the

 surjectivity of h, there is x such that h(x) = K. But, x € h 1(Kt). a

 contradiction. Thus, the claim holds. Since the uncountable collection {Et}

 consists of pairwise disjoint Borei sets, the uncountable collection

 {h *(Et)} consists of pairwise disjoint J -measurable sets of positive

 measure. This is a contradiction. Therefore, h is not onto. Q.E.I).

 Theorem 17. There is a Borei subset B of [0,1] such that Vx Vy J(ßx) =

 ^(By) = 1 and B does not contain the graph of a Borei isomorphism of [0,1 I

 onto [0,1]. Indeed, B does not contain the graph of a Borei surjection of

 [0,1] onto [0,1].

 Proof. Let (F x V" , : [0, 1] -+-» lf° X be a Borei isomorphism. For each n, x n' n=l , n«l n

 let R n = U F (y )* {y } . Then for each n, R is Borei. Consequently R - n y€[0,l] n n
 « 2
 ļJļRn € » ([0,1] 2 ). Furthermore, for each y € [0,1] and n 6 01 we have
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 ^(Ry) > J (Fn(y ) ) > 1 - l/n, and hence, Á (Ry) = 1. Let A = {x: ^ (Rx) = 1}.

 Then the Borei ssubset A of [0,1] has Lebesgue measure one. Now suppose g is

 a Borei map of A onto [0,1] such that Vx (x,g(x)) € R. For each n, let Ar =

 {x € A : x € Fn(g(x))}. By lemma 16, the map Fn°ß|^ is no* onto. For each
 n, choose K € X 'F «gl. 1 . Let g(x) = y where Vn F (y) = K . Now (x,y) € n n n 1 An n n

 Rn> for some n. Thus, x € Ar and Fn(g(x)) = Kn, a contradiction. Thus, R

 does not contain the graph of a Borei map of A onto [0,1]. Finally, to

 complete the construction of the example, let 0 be a Borei isomorphism of

 [0,1] onto A. Let B = (9 * id) *(R). Clearly, the Borei set B has all the

 required properties. Q.E.D.

 Mauldin raised the possibility that the category version of the preceding

 2 ļ ģ ŁA

 theorem may have a different answer. If B € » ([0,1] 2 ) and Vx ļ ģ Vy ŁA Bx and B

 are comeager, then does B contain the graph of a Borei isomorphism? The

 answer is yes, and in [5], Debs and Saint-Raymond prove the following theorem.

 Thereom 18. (Debs and Saint-Raymond, 1989 [5]) Let X,Y be compact

 perfect metric spaces. B € » (X*Y) with Vx Vy Bx and BY are dense 6^ sets.

 Then B does contain the graph of a Borei isomorphism.

 Remarkably, this result depends on X and Y being compact. Specifically:

 N N
 Example 1. (Debs and Saint-Raymond, 1989 [5]) 3 set G C N *2 with

 all fibers both ways dense and such that G contains no Borei isomorphism.

 Example 2. (Debs and Saint-Raymond, 1989 [5]) 3 B € S8 (2^*2 ) with Vx Bx

 is a dense G^ and Vy By is residual and B contains no Borei isomorphism.

 Problem 4. Let X, Y be compact perfect metric spaces. B € » (X*Y) with

 Vx Vy Bx and BY are dense G^ sets. Does B have a Borei parametrization of

 Borei isomorphisms of X onto Y?
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