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At the annual AMS meeting in January of 1988, L.D. Fitt
proposed during an informal <conversation over coffee with
Mauldin an example of a dimensicnless Cantor set, K. In
Drmension und Aulerss ¥ad [2], Hausdorff defined the
dimension of a set A to be the class of all Hausdorff
functions such as ¢ for which 0 < Tv(A) < m. A function ¢
is a Hausdorff function if (i) ¢: [0,5] = R for some & > O,
(ii) ¢ is non-decreasing, (iii) %(0) = 0, and (iv) w(t)io as
t!0. Here, K is dimensionless means, if y is a Hausdorrf
function, x € K and r > 0. then KﬂBr(x) is either
non-7-finite or of zero measure with respect to Y. It is
not known if such a Hausdorff function exists.

Pitt proved that if x is not isolated from the left in
K, then dimg KN[0,x] = a(x) with, for x in (0,1], a(x) =
In(2)/(1n(2/x)) and «(0) = 9. Extending this we show

Theorem. If x € K and r > 0, then KﬂBr(x) is either
non-7-finite or of zero measure with respect to 1? for which
g(t) = t7-L(t) where 7 # 0 and L is slowly varying (L is

slowly varying if lim L(cet)/L(t) = 1 for any ¢ > 0).

t]o
Start the construction of K by setting J@ = [6,1].

Assume on the pth level that, for s € {0,1}PF, . fad.bJ

[
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has been constructed with midpoint m, and length lﬂ. For o
a finite sequence and 7 any sequence, let 7%r denote the

concatenation of 7 and r. Remove the open interval

(ma-la(l-ma)/z, m0+lo(l-ma)/2) from JJ. Denote by J and

o*Q

J respectively, the left and right intervals that

gxl’

remain. For 8 E L_J{O l} define K9 = r—] L_JJQ* and K =

p=1 ¢€{0,1}P

Kﬁ. To prove our theorem, we use three lemmas.

Lemma 1. For & € {0,1}P, lower and upper bounds of the
Hausdorff dimension are
log 2P7J
- log uy(d)

log oP~J .
- log sy(5)

llmjdm

where, for i * p, ug(i) max{l( ( € {0,1}1, JC C JH} and
C Je}.

Lemma 2. Suppose & is an element of {O,I}P. If bn <

sp(1) = min{lg: ¢ € 0,11t J(

2z, then 10(2)(K0) = 0 and, if z < by, then 10(2)(K9) : 3.

Suppose that y is a Hausdorff function and 0 ﬁ x 4y -

m

1. Assume y is a limit point of K from the left. There ar=

three cases to consider.

(a) For any 0 < £ « u1(v), -m+i0 1:,‘3)(*,)-1 > 0
-1
(b) For some 0 < 7y < a(y), limtl0 t7¢(t) = 0.
(e) For any 0 < 9 < a(y), limtlo 'c.'.’w('c,)-1 > 0
: and
-1

"
o

for some 0 < £ < a(y), Ll—t[O w(t)
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Lemma 3. If (a) holds, then K\[x,y] has zero ¥
measure. If (b) holds, then KN[x,y] is of non-s-finite

neasure with respect to 7%.
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