Ralph Henstock, Department of Mathematics, University of Ulster, Coleraine, County Londonderry, Northern Ireland BT52 1SA.

LIMITS UNDER THE INTEGRAL SIGN¹

Using a decomposable division space, we study

(1)
$$\lim_{n \to \infty} \int_{E} f_{n} dm = \int_{E} \lim_{n \to \infty} f_{n} dm,$$

where the f_n are functions of points with values in a space K, and m is a function of interval-point pairs with values in K or real or complex scalars, so that the values of f_n and m can be multiplied together. When K is linear with real scalars a and a norm ||k|| satisfying $||ak|| = |a| \cdot ||k||$, it is usual to have properties (i) $V(m;A;E) < \infty$, (ii) $||f_n - f|| \to 0$ m-almost everywhere in E, (iii) Fm and $F_n m$ (n = 1,2, ...) integrable on E, and (iv) $m \ge 0$ and $||f_n|| \le F$ (n = 1,2, ...). These are a type of Arzela-Lebesgue condition in K. But (i) and (iv) restrict the test; (i) cuts out many applications to Feynman integration. Again, not all topological groups have even a group norm, while the restriction to $f_n(t)m(I,t)$ is a weakness. Generalizing to $h_n(I,t)$, we have a problem highlighted by the following examples.

On the real line, for each fixed integer $j \ge 2$ let $h_j([u,v),t) = v-u$ if $(j+1)u/j < v \le ju/(j-1)$ (u > 0), and otherwise let $h_j = 0$. Then $h = \sum_{j=2}^{\infty} h_j = v-u \quad (u < v \le 2u) \quad \text{and otherwise} \quad h = 0, \text{ and the guage integrals}$ $\int_{[0,1)}^{\infty} dh_j = 0 \quad (\text{all } j \ge 2), \quad \int_{[0,1)}^{\infty} dh = 1, \text{ and } \sum_{j=2}^{\infty} h_{2j} \quad \text{is not integrable}$ over any interval of [0,1).

¹This paper was written during the tenure of a Leverhulme Trust Emeritus Fellowship.

"Generalized integrals of vector-valued functions," Proc. London Math. Soc. (3) 19 (1969), 509-536, MR 40 #4420, especially p.527. For (K, 4) a topological linear space let each $(I,t) \in U^1$ have a sequence $(Z^j(I,t))$ of sets of K containing the zero z, such that for each neighbourhood G of z, a positive integer j and a $U \in A \mid E$ exist and for all divisions ϵ over E from U,

These difficulties can be avoided by a slight change in the paper,

(2) $(\ell) \Sigma Z^{j}(I,t) = \{ (\ell) \Sigma Z^{j}(I,t) : Z^{j}(I,t) \in Z^{j}(I,t) \} \subseteq G.$ This is invariant under the action of real continuous linear functionals, and only differs from the paper in that $Z^{j}(I,t)$ replaces $Z^{j}(I)$.

For each integer n let $h_n(I,t)$ be integrable over E, let $X \subseteq T$, $U_+ \in A | E$, $U_+ \subseteq U$, and for each integer j > 0 and each $(I,t) \in U_+$ let k(j;I,t) be an integer. For $h:U_+ \longrightarrow K$ let

- (3) $h_n(I,t) h(I,t) \in Z^j(I,t) ((I,t) \in U_+, t \in X, n \ge k(j;I,t)),$
- (4) h and h_n are of variation zero in X, relative to E,A. For simplicity we can replace h, h_n by $h \cdot \chi(X; .)$, $h_n \cdot \chi(X; .)$, respectively, and can emit (4), taking X empty. This makes no difference to the integrability nor the value of the integral.

Theorem 1. Let (T,τ,A) be a decomposable division space with K the real line or complex plane, let $h_n(I,t)=f_n(t)m(I,t)$, h(I,t)=f(t)m(I,t) (all $(I,t) \in U$) and let X_I be the set of t where $f_n(t)=f(t)$ for some integer N(t) and all $n \geq N(t)$, and let the $Z^J(I,t)$, G be spheres S(0,r) for various radii r > 0. Then (2), (3) imply that (a) the set X_2 of t where $f_n(t)$ fails to converge to f(t), has m-variation zero, (b) $f_n(t)$ is bounded in n for each $t \in X_2$ for which there is an $(I,t) \in U_+$ with $m(I,t) \neq 0$, (c) m is VBG^* in X_I . Conversely, (a), (b), and (c) imply (2) and (3).

It follows that for K the real line or complex plane and given the geometric constructions with f_{n}^{m} , fm, (2) and (3) are equivalent to convergence m-almost everywhere and we are no further. The construction is of more value in more general spaces K.

Theorem 2. In Theorem 1, h is integrable over E if and only if there are a compact set C of arbitrarily small diameter, some integer-valued M over U^I , some $U \in A | E$, and all divisions t of E from U, such that $(t) \sum_{i=1}^{L} h_{n(I,t)}(I,t) \in C \quad (all \ n(I,t) \geq M(I,t)).$

Theorem 3. Given C and the conditions of Theorem 2 with (5), a necessary and sufficient condition for (1) is that there are an integer J, a compact set C_1 of arbitrarily small diameter, either containing a neighbourhood of the value of the integral over E of h, or such that $C \cap C_1$ is not empty, and a $U_n \in A|E$, with (6) $(\ell) \sum h_n(I,t) \in C_1$ for all divisions ℓ of E from U_n with $n \geq J$.