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 NEARLY UPPER SEMICONTINUOUS GAUGE FUNCTIONS IN Rm

 INTRODUCTION. Using <5-fine partitions for a positive gauge function S

 Henstock and Kurzweil defined a generalized Riemann integral, which is

 equivalent to the Den joy-Perron integral ([H], [K] and [S], Chapter VIII). In

 the original definition of this generalized Riemann integral the function 6

 was a completely arbitrary positive function. P.S. Bullen, in [Q] raised the

 question of determining how complicated it need be. In [P2] W. Pfeffer proved

 that this integral can be defined using a function 6 that is upper

 semicontinuous when restricted to a suitable subset whose complement has

 measure zero. In this proof he first showed that such a 6 can be chosen if

 the integrand is Lebesgue integrable, and then he verified it for each step of

 the Denjoy-Perron definition.

 Since the Denjoy process can be applied only on the real line, he asked

 whether this theorem remains true for the higher dimensional Henstock-

 Kurzweil integral [Ml], or for its generalizations defined in [M], [JKS] and

 [PI]. In this paper we give a new proof of the original theorem. This proof

 avoids the Denjoy process and translates verbatim to the higher dimensional

 Henstock-Kurzweil integral, and it can be easily applied for other generalized

 Riemann integrals as well. Our proof is based on the fact that Henstock-

 Kurzweil integrable functions are Lebesgue measurable, and hence we can use

 Lusin's theorem. Finally we remark that there exists a Lebesgue integrable f

 and an e > 0 so that there exists no Borei measurable gauge function for

 this e [FM, Example 1]; that is, one can not expect that ô is upper

 semicontinuous everywhere,

 PRELIMINARIES. By R we denote the real numbers. By intervals in R® we
 m

 mean sets of type II [ai.bļ]; ai.bi € R, aļ < bi-
 i=l
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 A collection of intervals whose interiors are disjoint is called a

 non-overlapping collection. By int(E), diam(E), and mes(E) we denote

 respectively the interior, the diameter and the measure of the set E c Rm.

 For Ei,Ea c Rm we put dist(Et,E3) := inf{dist(x,y) : x € Et, y e E2}. A

 function 6 on an interval A is called nearly upper semicontinuous if there

 is a set H c A such that mes(A'H) = 0 and <5 |g is upper semicontinuous.

 A subpartition of an interval A is a collection P = {(Ai,x1)l...l(Ap,Xp)}
 where Ai,...,Ap are non-overlapping subintervals of A, and xj e Aj, i =

 P

 l,...,p. If, in addition, U Aļ = A, we say that P is a partition of A.
 i=l

 Given a function 6 : A •* (0,+®) we say that a subpartition P is <5-fine

 whenever diam(Ai) < d(xļ) for i = 1

 interval A c ff® and P = {(AnxJ, . . . , (Ap,Xp)} is a subpartition of A,
 then we let

 P

 <r(f,P) := I f(xi) mes(Ai).
 i=l

 DEFINITION 1. (Henstock-Kurzweil) A function f on an interval A c R® is

 called integrable in A if there is a real number I =: I f with the
 A

 following property: for every e > 0 there exists a 6 : A ■* (0,+«») such

 that |<r(f,P) - I| < e for each 5-fine partition P of A.

 The reader interested in the properties of this integral can find further

 references in [PI] and [P2]. We denote the set of Henstock-Kurzweil

 integrable functions by <R( A). We shall use the property that every f € <R(A)

 is Lebesgue measurable; this is a special case of Corollary 4.5 in [PI]. The

 function S in Definition 1 is often called a gauge associated with f and e.

 We denote by A(f,A;e) the family of all gauge functions associated with

 f e <R(A) and c > 0.

 THEOREM. For every A c Rm, f e <R(A) and e > 0 the set A(f,A;c)

 contains a nearly upper semicontinuous gauge function.
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 PROOF. Since it is easy to show by a compactness argument that if

 t > 0 and f e <R( A), then A(f,A;c) * ♦, (See e.g. [PI], Proposition 2.4.) we

 can choose a function 60 e A(f,A;e/2). Plainly we may assume that <S0 is

 bounded on A.

 By Lus in' s theorem we can choose pairwise disjoint closed sets Fļ c A,
 +«o

 i = 1,... so that fi-, is continuous and mes(A ' U Fļ) = 0. We shall
 |Fi i=l

 define a nearly upper semicontinuous gauge function 6 e A(f , A; e ) as follows.

 For X € Fj (j = 1,2,...) we let 6(x) := min{l/j, max{<S0(x),

 lim sup ¿o(y)}}. It is obvious that 5|_ is upper semicontinuous. If
 y+x |FJ
 ytFj

 +<o

 X € A ' U Fļ, then we put 6(x) := <50(x). If
 i=l

 +a>

 â(x) if X € U Fļ
 ô'(x) = i=1

 . 0 otherwise ,

 then 6' = 6 almost everywhere. We show that 6' is upper semicontinuous

 and hence 6 is nearly upper semicontinuous. Suppose that lim xn = x
 n-H-®

 and for every i the number of n's with xn € Fļ is finite. Since

 tf(x) * 1/i for every x € Fļ, it follows that lim tf'(xn) = 0. Hence we
 n-H-® +00

 obtain that 6' is upper semicontinuous at the points of A ' II Fj. If
 i=l

 x € Fj, then every sequence xn •* x (n -* +») can be divided into two

 subsequences x, (n = 1,...) and x. (n = 1,...) so that x,
 Kn *n Kn

 consists of those elements of xn which belong to Fj and the remaining

 terms of xn are in xt . Since the sets F¿ are pairwise disjoint and
 *n

 closed, the sequence xa can contain only finitely many terms belonging to a
 *n

 fixed Fļ (i = l,...,i*j) and hence the preceding argument shows that

 lim 6' (x. ) = 0. Since õ' is non-negative and since ¿'Iņ is upper
 n-*» *n I * j

 semicontinuous, we conclude that lim sup 5'(x, ) ¿ <5 * (x) ; that is, we have
 n-*» Kn

 proved that 6' is upper semicontinuous.
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 We have yet to show that 6 € A(f, A; e) . Suppose that P =

 { (An Xx (Ap.Xp)} is a ¿-fine subpartition of A. If x,€ K A ' . U Fļ, K i=l .

 then we let x'k := x^. Suppose that x^ e Fj. If ¿(x^) > <50(*k) , then

 lim sup My) > ¿(x, )•

 y«Fj

 Since f|p. is continuous, we can choose an x'k € Fj so that

 |f(x'k) - f(xk)| < e/(2 mes (A)) and

 <S0(x'k) > «(xk) (> diam(Ak)).

 Hence P' := { ( Ax ,x* x) , . . . , (Ap,x'p)} is a á0~fine subpartition of A. Thus

 |<r(f,P') - f f I < «/2.
 A

 We also have

 P

 |<r(f,P') - <r(f,P)| * I |f(x'i) - f(xi)| • mes(Aļ) <
 i=l

 P

 < (c/(2 mes(A)) I mes(Aļ) = e/2.
 i=l

 Hence we proved that |<r(f,P) - j f| < c; that is, 6 e A(f,A;e). This
 A

 completes the proof of the Theorem.
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