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 1 . Introduction. The notion of path derivative was introduced in the paper [B,0,T] to unify

 the study of certain generalized derivatives. Several natural geometric conditions on path

 systems have been studied. When the paths within a path system satisfy these conditions, any

 function that is differentiable with respect to the system will have many of the desirable

 properties known to be possessed by differentiable functions. Prominent among the conditions

 on path systems which have been studied are porosity conditions and intersection conditions.

 Porosity conditions have been studied extensively (see [B,L,P,T], [B,0,T], [B,T], [T]).

 However, beyond the work [B,0,T] intersection conditions have been studied very little. The

 two intersection conditions which have proven to be most useful are known as the intersection

 condition and the external intersection condition.

 In the paper [B,0,T] some results are obtained using the intersection condition while

 others are obtained using the external intersection condition, but the relationship between these

 conditions is not explored. The purpose of this paper is to make explicit the relationship

 between these conditions. In particular, it will be shown that if E is a path system which

 satisfies the external intersection conditon and F is an E-differentiable function, then there is a

 path system E* which satisfies both the intersection condition and the external intersection

 conditions so that F is E* differentiable and F'E = F'E„ . In other words, when considering

 path differentiable functions the external intersection condition is stronger than the intersection

 condition. An example will be constructed showing that the intersection condition is not as

 strong as the external intersection condition. On the other hand, when studying functions

 which are not path differentiable the situation seems to be reversed. To illustrate this, some

 theorems which involve extreme path derivatives and depend on the intersection condition will

 be given, and then examples will be constructed showing that the external intersection

 condition is not sufficient for these results.
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 2. Preliminaries. We will begin with the basic definitions. Let xe R. A path leading to x

 is a set E x c R such that xe Ex and x is a point of accumulation of Ex. A system of paths.

 or path system, is a collection E = {Ex : x e R } where each Ex is a path leading to x. A

 function F is said to be E-differentiable at x if

 exists and is finite. In this case F'E(x) is called the E-derivative of F at x. The extreme E-

 derivatives F' (x) and E' (x) are defined similarly.
 E E

 2. 1 Definition. A path system E will be said to satisfy the condition stated below if there is a

 positive function 5 such that whenever 0 < y - x <min{8(y),8(x)} the paths Ex and Ey intersect

 in the stated fashion.

 (1) intersection condition E x n EyH [x, y] * <ļ)
 (2) external intersection condition (parameter m)

 Exn Eyn [x- m(y -x), x] *<ļ> and Ex n Ey n [y, y + m(y - x)] * <ļ>

 In the remainder of this paper when dealing with the external intersection condition any

 proofs will be given only for the case m=l, but the results hold for any m > 0.

 3. Results. We will now state our main theorem.

 3. 1 Theorem. Let E be a system of paths which satisfies the external intersection condition.

 Suppose F is a function which is E-differentiable on a set A. Then there is a path system E*

 which satisfies both the intersection condition and the external intersection condition so that F

 is E* differentiable on A and F'E„(x) = F'E(x) for x e A.

 Before proving this theorem we will need the following lemma.
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 3.2 Lemma. Let E be a system of paths which satisfies the external intersection condition.

 Suppose F is a function which is E-differentiable on a set A. Given any e > 0 there is a

 positive function Ô so that whenever x,y e A and 0 < y - x < min {ô(y),ô(x)} each of the

 following holds:

 (a) |F'e(x) - F'E(y)| < e

 F(x)- F(y)
 (b) x - y e < 6

 F(x) - F(y)
 (c) x - y E < 6

 Proof, (a) Let e > 0 be given. Let 8j be the function associated with E by the external

 intersection condition. Since F is E-differentiable on A, there is a positive function 82 so that if
 F(t)-F(x) p

 x € A, t e Ex and 0 < 1 1 - xl < 2Ö2(x) , then

 Define S3 = min {Sj, 52}.

 Suppose x,y e A and 0 < y - x < minfSjCyXSjix)}. By the choice of Sj there are points

 aandb so that as Ex n Eyn [2x- y, x] and be Ex o Ey o [y, 2y-x].

 F(b) - F(a) p
 We will now show that - ¡- D - â E Ł

 If x = a, this inequality follows immediately from the choice of ô2, so we will assume x a.

 Now use the fact that ^ ~x + * ~ a = 1 to compute
 b -a b-a

 F(b) - F(a) F(b)-F(x) b-x F(x)-F(a) x - a
 b-a E b-x "FE(X) b-a + x-a "FE(x)b-a

 < e/4 + e/4 = e/2.
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 It follows similarly that F^ - - - F'_(y ) < -I-. d - a Ē z

 Combining these two inequalities we get |F'e(x) - F'Ē(y)ļ < e which proves (a).

 To prove (b), we will use the result (a) to pick a positive function 64 so that if x,y e A

 and 0 < y - X < min{54(y),84(x)}, then |F'e(x) - F'E(y)| <

 Define 6 = min {6ļ, 62,64}.

 Suppose 0 < y - x < min{ô(y),ô(x)}. By the choice of 6j there is a point

 be E x n Ey n [y, 2y - x] . If y = b, then by the choice of ô2

 F(y)-F(x) o
 y - x 4'

 so we will assume y * b. Now we compute,

 F(y)-F(x) F(y) - F(b) „ y-b F(b)-F(x) b_x

 F(y) - F(b)

 * y-b - F'E(y) + lF'E(y) - F'E<x>l

 F(b) - F(x)
 + b-x -FE^2

 < l.+ e 2ę 4 4 4 e*

 This proves (b). The inequality (c) is proven similarly.

 Proof of Theorem 3.1. For each positive integer n let en = 2"n and take 6n to be the positive

 function corresponding to e„ given by lemma 3.2. We can assume without loss of generality

 that {6n} is a strictly decreasing sequence of functions tending to zero.
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 For each x e A define the set

 Bx = ^u^ {teR:6n+1(x)š|t-x|<5n(x)and|t-x|< Sn(t)}.

 The path system E* = {E*: x e R} is then defined by,

 * f E u B if x e A
 Ex=1 x x [r if x e A .

 The fact that E* satisfies the external intersection condition follows immediately from the fact

 that E does. We will now define the positive function 8 which will be used to show that E*

 satisfies the intersection condition. Set 8 = min{8g,5ļ} where 8g is the function associated

 with E* by the external intersection condition and 8j is the function described above.

 Suppose0<y-x<min{8(y),8(x)}. If either x ž A or y í A , then the paths E* and

 *

 E y clearly intersect as desired, so we will assume x e A and y e A. Pick positive integers n

 and m so that 8n+1(x) < y-x < 8n(x) and 8m+1(y) < y-x < 8m(y). Consider the following

 cases.

 Case 1: n > m.

 Since {8ķ(x)} is a decreasing sequence 8n(x) < 8m(x), so |y - x| < Sm(x). Therefore

 xeEy, soE*<~> Eyn [x,y]*<1>.
 Case 2: n = m.

 Reasoning as in case 1 we get x € Ey and y e Ex.

 Case 3: n<m.

 Reversing the roles of x and y and applying case 1 we get y e E*, so

 E* n E* n [x, y] *<ļ>.
 * * *

 In each of these cases E x and E y intersect as desired so E * satisfies the intersection

 condition.
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 We will now show that F is E*-differentiable on A. Let e > 0 and x € A be given. Pick

 n so en = 2*n < e. Suppose t € Bx and 0 < |t - x| < 5n(x). By the choice of Bx we have

 It - x| < 8n(t), so by the choice of 5n we have - F'E(x) < e n š e.

 Fť t ) - FC xi

 Thus lim

 F(t) - F(x)
 t-x =Fe(x)-

 ♦

 Remark. The above proof shows that E* satisfies a rather special case of the intersection

 condition. In particular, when 0 < y - x < min{5(y),5(x)} either y e Ex or xe Ey. Perhaps

 this condition can be further exploited in cases where the intersection condition is not strong

 enough. If F is E-differentiable on [0,1] and it is possible to pick E* and 8 so that when

 ļķ *

 0 < y - x < min{5(y),5(x)} both ye Ex and xe Ey, then the function F actually has a

 composite derivative (as studied by O'Malley in [O], [0,W]). In fact, the existence of such a 8

 is equivalent to the existence of a composite derivative. It would therefore be of interest to find

 out if it is possible to choose such a S under the hypotheses of theorem 3.1.

 Theorem 3.1 can easily be used to obtain some new results since any theorem which

 holds for path systems that satisfy the intersection condition also holds for path systems

 satisfying the external intersection condition as long as the functions under consideration are

 assumed to be path differentiable. We now state some of these results which were originally

 stated for the intersection condition in [B,J] and [B,0,T].

 3.3 Corollary. Let E and E* be path systems both of which satisfy the external intersection

 condition. If F is both E and E* differentiable on a set A, then the set

 {x e A: F'e(x) * F'e„(x) } is at most denumerable.
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 3.4 Corollary. Let E be a system of paths which satisfies the external intersection condition.

 If the function F is continuous and E-differentiable on an interval Ig, then F is differentiable in

 the ordinary sense on a residual subset of Iq.

 3.5 Corollary. Let E be a system of paths which is bilateral (i.e. for each x, x is a bilateral

 point of accumulation of Ex) and satisfies the external intersection condition. If F is E-

 differentiable, then F'E has the Darboux and the Denjoy properties.

 3.6 Corollary. Let E be a system of paths which satisfies the external intersection condition.

 Suppose F is E-differentiable on a measurable set A and F^ Ś Mon A. Then F(A) is a
 measurable set and X(F(A)) < MX(A).

 Theorem 3.1 can be thought of as giving an "improvement" of the path system E. That

 is, under the hypotheses of the theorem E can be "improved" giving a path system E*, which

 also satisfies the intersection condition, without altering the path derivative of F. We will now

 show that it is not always possible to improve a path system which satisfies the intersection

 condition to a path system that satisfies the external intersection condition in the sense of

 Theorem 3.1. Towards this end we give a theorem from [B,0,T].

 3.7 Theorem. Let E be a system of paths which satisfies the external intersection condition.

 If F is E-differentiable then F'E is a Baire 1 function.

 The following example shows that it is possible to have a system of paths E which

 satisfies the intersection condition and an E-differentiable function F so that F'£ is not a Baire 1

 function. Clearly, such a path system can not be improved to one which satisfies the external

 intersection condition without changing the path derivative of F.

 3.8 Example. Let Pq be a perfect subset of a Hamel basis which contains a rational number

 (see [J]). For each integer n * 0 define Pn = Pq + ļf • By the choice of Pq, the sets Pn are

 pairwise disjont, and the set P= u P is closed.
 n € R
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 Define a function F on P by

 0 if X € PQ
 F(x) = j !

 ļf if X e Pn for some n * 0.

 Since F is continuous on P, F can be extended to a continuous function on R by defining F

 linearly on each component of R ' P.

 Let {xjJ denote the sequence of one sided limit points of Pq. Define the path system E as

 follows

 R if xi P

 P n if X e P n for some n * 0

 Ex = ' p0 ifxeP0'{xk)

 {x} u {x + ļp n * 0 } if x = x^ for some k.

 i 0 if X e P0'{xJ
 It is evident that for x e P„ F'_(x) = < ... . .

 Or Ev 1 ... 1 if x =xkforsome . k . .

 Thus since {x^} and PqMx^} are each dense in Pq, F'e has no relative points of continuity in

 Pq. This means F'E is not a Baire 1 function.
 It remains to be shown that E satisfies the intersection condition. Define the associated

 function 8 by

 min {dist (P^, Pn):|k| < |n|, k * n} if x e Pn, n *0
 min {lx . - xl: j < k} if x = x, for some k

 5(x) =■{ J
 1 ifxePQ'{xk}
 dist (x, P) if x <£ P
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 Suppose 0 < y - X < min{8(y),8(x)}. By the choice of 5 it is impossible to have x e P and

 y £ P (or vice- versa) orot have x € Pm and y € P n with m * n. Thus the only possible

 cases are: (a) x é P and yi P,(b) for some n * 0, x € Pn and y e P„, (c) x e Pq and y

 € Pq, In the cases (a) and (b) it is trivial to show that E x n Ey n [x, y ]*<{>, so we will

 only consider (c). There are two possible subcases, (i) x e PoMxk} and y e PoMxk}» (ü)

 either x e {x^} or y e {x^} but not both. In case (i) x, y e E x o Ey. In the second case

 either x e Ey or y e Ej depending on whether x e {x^} or y e {x^}. Thus in any of the

 above cases E x n Eyn [x, y] * <ļ> so E satisfies the intersection condition.

 Now that we have established the relationship between the external intersection condition

 and the intersection condition for path differentiable functions, we will consider the situation

 when the functions being studied are not assumed to be path differentiable. Although no

 general relationship has been established in this case, it appears that the intersection condition is

 more useful than the external intersection condition when studying functions by means of their

 extreme path derivatives. To illustrate this situation we will give three theorems which rely on

 the use of the intersection condition, and we will give corresponding examples which show the

 external intersection condition does not suffice in these situations. The first of these theorems

 appears in [B,0,T].

 3.9 Theorem. Let E be a system of paths that satisfies the intersection condition. If

 everywhere in a set A one of the extreme derivatives F (x) or F' (x) is finite, then F is VBG
 E E

 on A.

 As the following example shows this result does not hold for the external intersection

 condition.
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 3.10 Example. Let F be a function which attains every real value on every subinterval of R.

 Clearly, such a function cannot be VBG. Define a path system E as follows, for each xe R

 set

 Ex-Wu|«:S!£Sa*0).

 From this choice of E it is evident that E (x) = 0 for each x e R. For this example, it is
 H

 unnecessary to define the 6 function since the paths of any two points will intersect as desired.

 To see this, let x,y € R be given. Suppose x < y. Since F attains every real value in each

 interval, there is a point t 6 (y,2y - x] so that F(t) > F(y) and F(t) > F(x). Now

 te E x o Ey n [y, 2y - x]. Similarly, E x n Ey n [2x - y, x] * <j>, so E satisfies the
 external intersection condition.

 Corollary 3.3 is derived from the following theorem which appears in [B,0,T].

 3. 1 1. Theorem. Let E and E* be path systems both of which satisfy the intersection condition.

 Then for any function F the set {x: F (x) < F (x) } is at most denumerable.
 E E*

 This theorem is used in [BJ] to obtain the following.

 3.12 Theorem. Let E be a system of paths satisfying the intersection condition. Suppose F is

 a function which satisfies the inequalities |f 'J £ M and |f'J < M on a measurable set A.
 Then the set F(A) is measurable and X(F(A)) < MX(A).

 We will now discuss an example which shows that neither of these theorems hold if the

 intersection condition is replaced by the external intersection condition.

 3.13 Example. There is a function F defined on [0,1], a perfect set P c [0, 1] and a path

 system E satisfying the external intersection condition for which each of the following holds:
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 (1) F is approximately differentiable a.e. on P with F'ap(x) = 2 a.e. on P.

 (2) For each x e P, -1 < F' (x) < F' (x) š 1
 E E

 (3) 0 < X(F(P)) = 2*,(P).

 Before discussing the example, we will consider the consequences of (1), (2), and (3).

 Since the approximate derivative F'^ exists a.e. on P, there is a path system E which satisfies

 the external intersection condition so that F'E„, exists and equals F'^ wherever the latter

 exists. Thus the fact that {x e P: F' (x) ś 1 < 2 = F' (x) } has positive measure shows that
 E ^

 the conclusion of theorem 3.1 1 does not hold for the external intersection condition. The

 combination of (2) and (3) shows that the conclusion of theorem 3.12 does not hold for the

 external intersection condition.

 We will now outline the construction of the example. For complete details see [C]. Let P

 be a Cantor set with X(P) = Define F on P by F(x) = 2x. F is defined on [0,1 ]'P so that F

 oscillates between 0 and 2 on each interval contiguous to P. The path system E is defined as

 follows,

 f F(t) - F(x)
 E _ J W u {t: - ^ Š 1 } if x e P
 X ļ R if x e [ft 1]'P

 From these choices of F, P, and E it is clear that (1), (2), and (3) all hold. The difficulty is in

 showing that E satisfies the external intersection condition. This is made possible by ensuring

 that F oscillates rapidly enough on the intervals contiguous to P.

 The results presented here were obtained while working on my dissertation under the

 direction of A.M. Bruckner.
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