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 Some Hausdorff variants of absolute continuity. Banach 's

 condition(S) and Lusln's condition(W)

 The old concept of Hausdorff dimensions nas been given a

 revived interest due to its usefulness in the recent development

 of non-linear dynamic theory and fractal geometry. Thus, it

 seems worthwhile to use the concept of Hausdorff measures to

 consider some natural variants of the well-known concepts of the

 absolute continuity, the Banach* s condition (S) and the Lusin's

 condition (N) . To take into account some of the recent works by

 Foran [2], Iseki [3] and Ene [1], some variants using notions

 closely related to the Hausdorff measures are also considered.

 It should be noted, however, that thorough investigations of such

 variants and their possible applications to dynamic theory and

 fractal geometry still remain to be done.

 First, let us make precise the notions that are closely

 related to Hausdorff measures. Let E be a set of real numbers.

 For such positive integer n, and for such positive real number ß,

 let

 n

 Ajļ(E) * inf{ J I I^| : a sequence of n open
 intervals which covers E>, and also let
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 00

 A«(E) " { I 1 1 1 ^ I ^ i <I4>T i i -Ł ļ is a sequence of open intervals i-1 1 ^ i i -Ł ļ
 which covers E>,

 and

 A^(E) - inf {A^(E) : n is a positive integer}, w n

 It follows easily that one has the following:

 (1) 0 < a£(E) - whenever E c F, where k is a positive
 integer , or ®, or » .

 (2) A£(E) < A£(E) < A^+1(E) < A£(E).
 (3) A£< U Ei) < t Af(Ei).

 Remark 1 . There are sets E such that each of the strict

 inequalities in (2) holds. However, for compact set E, one has

 a£(E) * a£(E) . Note that (3) does not hold if » is replaced by u
 or a positive integer.

 Remark 2 . The i-dimensional Hausdorff outer measure of a set E

 is /i^(E), which is defined as
 00

 /1 (E) = lim [inf{ I 1 1 . 1 ^ : <1 . > is a sequence of ooen
 p 6-»0+ i=l 1 1

 intervals which covers E and |I^| < ö for
 each i > ] .

 Thus, we have A^(E) S /iA(E). But for ß ■ 1, one has a1(E) =
 00 p 00

 A^(E) , which is just the Lebesgue outer measure of E. (See Saks

 [5]). In what follows, in the place of a^ one can use a and
 obtain a related concept. However, we do not consider such
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 related concepts here.

 Definition 1. A (real-valued) function f (of a real variable) is

 said to be AC ^(/î,a) on a set E, written as f s kC^(ß,a) on E, if
 for each & > 0 there exists ö > 0 such that

 I Aj(f[EDIi]) < ft
 i

 whenever is a sequence of non-overlapping closed intervals

 with endpoints in E and J¡ 1 1 . f a < 6. [Here and later on, k
 i

 denotes a positive integer n, or ® or w , and a and ß are positive

 numbers . ]

 Remark 3. It follows from (2) that one has

 (4) kCn(ß,a) c ACn+1(/0,a) c ACw(y3,a) c AC „iß,**) on E,
 and later on we will see that for some E, the strict inclusions

 in (4) hold.

 Remark 4. It is clear that AC ^( 1,1) is just the absolute
 continuity in the wide sense (i.e. AC as given in Saks [5]), so

 that AC^(1,1>- is a generalization of AC when k * 1, and kC^(ß,a)

 can be thought as a Hausdorff variant of AC^(1,1). Note also
 that AC is an additive class, while we will see later that

 AC^(A*a) may not be so when k # 1 . (Cf. remarks 9 and 10.)

 Definition 2. A function f is said to be 0^(0) on E, written as

 f e 0^(0) on E, if for each ft > 0 there exists a sequence <I^> of
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 non-overlapping closed intervals which covers E and

 X a£ (f[Enii3) < 6.

 A function f is said to be E^(ß,a) on E, written as f e E^(ß,a)
 on E, if f e on z whenever Z c E and A®(Z) ■ 0.

 Remark 5 . Similar to (4), one easily has

 (5) En(0,a) c En+1(£,a) c E^(ß,a) c £^(£,0) on E.
 Furthermore , we prove

 (6) ACjç (ß ,a) c Ek(ß,a) on E.

 Proof. Let f e AC, (/},a) on E and let Z c E and Aa(Z) ■ 0. and
 K

 6 > 0. Since f e AC^(/J,a) on E, it is so on Z. Hence there
 exist ô > 0 such that

 E A^(f tzniļ] ) < é
 whenever is a sequence of non-overlapping intervals with

 endpoints in Z and £ |I.|a < 0. Now, since Aa(Z) = 0, there
 i 1 •

 exists a sequence oí non- over lapping closed intervals which

 covers Z and J¡ | J^|a < e. Of course, we may assume that fi Z *
 $ for each i. If I. is an interval with endpoints in

 J. H Z, one has J|I.|a < 0, so that I A^(f[I.nZ]) < e . Since 1 2 J& 1

 this is true for any choice of 1^ with endpoints in D Z, one

 concludes that S A^(f[J^HZ]) < e, completing the proof.

 Definition 3. A function f is said to be S (ß, a) on E, written as

 f € S(ß,a) on E, if for each « > 0 there exists « > 0 such that
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 A^(f[Z]) < e whenever Z c E with a'* (Z) <0. A function f is said
 00 00

 to be N(£,a) on E, written as f e N(/3,a) on E, if A^(f[Z]) « 0

 whenever Z c E with A^(Z) 3 0.

 Remark 6. The condition S (1,1) is just the Banach1 s condition

 (S), and N(l,l) the Lus in* s condition (N) , and hence S(yS,a) and

 N(0,a) can be thought as "Hausdorff" variants of (S) and (N),

 respectively. When a£ and/or A® above are replaced by A and/or
 A , one has true Hausdorff variants. We leave these kind of

 a

 variants for interested readers to consider.

 Theorem 1. On any set E, one has

 (7) ACÄ(y3,a) c S(ß,a) c EÄ(/J,a) = N(/},a).

 Proof. Let f 6 AC (ß.a) on E, and let e > 0. Then there exists
 - - - 00

 6 > 0 such that J A^(f[I.DE]) 1 < e whenever <I.> 1 is a sequence of i 1 1

 non-overlapping closed intervals with endpoints in E and

 S |I.|a < 6. Now, let Z c E be such that Aa(Z) < 6/2. Then there
 i i 00

 exists a sequence <JA> of non-overlapping closed intervals which
 covers Z and J|J.|a < A®(Z) + 6/2 < 6. Of course, one can assume

 A W

 that n Z * <ļ>. Then, letting 1^ be an interval with endpoints

 in n Z, one has J|I^|a < £|J^|a < «, so that
 I A? (f [I .nz] ) < e. Since this is true by any choice of I. with
 i 1 1

 endpoints in J. n Z, one concludes that J¡ a^ ( f [ J .fìZ] ) < & , and
 1 » 1
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 hence A^(f[Z]) < e by inequality (3), proving that f € S(ß,a) on

 E, and the proof of ACÄ(/J,a) c S (ß, a) is completed. To prove the

 second inclusion in (7), let f s S(ß,a) on E, and let Z c E with

 Aa(Z) ■ 0, and e > 0. Then there exists 6. > 0 such that
 0» 1

 ( f £ S ] ) < & /2*, whenever S c E with A*(S) < In particular,

 A^(f[S]) < e/21 for each S c Z. Letting be any sequence of
 non-overlapping closed intervals which covers Z, one has

 00

 I a£ (f [i.nz] 1 ) < s c/21 = i 1 i=l

 Hence f e Ew(ß,a), proving S(ß,a) c Zm(ß,a). To prove the last

 equality in (7), let f e Ew(/J,a) on E, and let Z c E with

 Aa(Z) » 0. For each e > 0, there exists a sequence of
 09

 non-overlapping closed intervals which covers Z and

 I A^ ( f [ I ^nZ] ) < e. Then by (3) one has A¿(f[Z]) <

 S A^ (f[ I^nZ] ) < e. Since e is arbitrary, one has A^(f[Z]) = 0,
 and hence f « N(ß,a). Conversely, let f e N(ß,a) on E, and let

 Z c E with A^(Z) =0, and * > 0. Then Af(f[S]) » 0 for each 00 00

 S c Z. Covering Z with a sequence of non-overlapping

 intervals, one has A^(f[I.nZ]) = 0 so that
 00 1

 s A^ ( f [ I ^nZ ] ) = 0 < e,

 proving that f « E^í/í,«*).

 Remark 7. We conjecture that there are sets E on which each of

 the inclusion in (7) is strict. However, we have the following

 result .
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 Corollary. Let E be such that A^(E) ■ 0. Then

 (8) ACÄ (ß ,a) ■ S(ß ,a) - Ew(0,a) = N(/3,a) on E.

 Proof . By (7), it suffices to show that N(£,a) c AC^(fl,a) on E.

 Let f e N(/0,a) on E, and let 4 > 0. Since A^(E) =0, one has
 Aa(Z) CO » 0 for all Z c E and hence Af(f[Z]) 00 = 0 for all Z c E. CO 00

 Let be any sequence of non-overlapping closed intervals with

 end points in E. Then A^(f[I.flZ) = 0 for each i, so that
 ® 1

 S A^(f [I .HE) ) = 0 < fc, completing the proof.
 W ¿

 Remark 8 . Now, we come to see how the notions developed here are

 related to some of the works done recently by Poran [2], Iseki

 [3] and Ene [1]. First, we prove the following characterization

 of ACn(/J,a ) .

 Theorem 2. For a function f to be ACn(/3,a) on E it is necessary
 and sufficient that for each e > 0 there exists ö > 0 such that

 for each sequence of non-overlapping intervals with end

 points in E and S |Iļ|a < ö# one has intervals for j =
 1,2,3, • • • , n such that

 n

 (9) B ( f ; ETI ( U I . ) ) c U [ U (I.xJ )]
 1 i j=l 1 1J

 and

 n

 (10) I [ s iJiHr] iJ < *• i 3=1 iJ
 [Here, B(f;A) denotes the graph of f on A.]
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 Proof . Let f « ACn(/î,a) on E, and let 6 > 0. Then there exists
 « > 0 each that

 E A^( f [ I^OE] ) < €/2

 whenever is a sequence of non-overlapping closed intervals

 with end points in E and j¡ |I^|a < a. For such sequence <I^>,
 there exist intervals J., for j ■ l,2,3,*'*,n such that „

 ij ij J=1 „

 covers f[I.nE] and J¡ ļ J | ^ < A^(f[I.nE]) + €/2i+1,
 j=l 3

 i = 1,2,3, . Then (9) and (10) hold. Hence the condition is

 necessary. That the condition is sufficient follows from the

 fact that

 a n a
 A ( S ) < J |J| whenever covers S.
 n j=i 1 1 J"1

 Remark 9. If the "n" in the condition of Theorem 2 is replaced

 by "«•" and "some positive integer n^ (depending on j)",
 respectively, then one obtains a characterization of ACw(£,a) and

 AC respectively.
 W

 Remark 10. In Foran [2], a function f is said to be AC(n) on E

 if for each c > 0 there exists ö > 0 such that for each sequence

 <I¿> of non-overlapping intervals with 1^ D E * $ and J |I^| < 5,
 one has intervals for j * 1,2,3, •••, n such that (9) and

 (10) hold. Thus, we have AC (1,1) ■ AC(n) (and hence ACn(ß,a ) is
 a variant of Foran's condition AC(n)). Then by Ene's work in

 [1], one has for (yd, a) ■ (1»1) that ACn(ß,a) £ ACn+ļ(/ī,a), and
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 ACn(/3,a) is not an additive class for n * 1 on some set E. We
 think that all these hold even when (fi, a) # (1,1), but we are not

 going to investigate them here.

 Theorem 3. For each pair of positive integers n, m, one has

 AC (ß, a) + AC (fi, a) c AC „„(fi, a) on every set E. n m run

 Proof . First, we prove the case fi > 1 . Let f € AC n(fi,a),

 g e AC m(fi,a), h = f + g on E, and let «. > 0. Let õ ^ be the ö

 determined by the ■ */n2£ an^ *he fact that f e AC n(fi,a) in
 Theorem 2, and similarly õ by & = Then take o. =

 g g n

 min{öj,ö^>. One has > 0. Now, let be a sequence of
 non-overlapping closed intervals with endpoints in E and

 Ï 1 1 1. i' |a < 6, . Then for each i there exist intervals F. . and G. 1 i' h . lj . ap

 for j = 1,2,3, •••, n and p» 1,2,3, • • • , m such that
 n n

 B ( f ; ETI [UI . ) ) c U[ U F..] and I [ J¡
 i 1 i j=l i j*l 1J 1

 and similar for and g. Now, let

 Hijp " [aij + Cip' bij + dip]' Where [aij' bij] = Fij'
 [cļp, dip] » Gip for j ■ 1,2,3, •••, n; p = 1,2,3, • • • ,m, and
 i » 1 , 2 , 3 , • • • . Then one has

 m n

 B(h;ED [UI . ] ) c U[ U U I x H, . ]
 i 1 . i p=l j=l 1 1JP .

 and

 St S I H |^] < S[ I 2ß~1('F I* + |G i") ]
 i j,P i j-P J P

 < n2^ 1 fe- + m2^ 1 «. = t .
 f g
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 Hence by theorem 2, he AC^f^a) on E, completing the proof for
 the case fi > 1. For the case 0 < fi < 1 , the proof is similar,

 noting that in this case one uses the inequality

 ( I a I + |b|)" < |a|" + |b|", which holds for 0 < fi < 1 . [In the
 case fi i. 1, one uses the fact that

 (|a| + |b| )p < 2P~1 (|a|P + Ibi").]

 Corollary. Letting ACu(p,a) = U{ACn(/*,a): n is a positive

 integer) , one has that on every set E, AC ^(fi,a) is an additive
 class (and in fact is a linear space) .

 Remark 11 . From ( 4 ) , we have on every set E

 (11) AC^ (fi ,a) c AC^ (fi ,a) c AC n(fi,a).
 However, there are some sets E on which AC (fi, a) is not an

 00

 additive class and hence AC (fi, a) * AC (fi, a). [A similar
 U oo

 situation may hold for kC^(fi,a) but we will not consider it
 here . ]

 Proof . Mazurkiewicz [4] has constructed a continuous function f

 which is N( 1 , 1 ) on [0,1], but f+g is not N(l,l) on [0,1] for any

 non-constant linear function g. Taking E to be the projection of

 the set Q in [ 4 ] on the x-axis , one sees that | E | = 0 , and hence

 by the corollary to theorem 1, one sees that the function f is

 AC9(1,1) on E while f+g is not ACœ(l,l) on E for any non-constant

 linear function g. Since every linear function g is ACw(l,l),

 one sees that on E, AC (1,1) is not an additive class. [For
 CD
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 (ß,a) # (1,1), examples remain to be done!]

 Theorem 4. For a function to be E Iß, a) on E it is sufficient

 that for each Z c E with Aa(Z) = 0 and for each e > 0 there
 00

 exists a sequence <I¿> of non-overlapping closed intervals which

 covers Z, and for each i there exists n intervals ^ for j =
 1,2,3, • • • , n such that

 n

 B ( f ; Z ) c U U [I xJ ]
 i j 3

 and

 n

 i [ s 1 J^r] 13 < i 3-1 1 13
 For a = 1 , the condition is also necessary.

 Proof . To prove that the condition is necessary for a = 1, let

 f e E (I, a) on E and let Z c E with Aa(Z) = 0 and t > 0. Since
 n

 A®(Z) - 0, there exists a sequence <K.> of non-overlapping closed

 intervals whose union contains Z such that J¡ |K^|a < &/2n. For
 each i, since Aa(ZflK.) = 0, one has that fe D (ß) on ZOK. so

 i n i

 that there exists a sequence <K..>. of non- over lapping closed
 J» j j

 intervals which covers ZDK^ and

 S Aj(f[Kijn(ZnKi)]) < e/2i+2. J

 Of course, we may assume that c for all j. Now, listing

 <K. .>. . as <1 > , one has that <1 > is a sequence of i J i » J . P P , P

 non-overlapping closed intervals which covers Z and

 S A¡1<f[ipnz]) < J,
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 and J 1 1 Ia < I |K.|a < e/2n since a = 1 .
 tr

 For each p, there exist intervals J j for j ■ 1,2,3, •••, n which

 cover f[I p HZ] and ï | J PJ . | ^ < A^(f[I ? OZ]) + *./ 2P+2, and hence p j=l PJ ?
 B(f;Z) c U[U(I xj )]

 P 3 P PJ
 and

 * n I "V" + i|JP|fl S ? + T + Ï " *' ť J A ť Mr

 completing the proof of necessary condition for a » 1. That the

 condition is sufficient follows easily from the fact

 n

 A„(S) n - I I Jļ 1 I whenever <J,>. 1 1=1 ì is n intervals which covers S. n ¿-«i 1 1 1=1 ì

 Remark 1 2 . When a # 1, whether the condition is still necessary

 remains to be seen.

 Remark 13. In Iseki [3], a function f is said to be dwindle on a

 set E if for each « > 0 there exists a sequence <I¿> of open

 intervals which covers E and such that J¡ diam( f [ I^DE] ) < e ; anã a
 function f is said to be continuous (M) on E if it is dwindle on

 every null subset of E. It follows from theorem 2 in [3] that a

 function which is dwindle on E must be 0^(1) on E, and for
 continuous functions, being dwindle on E is equivalent to being

 D1(l) on E. Furthermore, by theorem 7 in [3], a function is

 continuous (M) on E if and only if it is £^(1,1) on E.

 415



 Remark 14. In Ene [1], a function f is said to be E(n) on E if

 for each null subset S of E and for each t > 0 there exist

 rectangles = 1^ x with j = 1,2,3, •••, n, where is

 sequence of non-overlapping intervals, 1^ fl S * <ļ> such that
 n

 B ( f ; S ) c U[ U D ]
 i j=l iJ

 and

 n

 l [ S diam(D. ) ] < «. .
 i j=l J

 It follows easily from theorem 4 that a function is E(n) on E if

 and only if it is En(l,l) on E. Thus, the concept of En(£,a) is
 a variant of Ene's E(n), and also of Iseki's continuous (M) as

 given in remark 13.

 Definition 4. For a function property P on sets, we say that a

 function f is generalized P on E, writing as f e GP on E, if E

 can be written as the union of countably many sets on each of

 which f is P. If each of the countably many sets can be taken as

 closed set, we say that f is closed generalized P on E, and

 written as f e [GP] on E. (Thus, we have properties like

 GN ( /3 , a ) , GS(/0 ,a ) , GEk(0,a), GACk(/J,a), [ GN ( y£> , a ) ] , etc.).

 Remark 1 5 . It is easily seen that GN(£,a) = N(/},a). Thus, it

 follows easily from the inclusions in (4) to (7) and in (11), one

 has on every set E and for every (ß,a) the following:

 (12) GAC c GAC c GAC c GAC c GAC c GS c E = N = GN,
 n n+1 u » ® »
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 (13) GE„ c GE c GE„ c GE c GEm » = Em » - N » GN, n n+i u » » »

 (14) GACk c GEk c N - GN,
 and similar inclusions hold for the closed generalized

 properties, too. Furthermore, one has

 (15) [GP] c GP for every property P.

 Remark 1 6 . It follows from the corollary to theorem 3 that the

 class GACu(/3,a) is an additive class (and in fact a linear space)

 of functions. So is the class GAC^dfa). However, we think that
 none of the other classes listed in (12) to (14) is additive, in

 general. (Cf. remarks 4, 10, 11, remark 13 and [3], and also

 remark 18 below. )

 Remark 1 7 . For continuous functions, the classes GAC (1,1) and

 GE (1,1) are just the 7 in [2] and € in [1], respectively. For

 k * », we have both GAC^(/},a) c GS (/J, a) and

 GACjgf/) ,a ) c GEk(p,a). But the relation between GS{ß,a) and

 GEk(£,a) is not clear, and hence some characterizations of their
 intersection might be of some interest. In particular, one may

 investigate whether GS(fl,a) D GE (ß, a) is additive or not.
 W

 Remark 18. We do not investigate classes larger than N(£,a)

 here. However, it is worthwhile to notice (cf Saks [5], chapter

 IX) that for continuous functions one has GS (1,1) c GN(1,1) =

 N( 1 , 1 ) c S ( 1 , 1 ) + S ( 1 , 1 ) on every interval , and hence in
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 particular one has S(l,l) £ GS (1,1) £ N(l,l) and none of them Is
 an additive class.

 Remark 19. We end this note by observing some trivial relations

 between various classes with different indices ( ß ,a ). Many

 interesting questions can be raised and answers to those

 questions still remain to be investigated. First, note that

 (16) N(/0,«1) c N(p,a2) whenever a2 < c^.

 (17) N(02,a) c N(/J1 ,a ) whenever ß2 < ß1.
 Hence for a < ß, one has N(a,a) n N(£,£) c N(£,a),

 and N(a,a) U H{ß,ß) => N(a,£).

 Could any of the inclusions be strict? Similar inclusions and

 questions can be considered for the classes S, E^, AC^, [GS],
 etc. Also, the question of how to characterize a small class

 within a larger class remains to be done.
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