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 1 Introduction

 In the early years following the publication of Lebesgue's theory of integra-
 tion in 1901, attempts were made, without success, to obtain a new integral
 as a limit of Riemann-like sums. Some partial results were obtained by
 Borei ([lj,[2]), Hahn [11), Lebesgue [18], and others. Fifty years passed be-
 fore such a definition of the Lebesgue integral was found. The seminal work
 toward that goal was done by Kurzweil [17] and Henstock ([12], [13]) who,
 independently introduced an integral (now known as the generalized Rie-
 mann integral) ([9], [23]) as a special kind of limit of Riemann sums which,
 it turned out, is equivalent (see e.g. [13] and [19]) to the Perron and spe-
 cial Denjoy integrals. Then McShane ([21] and [22]) showed that a minor
 but crucial modification in the Henstock approach would yield the Lebesgue
 integral.

 The purpose of the present paper is to develop the theory of "higher
 order" generalized Riemann integrals which include the C„P-integrals of
 Burkill [4] and which will integrate many everywhere finite generalized deriv-
 atives (cf. [6] and [7]).

 2 Preliminaries

 Let

 o = xo < xi < . . . < xm = b
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 be a division (partition) of the interval [a,b] , and suppose the numbers Zj
 are associated with the division by the relation x,-i < < Xj. Such a di-
 vision, denoted by P is called a tagged division with tags Zj , j = 1, 2, . . m.
 Suppose, further, there is given a function 6(x) such that S(x) > 0, x € [o, &].
 If the tagged division V has the property that

 [xj-1, Xj] C ( Zj - S(zj),zj + 6(zj)), j = 1, 2, . . . , m,

 then the division is said to be ¿-fine. It is known (cf. [12], [23]) that given
 S( x) >0 defined on [a,b], there is a ¿-fine tagged division of [a,b].

 Definition 2.1 (cf.{ 12], [23] J Let f be defined (and finite) on [a, 6]. The
 number I is the definite generalized Riemann integral (or the Riemann com-
 plete integral) of f on [a, b] if, corresponding to e > 0, there is a 6(x) > 0,
 x € [a, 6] so that

 (2-1) 'I -(P)J2f(zi){xi-xi-i)' < e>
 3-1

 for each S -fine tagged devision D.

 It is clear (cf. [23]) that the same integral is obtained by choosing divi-
 sions so that io = a is the tag of [xo, xi] and xm is the tag for [xm_i, xm'.

 The idea of a restricted tagged division was introduced in [7] . We repeat
 it here for convenience.

 Definition 2.2 A tagged division of [a, b ] will be called a restricted tagged
 division of [a, 6] if it has the form

 (2.2) x0 = zi < xi < z2 < x2 < . . . < zm- 1 < xm_i < zm = xm

 where xo = Zļ is the tag of [xo, Xi], xm = zm is the tag of [xm_i,xm] and
 Zj is the tag of both [x;-_i, z:' and [zj,Xj] for j = 2,3,...,m- 1. If a
 restricted tagged division of [a, 6] has further the property that Zj - Xj-' =
 Xj - Zj, j = 2, 3, . . ., m - 1, the division will be called a restricted symmetric
 tagged division of [a, b] .

 It is clear that given S(x) >0 defined on [a,b] there exists a ¿-fine restricted
 tagged division of [a,b]. That there exists a ¿-fine restricted symmetric
 tagged division of [a,b] follows from [20] .

 It is easy to see that if we replace tagged divisions by restricted tagged
 divisions, the corresponding integral is included in the integral of Definition
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 2.1. That the inclusion goes the other way (i.e. that the integrals are
 equivalent) follows from the observation (cf. [12], page 84) that if a tag is
 an interior point of its interval, we may write

 (2.3) /(*/)(*,• - Xj- 1) = f(zj){xj - Zj) + f{zj)(zj - Xj. i),

 while if a ¿-fine division has tags that are left hand or right hand end points,
 we can insert additional points to create a ¿-fine restricted tagged division
 so that the corresponding Riemann sum is arbitrarily close to the Riemann
 sum formed with respect to the original division. For example if the division
 has the form

 (2.4) a = ao < a' < Ū2 < as < Ū4 = b,

 where 00,01,02,04 are tags, we can form a ¿-fine restricted tagged division
 of [a,b] by inserting points 61, 62, 63, 64 so that

 (2.5) oo < 61 < ox < 62 < 02 < 63 < 03 < 64 < 04,

 where oi - 61 = 02 - &2 = <*3 - &3 = &4 - <*3 < mtn(6(a 1), ¿(02), S(az)) and
 00,01,02, 03, 04 are tags. Now by choosing oi - 61 small enough, the required
 approximation is accomplished.

 3 Higher order generalized Riemann integrals

 If f is a finite function defined on [a,b] , let two interval functions be defined by
 ^(«.v) = Ft{f,u,v) = /(v)(v-u) and Fr(u,v) = Fr(f,u,v) = /(u)(v-u).
 In the following we shall introduce a variety of interval functions, all of
 which, like the above, depend on a given point function f. Our interval
 functions will be defined on the intervals of restricted tagged divisions of
 [a,b] . Where the tag of the interval is the right hand end point, we denote
 the interval function by u, v), and where the tag is the left hand end
 point we denote the interval function by <f>T(f,u,v). It will be convenient
 to denote a pair of interval functions by a single letter in script letters. For
 example, we shall write >í(u,v) ={<f>¿(f,u,v),<f>r(f,u,v)}, or, more briefly,
 A =

 Given a restricted tagged division D of [a,b] and a pair of interval func-
 tions ( fa , <f>r) we shall consider sums of the form

 m

 + <j>t(xi-i, Zi)
 i=l
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 . We shall denote such sums by (P) £1^ where a = £ or r depending on
 whether the tag of the interval is the right hand or left hand end point.

 In addition we shall require that the interval functions be linear on the
 set of point functions and have the property that if if f > 0 and e > 0 then
 there exists 5(x) > 0 such that

 (3.1) |(P)5>,|<£
 for all 5-fine restricted (restricted symmetric) tagged divisions D of [a,b] . A
 pair of interval functions with these properties will be called regular.

 We give below the definitions of the generalized Riemann complete inte-
 gral and the generalized symmetric Riemann complete integral, (cf. [7]).

 Definition 3.1 The number I will be called the generalized Riemann com-
 plete (generalized symmetric Riemann complete ) integral of f with respect to
 the pair of regular interval functions A(u,v) = v),<j>r(u, u)} on [a, 6]
 if, corresponding to e > 0, there is a function 6(x) >0 so that

 (3.2) |/-(P)X><r + fV)|<e
 for all S -fine restricted (restricted symmetric) tagged divisions D where a = t
 or r, depending on whether the tag of the interval is the right hand or left
 hand end point.

 The notation for these integrals is

 I = (GRC, A) F f{t)dt and I={GSRC,A) f f{t)dt , Ja Ja

 respectively.

 4 Properties of the integral

 Let A = {4>t, <pr} be two interval functions defined on the intervals of re-
 stricted tagged divisions of an interval [a,b] and let S(x) >0 be defined on
 [a,b]. We note that if

 is a ¿-fine restricted tagged division of [a,c] and

 ^2 • [^tnj ®m] ) [®m> ^m+l] > • • • > [zq - 1> x<1- l] > [®ç- 1> ■*•?]

 393



 is a 5-fine restricted tagged division of [c,b] , then

 03 : [*l>*l]> [®i> ^2 ]>•••,[* m- 1 î zm' > [zmj Em] > • • • > [^g - 1>

 is a £-fine restricted tagged division of [a,b] .
 Then it is easy to prove the following theorems. (Regularity of {<t>i><t>r)

 is not required.)

 Theorem 4,1 If f is generalized Riemann complete integrable on [a, 6] with
 respect to A = { <f>t , <f>r}, and if [c, d] C [a, 6], then f is generalized Riemann
 integrable on [ c,d ] with respect to A.

 Theorem 4.2 If f is generalized Riemann complete (generalized symmet-
 ric Riemann complete) integrable with respect to A = on [a?c] an d
 [c, 6] with integrals I' and 1 2 , respectively ; where a < c < b then f is gen-
 eralized Riemann complete (generalized symmetric Riemann complete) inte-
 grable with respect to A on [a, 6] with integral I = I' + h-

 In order to prove a monotone convergence theorem we need the following
 result.

 Theorem 4.3 Iff> 0 on [a, 6] and fis generalized Riemann complete (gen-
 eralized symmetric Riemann complete) integrable (with respect to a pair of
 regular interval functions), then f is generalized Riemann integrable and the
 values of the integrals are the same (and non-negative).

 Proof. If

 F(b) - F(a) = (GRCyA) Í f{t)dt
 J a

 then, for arbitrary e > 0,

 and

 for sums over suitably chosen divisions D. It follows that

 m6) - ,P(a) - (P)i:i^| <

 I F(b) - F(a) - (D) + F0)' + '(P) E^l < e/2 + e/2 = 6.
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 Since e > 0 is arbitrary, the result follows.

 Theorem 4.4 (Monotone convergence theorem) Let {/„(z)} be a sequence
 of (Lebesque) measurable functions that are generalized Riemann complete
 (generalized symmetric Riemann complete) integrable with respect to a pair
 of regtdar interval functions A (u, v) = {^(u, v), <j>T{u, v)} on [a, 6]. Suppose
 that fn(x) < /n+i(x) and that /„ converges to a finite limit function f (x) .
 If the sequence of integrals ( GRC,A ) /a4 fn(x)dx converges to a number I,
 then f(x) is generalized Riemann complete (generalized symmetric Riemann
 complete) integrable with respect to the pair of regular interval functions
 A(u,v) and

 (GRC,A) J f f(x)dx=I. J a

 Proof. For fixed positive integer N, n>N, let

 (4.1) 0n(x) = /„(*) - fN(x).

 Then gn(x) > 0 and by Theorem 4.3, gn{x) is generalized Riemann inte-
 grable. Since gn(x) < gn+ i(x) and Um*-,» 0n(z) = /(*) - /w(x), the result
 follows from the monotone convergence theorem for the generalized Riemann
 integral.

 5 A-variational equivalence

 Let H and f be given point functions, defined and finite on a finite interval
 [a,b], and let A = { <j>t , <^r} = {&(/> u> v), </>r(f, v)} be two regular interval
 functions (depending on f) defined on the subintervals of [a,b]. Let Ü denote
 a restricted (restricted symmetric) tagged division of type (2.1) and define
 an interval function d(u,v) on the intervals of P as follows:

 d(u, v) = 'H{v) - H(u) - <f>t(f,u, v) - f{v)(v - u)|,

 if [u,v] is one of the intervals of D of the form [x,, Zi+i', i = 1,2,..., m - 1,
 and

 I (¿(u, v) = I H(v) - H(u) - 4>r(f, u, v) - /(u)(v - u)|

 if [u,v] is one of the intervals of D of the form [z{, x¿] , t' = 1, 2, . . . , m - 1. Now
 consider sums of the form £ d(u, v) over restricted (restricted symmetric)
 tagged divisions of [a,b] where [u,v] has alternatively the form [¿,-,x,] and
 [x,-, Zi+i], i = 1, 2, . . . , m - 1. Let S = S(x) > 0 and define V by

 V = V(H, A, /; 6; [a, 6]) = sup £ d{ u, v)
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 where the supremum is taken over all 5-fine restricted (restricted symmetric)
 tagged divisions of [a,b] .

 Definition 5.1 The function H is A -variationally (A-symmetric variation-
 ally) equivalent to the function f if given e > 0 there exists 8 = 6(x) > 0
 such that

 V = V(HÌAJÌ6Ì [a, 6]) <6,

 where V is defined with respect to 6 -fine restricted (restricted symmetric)
 divisions of [a, 6] .

 It is easy to see that an equivalent definition of ^-variational (^-symmetric
 variational) equivalence is the following (cf. [14]).

 Definition 5.2 The function H is A-variationally (A-symmetric variation-
 ally) equivalent to the function f if, given e > 0, there exists 6 = 5(x) > 0
 and a monotone increasing function ' such that

 o = x(a) < x(b) < e

 and

 d{u,v) < x(v) -x(u),

 for intervals (u,v) in all 6 -fine restricted (restricted symmetric) tagged divi-
 sions.

 If H is ^-variationally (^-symmetric variationally) equivalent to f on
 [a,b] the difference H(b) - H(a) will be called the ^-variational (^-symmetric
 variational) integral of f on [a,b].

 Theorem 5.1 If H is a point function defined on [a, 6] and H is A-variation-
 ally (A-symmetric variationally) equivalent to the function f on [a, 6], then
 the generalized Riemann complete (generalized symmetric Riemann com-
 plete) integral of f with respect to A = {<t>i,<t>r} = {<M/> u)> &■(/> u> v)}
 exists and equals the variational integral H(b) - H (a). Conversely , if the
 generalized Riemann complete (generalized symmetric Riemann complete)
 integral of f with respect to A = (^¿,0r) - u> v)> 0r(/» u-> v)} exists,
 then so does the corresponding A -variational (A-symmetric variational) in-
 tegral and they are equal.

 Proof. Let e > 0 be given. Then since H is ^-variationally (^-symmetric
 variationally) equivalent to f, there exists 6(x) > 0 such that

 |ff(6)-ff(o) -(/>)£(*. + f„)| =
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 1(0) EW«) - «M - Mí.«,') - -M«.»)! s

 C)EI(ífW - ä(u) - Mí i«.«) ~ f«(u>")I S xM - x(<0 < í>

 for all 5-fine divisions D, and this proves the first part of the theorem.
 Now let

 (5.1) H{u, v ) = (GRC, A) i f(t) dt,
 JtA

 and the proof of the second part of the theorem follows from Definitions
 (3.1) and (5.1).

 6 The CnP-integral and the generalized Riemann
 complete integral.

 The CnP-integral of a finite point function may be defined in the following
 way (cf. [4]). Assuming the Cn_ iP-integral has been defined, where the CqP-
 integral is the Perron integral, we define the nth Cesàro integral mean of a
 function g by

 rx+h

 Cn(g, x,x +h) = n/hn J {x + h- £)n_1 9(0 dÇ,

 the integral being a Cn- iP-integral. (We take Co(g,x,x + h) to mean
 g(x+h).) If Cnļg, Xq, iq +h) -* g(x o), as h -* 0, g is said to be Cn-continuous
 at io- If

 ,im í^áí^i+Rziíâ) V h/{n +1) J V h/{n +1) J
 as h - > 0 exists, it is denoted by CnDg(x). Otherwise the upper and lower
 limits of the expressions are denoted by CnDg(x) and CnDg(x), and called
 the upper and lower Cn-derivatives, respectively.

 Definition 6.1 M(x) and m(x) are Cn-major and minor functions, respec-
 tively, of f(x) in [a, 6] if

 (6.1) A/(x) and m(x) are Cn - continuous, x € [a, 6);

 (6.2) A/(a) = m(o) = 0;

 (6.3) CnDM(x) > f(x) > CnDm( x),x€ [a, 6].
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 It can be shown [4] that for any major or minor functions M(x) and
 m(x), respectively, the difference M(x) - m(x) is monotonie increasing, and
 so M(b) > m(b) and +00 > inf M(b ) > sup m(6) > -00. If inf M(b) =
 sup m(b), this value is defined to be the C„P-integral of f on [a,b], denoted

 by t
 (CnP f t f(t)dt.

 J a

 Theorem 6.1 Suppose f is finite and CnP -integrable on [a, 6], and let

 F{x ) = CnP f* f{t) dt.
 J a

 Then F(x) is A-variationally equivalent to f on [a, 6] where A = A^ =
 (4>i, <t>T) is defined for Cn_ 1 P -integrable F by

 (6.4) fa = n, u, v) = (n + l)Cn(i' v, u) - nF(v) - F(u) = L(F),
 and

 (6.5)¿r = Mf, », «, v) = -(n + l)Cn(F, u, v) + nF(u) + F(v) = R(F).

 Proof. Let M(x) be a C„-major function of f(x) on [a,b]. Let r¡ > 0 be
 arbitrary. Then by (6.3) we have

 CnDM(x) > f(x) - r,, X € [a, 6],

 and it is easy to show that there exists ^i(x) > 0 such that M(x) = M(x)+r)x
 satisfies the inequalities

 (6.6) M(u) > M(x) + R(M, x, u) + f(x)( u - x),

 if 0 < u - X < 6i(x), and

 (6.7) M(t) < M(x) - L(M, x, t) + f(x)(t - x),

 if 0 > t - x > -^x(x).
 Similarly, if m(x) is a C„-minor function and m(x) = m(x) - r'x, it can

 be shown that there exists 8ļ(x ) > 0 such that

 (6.8) m(u) < m(x) + R(m,x,u) + /(*)(« -x)

 if 0 < u - x < ¿2(®)>

 (6.9) m(0 - m{x) - L(m,x, t) + f(x)(t-x),

 if 0 > t - x > - ¿2(1). It is also clear that (6.6)-(6.9) are satisfied for 6(x)
 = min (5i(x), ¿2(1))- Now if 0 < u - x < £(x),then
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 F( u) - F(x) = (M(u) - M(x)) - (M(u) - F(u)) + (M(x) - F(x)) >

 R(M,x,u) + /( x)(u - x) - (M(u) - F{u)) + (M(x) - F(x)) =

 <M/> n, X, u)+ f(x)(u-x)-(M(u)- F(u))+(M(x)~ F(x))+ R(M - F, x, u) >

 n, x, u) + /(x)(u - x) + (n + l){(M(x) - m(x)) - ( M(u ) - m(u))},

 since M - F is increasing and so

 R(M - F,x, u) >

 -(n+l)(M-F)(u)+n(M-F)(x)+(M-F)(u) = n[{M-F){x)-{M-F){u)',

 and

 (M - F)(x) - (M - F)(u) > (M - m)(x) - (M - m)(u).

 In a similar way we obtain for 0 < u - x < ¿>(x),

 F(u) - F(x) = (m(u) - m(x)) - (m(u) - F(u)) + (m(x) - ^(x)) <

 <^r(/, n, x, u) + /(x)(u - x) + (n + 1 ){(M(u) - m(u)) - (M(x) - m(x))}.

 We have therefore shown that if 0 < u - x < ¿(x), then

 |F(u) - F(x) - n, x, u) - /(x)(u - x)| <

 (n + 1 )[(M(u) - m(u)) - (M(x) - m(x))].

 It follows in a similar way that if 0 < x - t < S(x) then

 |^(x) - F(t) - <1>i{f, n, t, x) - /(x)(x- t)' <

 (n + l)[(A/(x) - m(x)) - ( M(t ) - m(i))].

 Now, given e > 0, we may choose CnP-major and minor functions M(x) and
 m(x) so that (6.6)-(6.9) are satisñed and so that

 M(b) - m(b) < e/(n + 1)

 Thus

 V(F, AJ-, 6 ; [a, 6]) < (n + 1)[M(6) - m(6)] < e

 This shows that F is >t-variationally equivalent to f on [a,b] .

 399



 Now we show that A = 4>r) as defined above is regular. The condition
 of linearity is obviously satisfied. Moreover it is known that if / > 0 and
 CnP-integrable, then f is generalized Riemann integrable [4]. It follows that
 given e > 0, there exists 6 > 0, such that for all <5- fine restricted tagged
 divisions D of [a,b] we have at the same time

 and

 and this implies that for these divisions '(P) J24>cr' < e-

 Theorem 6.2 Iff is finite and CnP -integrable on [a, 6] then f is generalized
 Riemann complete integrable with respect to the pair of interval functions
 A - {<t>i, <1>r} defined in Theorem 6.1, and the integrals are equal.

 Proof. The proof follows from Theorem 6.1 and 5.1.

 Corollary 6.1 If f is generalized Riemann integrable then f is GRC- inte-
 grable and the integrals are equal.

 7 The Pn-and ^-integrals.

 Since the Pn- and ^"-integrals ([8], (15), [16]) are n-fold integrals while the
 generalized Riemann complete integral represents a one- step integration
 process, no direct comparison between the Pn- or ^"-integral and the G Re-
 integrai can be expected.

 On the other hand since ^"-integrability on [a,b] implies C„_iP-in-
 tegrability on any closed sub-interval [ct,ß' (Theorem 11.1, [15]), we have
 by Theorem 6.2 the following:

 Theorem 7.1 If f(x) is finite and Pn+1 -integrable over (a,; x) and [a, 3] is
 any closed sub-interval of (a, an+i), then f(x) is GRC -integrable with respect
 to an appropriate pair of interval functions A^ = {<pe, <pT) over [a,ß'. If

 Fix ) = i-1)* Í fix) dn+ix, a, < x < as+1,
 J(°<)

 then F(x) has generalized (Peano) derivatives ([10], [23],), F^)(x), 1 < k < n,
 in [oL,ß', and

 F(n)(ß) - F{n)(a) = (GRC, ¿W) J ^ f(x) dx.
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 (It has been shown moreover that the GRC-integral integrates everywhere
 finite Peano and CnP-derivatives [7].)

 8 The S CnP- integrals

 Because the SCnP- integrals ([3], [5]) are defined only almost everywhere,
 they do not appear to have a definition in terms of Riemann sums.

 On the other hand it was shown in [7] that the GSRC-integral integrates
 everywhere finite de la Vallée Poussin and SCn-derivatives.

 I am indebted to the referees for their corrections and helpful suggestions.
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