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 ON THE PATH DERIVATIVE

 1. Introduction

 Bruckner, O'Malley and Thomson in [3] introduced the concept of the path

 derivative as a unifying approach to the study of a number of generalized

 derivatives. Many proofs are based on a system of paths satisfying some of

 the intersection conditions. On the other hand the paper [1] uses the system

 of paths as a continuous multifunction. Our paper is a continuation of this

 approach. We study various properties of primitives and the properties of the

 multifunction of the E-derived numbers and the extreme path derivatives

 (namely the Baire classification). Our proofs are based on various generalized

 types of continuity and measurability of the system of paths.

 2. The E-derivative

 Given nonempty sets X and Y, a function F : X - » 2^, called a
 relation, and A c Y let

 F"(A) = {x c X: F(x) n A * ♦}

 F^A) = {x e X: F(x) <= a}

 GrF = { (x,y) e XxY: x e X,y e F(x)} (graph of F)

 If for each x e X F(x) * ♦, then F is called a multifunction and we write

 F : X - ► Y.

 Let (IR, e), (IR*,®*) be the real line with the usual topology and the
 extended real line with the topology of the two-point compactification of IR

 respectively.

 Definition 2.1. Let (IR^T) be a topological space, & c 3". A quadruple £ =

 (IR¿rfE,C) is called a generalized system of paths, where E : IR - » IR is

 multifunction, ♦ * C c 2", ♦ i C.
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 Definition 2.2. Let £ be a generalized system of paths and let f : R - * R

 be a function. A point z e IR* is called a £-derived number of f at point
 x e R, if for any G e 0*, z e G and for any U e 3", x € U there exists a

 set A e C such that A c U n E(x)'{x} and for any y e A : ~ e G.

 The set of all £-derived numbers of f at a point x will be denoted by

 D(f,£,x).

 Define Dfjg : IR - » IR* by Df^íx) = D(f,£,x). If D(f,£,x) * ♦, then
 the extreme £-derivatives of f at a point x are

 fģ(x) = supD(f,£,x) (the upper extreme £-derivative)

 fģ(x) = infD(f,£,x) (the lower extreme £-derivative)

 If D(f,£,x) is a one point set, then that point is called the £-derivative

 of f at x and it is denoted by fģ(x).

 Let ker(f,£) = Df^ilR) = {x € R : f has at least one finite £-derivative
 number} .

 Remark 2.3. If there is a set U e 3" such that x e U and U'{x} does

 not contain any set from C, then D(f, £,x) = ♦.

 Definition 2.4. Let f : IR - » IR* be a function and ♦ * C c 2®, ♦ i C. The
 (C^)-cluster set, C(3r,f,x) of f at x e IR is the set of all points y e IR*
 such that for all V e 3" with x € V and all U e 0* with y e U,
 f-1(U) n v contains a set A € C. A function f is said to be (C,ïï)~

 continuous at a point x € IR if f(x) e C(3",f,x) and (C^T) -continuous if f is

 (C^T) -continuous at any x € IR. A function f : IR - * IR* is said to be
 7-measurable if f-1^) has the JT-Baire property for any G e 0* ([5,
 p. 306]).

 Lemma 2.5. Let £ = (R,3",E,C) be a generalized system of paths and let

 f : R ■* R. If x e ker(f,£), then f is (C^T)-continuous at x.

 Proof. If x e ker(f,£), then there exists a e IR n D(f,£,x). Let

 U e 3", x e U and t > 0. Let M = max{|a - e|, |a + e|} and S < e/M.

 By Definition 2.2 there exists a set A c (x - i, x + ó) n U n E(x)'{x} such
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 f (x ^ ' ) ~~ f (y ) that a - c < ^ ' - iJ~L < a + c for any y € A. Hence for any y c A we
 X y

 have [ I y^^ I ^ Thus |f(x) - f(y)| < M|x - y| < Mtf < t and thus
 f is (C, 3") -continuous at x.

 We turn now to a study of properties of the £-primitives.

 Theorem 2.6. Let £ = (¡R^,E,C0) be a generalized system of paths, where

 C0 = JT'{*í and let f : IR - * IR. If ker(f,£) = IR, then f is

 J-quasicontinuous.

 Proof. If C0 = 3"' { ♦ } » then (C0,JT) -continuity means 3"-quasicontinuity.

 (See the originial definition in [4].). The assertion follows directly from

 Lemma 2.5.

 Theorem 2.7. Let £ = (IR^T,E,Ct ) be a generalized system of paths, where

 Cl = {A c F : A is of the ff-second category and A has the 3"-Baire

 property} (See [5, p. 54].) and let f : IR - > IR. The following assertions are

 true.

 (a) If ker(f,£) = IR, then f is J-quasicontinuous.

 (b) If ker(f,£) is iT-dense, then f is J-measurable.

 Proof, (a) By Lemma 2.5, f is (Ct ,J)-continuous. By Theorem 2.5 of

 [7], f is 7-quasicontinuous.

 (b) Since ker(f,£) is J-dense and since C i * ♦ for any

 x e ker(f,£), Theorem 5.5 of [7] implies that f is iT-measurable.

 Theorem 2.8. Let £ = (IR,£T,E,C3 ) be a generalized system of paths, where

 Ca = (A c IR : A is of the J-second category}. If f : IR - * IR is J-measurable

 and ker(f,£) = IR, then f is J-quasicontinuous.

 Proof. By Lemma 2.5 f is (C2,J)-continuous. Since f is 3"-measurable,

 f is (Cj,5r)-continuous, where Ct is as in Theorem 2.7. By Theorem 2.5 of

 [7], f is ¿T-quasicontinuous.

 Remark 2.9. If U - H is the density topology, then Theorem 2.7b gives

 Lebesgue measurability. (See [11].)
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 Remark 2.10. If £ = (IR,0,E,2^'{*}) and if each set E(x) has x as a point
 of ©-accumulation, then we obtain the notion of the path derivative as

 defined in [3], In this case we write D(f,E), f¿(x), f¿(x)» f¿(x) instead of
 D(f,£), f¿(x), f¿(x), f¿(x) and they are called, the set of all E-derived numbers
 of f at x, the upper, lower extreme E-derivative and the E-derivative of f

 at x, respectively.

 Theorem 2.11. Suppose that E(x) is of the ©-second category at x and

 E(x) has the 0-Baire property for each x e IR. Let f : IR - * IR.

 (a) If f has a finite E-derivative everywhere in an e-dense set A,

 then f is 0-measurable.

 (b) If f has a finite E-derivative everywhere, then f is

 0-quasicontinuous.

 Proof. It is clear that if f has a finite E- derivative at x, then f is

 E-continuous at x. Hence f is (Cļ ,0)-continuous at x, where Ct =

 {A c IR : A is of the 0-second category and A has the 6>-Baire property}.

 In the case (a) C!(0,f,x) is nonempty for each x e A and by Theorem

 5.5 of [7] f is e-measurable.

 In the case (b) f is (Cx,0)-continuous and by Theorem 2.5 of [7], f is

 0-quasicontinuous.

 3. The £s-derivative

 Mišlk in [8] posed the following question. If the extreme, unilateral,

 essential derivative of a function f is almost everywhere finite, then is f

 Lebesgue measurable? In this section we shall show that the answer is yes

 and Theorem 3.10 will generalize this result. Throughout this section (IR, U)

 is Hausdorff topological space having no J-isolated points. Let Dg-(A) =

 {x € IR: V n A is of the J-second category for any V € 3", x e V} and let

 intg-A denote the interior of A relative to 3". The following definition gives

 the topological analogue of essential derivatives.

 Definition 3.1. Let E : IR - »IR be a multifunction. The triplet (IR, 3", E)

 will be denoted by £s. Let f : R - » IR, x e IR. A point z € IR* is called

 a £s-derived number of f at x if x e Dg-(E(x)) and for any G e &*, z € G
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 there is a H e J containing x and there is a set A c E(x) n H'{x} such

 that E(x) n H'Dg-(A) is of the JT-first category and for any y € A
 fřx) ~~ f ( y)

 L. x _ v € G. The set of all £s-derived numbers of f at x will be x _ v y

 denoted by D(f, £s,x) and f£S, f£s> fgs are defined analogously to
 Definition 2.2.

 Exaaple 3.2. Let £s = (IR,X,E), where H is the density topology and

 E(x) = R for any x e IR. If a e D(f,£s,x), then for any G e &*, a e G*

 there is a set A c IR such that lim sup |A n (x - h, x + h)|*/2h = 1 and

 € ® for any y € A'{x}, where |S|* is the outer Lebesque

 measure of S .

 Proof. It is clear that if A c G e H and Djy(A) 3 G, then |A|* = |G|,
 where |G| is the Lebesgue measure of G. If a e D(f,£s,x), then for any

 G e 0*, a e G there is H € H, x e H and there is A c E(x) n H'{x} =
 H'{x} such that H'Djļ(A) is of the Jł-first category, i.e. |H'D#(A)| = 0

 f (x) s 1 f (y ) and s 1 _ - }UU- € G for any y € A. We shall show that lim sup
 X _ y h-K)

 |A n (x - h, x + h)|*/2h = 1. From the following inclusions

 ((A n (x - h, x + h) n H)'(H'D*(A))) c

 (((X - h, x + h) n H)'(H'Dj»(A))) € H.

 D*((A n (x - h, x + h) o H)'(H'D#(A))) 3

 ((x - h, x + h) n H'(H'D*(A)))

 we have

 lim sup I A n (x - h, x + h)|*/2h *
 h-*0

 lim sup I (A n (x - h, x + h) n H)'(H'D#(A) ) | */2h =
 h-K)

 lim sup I (x - h, x + h) n H'(H'D#(A) ) | /2h =
 h->0

 lim sup I (x - h, x + h) n H|/2h = 1 because x e H e M.
 h-*0
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 Remark 3.3. In Example 3.2 if we put E(x) = [x,») (E(x) = (-»jx]) for any

 X e IR, then we have the following:

 If a e D(f, £s,x), then

 lim sup I A n (x,x + h)|*/h = 1
 h-K)

 (lim sup I A n (x - h,x)|*/h = 1)
 h-K)

 for any G e &*, a e G, where

 A = {y € R: f(» ' f<?> « G, y « x).
 x - y

 Definition 3.4. A multifunction F : IR - » IR* is said to be upper

 semicontinuous (use) (lower semicontinuous (lsc)) at a point p e IR if for

 any G e 0* such that G 3 F(p) (G n F(p) * ♦) there exists a set V e J
 such that p e V and F(x) c G (F(x) n G * ♦) for any x e V. Let ♦ *.

 C c 2", ♦ i C. A multifunction F : IR - ► IR* is said to be i-(C, 3") -continuous
 at p if for any G € 0* such that G n F(p) * ♦ and for any V e 3" with
 p e V there is a set A e C such that A c V and F(x) n G * ♦ for any

 x € A. If F is use, (lsc, Ä-(C,JT)-continuous) at each p e IR, then F is

 said to be use (lsc, £-(C^T)-continuous).

 Remark 3.5. (a) In the case of a single valued multifunction S-(C,J)~

 continuity coincides with the notion of (C^T)-continuity. (See Definition 2.4.)

 (b) If G - 5T' { ♦ } , then 4- (C,3") -continuity of F means îT-lower

 quasisemicontinuity of F (lqsc).

 Lemma 3.6. If f : IR - * IR* is an arbitrary function and C2 = {A c IR : A is
 of the JT-second category}, then the set K of all points at which f is not

 (C2,íT) -continuous is of the 3"- first category.

 Proof. Denote by {®n)n"ļ a countable base of (IR*,0*). We have K =
 00

 U (f-1 (GuJXDjif-1 (Gn) ) ) and according to [5, p. 51] the set K is of the
 n=l

 ST-first category.

 Lemma 3.7. Let (IR, 3") be a Baire space. A function f : IR - » IR* is 3-
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 nonmeasurable if and only if there are a,b € IR, a < b and ♦ * H € J such

 that Dy(f-1 ((!>,•])) a H and D^f"1 ([-»,a))) =» H.

 Proof. Suppose that f is not 7-measurable and let C2 = {A c R : A is

 of the y-second category}. By Lemma 3.6 the set K of all points at which f

 is not (C2 j3")-continuous is of the iT-first category. Hence C2(f,3,x) is

 nonempty on the 7-dense set R'K because f(x) € C2( f,JT,x) for any x e IR'K.

 Since (R*,0*) is compact, the set G3(f,J,x) is nonempty for any x e IR, as
 is now shown. Let x € IR. There is a net {x^- € IR'K : <r e E} which

 converges to x. Since (R*,0*) is compact, there is a subnet

 {y^! € C2( fjiTjX^i) : <rl e E1 c E} which converges to ye IR*. It is clear
 that y e C2( f,3",x). Hence C2( f,3",x) * ♦.

 Define C : IR - ► IR* as follows:

 C(x) = C2(f,3T,x) for any x e IR. By [7, Lemma 4.1] C(x) is 0* -compact for
 any x e IR and by [7, Lemma 4.4] C is use. Hence C is lsc except for a

 set Ki of the iT-first category (Theorem 2.1 of [7]).

 We shall show that C is *-{C2 »^-continuous. Let x e IR, G e 0* such
 that G n C(x) * ♦, let U e J, x e U. By Definition 2.4, there is a set

 A € C2 such that A c U and f(A) c G. Since f(z) € C2(f,7,z) for any z e

 A'K, C2( f,¿T,z) n G * ♦ for any z e A'K c C2. Thus C is 4-(C2,3")-

 continuous. By [7, Theorem 1.1] C is lqsc. By [7, Corolary 2 of

 Theorem 5.6] M = {x € R : C(x) * {f (x) >} is of the J-second category. Hence

 C(x) * {f (x) } for any x e M n (R'K). Define fi,f2 : R - * R* as follows:
 fx(x) = sup C(x) and f2(x) = inf C(x). Since C is use, f2-1 ((a,®]) e 3" and

 f i~l ((-<°»a)) c 7 for any a e R. We shall show that ft and f2 are

 iT-continuous except for a set of the J-first category. We introduce the

 following notion of continuity: A function g : (R^r) - * (R*,e*) is said to be

 H-continuous at x if x e intg-Dg-(g-1 (G)) for any G e 0*, g(x) e G. By
 Remark 1.1 of [7], g is H-continuous except for a set of the J-first category.

 It is clear that if g-1((a,«]) e 3" (or g~1([-»,a)) e 3") for any a e R (that

 is, g is 3-lower (upper) semicontinuous) and g is H-continuous at a point

 x, then g is 7-upper (lower) semicontinuous at x (that is, x e

 intj(g-1(G)) for any G c 0*, g(x) € G). Hence there is a set P such that
 R'P is of the J-first category and f! and f2 are J-continuous at x for

 any x c P. Let x0 € (intg-D3"(M n (R'K))) n M n (R'K) n p. Since fi(x0) >

 f2(x0), there are a,b e R such that fi(x0) > b > a > f2(x0). The functions
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 fi, f2 are J-continuous at x0. Hence there is a nonempty set H e ī such

 that H c intg-Dy(M n (IR'K)) and fi(p) > b > a > f2(p) for any p e H. We

 shall show that H = Dyff*1 ((b,«])) n Dyif-1 ([-®,a))). Let z € H, Ve 3",

 z e V. Let t c H n V'K. Then f,(t) > b, fa(t) < a, fi(t),f2(t) e C(t) =

 C2(f,f,t). Hence there are Aļ,A2 c H n V; AX,A2 € C2, Ai c f-1 ((b, <■>]),

 A2 c f-1 ([-®,a)). Consequently z e Dg-(f-1 ((b,«])) n Dg-(f_1 ([-»,a))).
 Suppose that f is ^-measurable. Then for any a,b c IR, a < b the

 sets B = f_l((b,<»]) and A = ^'([-«»a)) have the 3"-Baire property. By [5,

 p. 56], D^(B)'B, Dg-(A)'A are of the îT-first category. Since A n B = ♦,

 Dg-(B) n Dg-(A) is of the 3"-first category. Therefore, there is no nonempty set

 H e 3" such that H c Dg-(B) n Dg-(A).

 Definition 3.8. A multifunction E is said to be right sided (left sided) at x

 if E(x) c [x,») (E(x) c (-«,x]). E is right sided (left sided) on T c IR if E

 is right sided (left sided) at each x e T. E is unilateral on T if E is

 right sided on T or left sided on T.

 Lemma 3.9. Let (IR, 3") be a Baire space and €> c 3". Let E be unilateral on

 a J-residual set T, x e Dg-(E(x)) and let E(x) have the 3"-Baire property

 for each x e T. If f : IR - > IR is not 7-measurable, then there are sets

 Si, S 2 c IR of the y-second category such that f¿s(x) = " f°r any x e Si
 and f£s(x) - _<° for any x e S2.

 Proof. Suppose that E is right sided on T. (If E is left sided, the

 proof is analogous.) By Lemma 3.7 there are a,b e IR, a < b and there is a

 nonempty set H c 7 such that Dg-(B) 3 H and Dg-(A) 3 H, where B =

 f-1((b,»)) and A = f-1 ((-«®»a)). Let St = A n H n T. We shall show that

 f£s(x) = ® f°r any x « Sx. Let x e Slf c e IR. It is clear that there is

 <5 > 0 such that (b - a)/(y - x) > c for any y e (x,x + <î). Let A0 =

 B n E(x) n (x,x + 6) n H and H0 = (x - <î,x + 6) n H e 3". We shall show that

 Ds"(Ao) 3 Dg-(H0 n E(x)). Let p e Dg-(H0 n E(x)) and V e 3", p e V. Then

 V n H0 n E(x) = V n (x - 6,x + ô) n H n E(x) = V n [x,x + ô) n H n E(x) is of

 the 3"-second category. Hence V n (x,x + <î) n H n E(x) is of the S'-second

 category and V n (x,x + <5) n H n intg-Dg-(E(x)) is nonempty. Since E(x) has

 the 3"-Baire property and Dg-(B) 3 H 3 V n (x,x + S) n H n intg-Dj(E(x)), the set
 B n V n (x,x + S) n H n E(x) is of the 3"-second category and therefore

 p € Dg-(Ao).
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 Since E(x) n H0'Dg-(E(x) n H0) is of the ar-first category (See [5, p. 51].)»

 E(x) n H0'Dg-(A0) is also of the iT-first category. Thus for any c e IR there

 is H0 € U, X € H0 and there is A0 c E(x) n H0'{x) such that E(x) n

 Ho'D3"(A0) is of the J-first category and for any y e A0, c < (b-a)/(y-x) <

 (f(y) - f(x))/(y-x) because f(y) > b, f(x) < a. Henee f¿s(x) = ».
 Let S3 = B n H n T. Let x e S2, c e IR. It is clear that there is 5 > 0

 such that (b-a)/(x-y) < c for any y € (x,x + ¿). Let AÓ = A n E(x) n
 (x,x + 6) n H, H0 = (x - 6,x + 6) n H € 3". It can be proved analogously that

 E(x) n H'Dg-(AÓ) is of the J-first category, AÓ c E(x) n H0'{x} and for any
 y e AÓ, c > (b-a)/(x-y) > (f(x) - f(y))/(x-y) because f(x) > b, f(y) < a.
 Henee f¿s(x) =

 Now we present the main result of this section.

 Theorem 3.10. Under the same conditions on (IR, J) and E as in Lemma 3.9,

 if f £s(x) > -® (f¿s(x) < «) except for a set of the iT-first category, then f
 is ¿r-measurable.

 Proof. This follows directly from Lemma 3.9.

 Definition 3.11. A point a € IR* is called a right sided essential derived
 number of f : F - * IR at a point x if lim sup |(x,x + h) n {y : (f(x) -

 h-H)

 f(y))/(x-y) « G}|*/h > 0 for any G € 0 *, a e G. The set of all the right
 sided essential derived numbers of f at x will be denoted by D+ (f,x).

 ess

 The upper (lower) right sided essential derivative of f at x is

 defined analogously as in Definition 2.2 and it is denoted by f* (x)
 6SS

 (f4" (x)). The set D- (f,x) of the left sided essential derived numbers
 -ess ess _
 of f at x and the extreme left sided essential derivatives (f~ ) are

 _ _ ess

 defined analogously. (Some authors use f^, í^p» fjļp ••• (See [1].)).

 Theorem 3.12. (See Mišik's question in [8].)

 1. If f4" (x) < « (f* (x) > -«) except for a set of Lebesgue measure
 ess -ess

 zero, then f is Lebesgue measurable.

 2. If f~ (x) < ® (f- (x) > -») except for a set of Lebesgue measure
 6SS 6SS

 zero, then f is Lebesgue measurable.
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 Proof. 1. Let J = M, E1(x) = [x,») for each x € IR. By Remark 3.3

 we have D(f,£1s,x) c Dess^'X^' where £ls = Suppose that f is
 not Lebesgue measurable. By Lemma 3.9 there are sets Slt S2 such that

 I Sx I * > 0, |S2|* > 0 and f'x (x) = » for any x c Sj and (x) = -» u S t S

 for any x e S2. This is a contradiction.

 2. If we let E2(x) = for each x e IR, we obtain a contradiction to

 the assumption that the upper (lower) left sided essential derivative of f is

 almost everywhere less than » (more than -«»).

 Theorem 3.13. Suppose the same conditions on (IR»?) and E as in Lemma

 3.9. Let £ = (IR,¿T,E,C) be a generalized system of paths, where C 3 C2 -

 {A c IR : A is of the JT-second category}, ♦ i C. If f¿(x) < ® (í¿(x) > - <°)
 except for a set of the J-first category, then f is JT-measurable.

 Proof. Suppose that f is not 7-measurable. By Lemma 3.9 there are

 sets St, S 2 of the J-second category such that f¿s(x) = « for any x e Sx
 and Í£s(x) = -<0 f°r any x c S2, where £s = (IR,7,E). It is clear that

 D(f,£,x) 3 D(f,£s,x). Consequently f ¿(x) = ® for any x € Sj and
 fg(x) = -« for any x e S2. This is a contradiction.

 Theorem 3.14. Suppose the same conditions on (IR, 3") and E as in Lemma

 3.9. If fg(x) < » (fg(x) > -<») except for a set of the J-first category, then
 f is ^-measurable.

 Proof. Let £s = (IR,ir,E), £g- = (IR^r,E,2®' ' {♦}), and £ = (F^E,^ ' {♦}).
 Then D(f,E,x) = D(f,£,x) 3 D(f,£g-,x) 3 D(f,£s,x). The assertion follows directly
 from Lemma 3.9.

 Corollary 3.15. (See [2].) If one of the upper (lower) Dini derivatives of a

 function f is less than « (more than -®), then f is ^-measurable.

 4. Extreme E-derivatives

 In this section we will develop a number of properties of extreme path

 derivatives and we will obtain a generalization of the results in [1] and [9].
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 Let E be a system of paths, i.e. a multifunction E : IR - »IR such that

 each E(x) has x as a point of e-accumulation. For any n € N we define

 the relations En> Ef¡, E¿ as follows:

 En(x) = E(x) n (x - l/n,x + 1/n)

 E5(x) = E(x) n (x - l/n,x)

 EÃ(x) = E(x) n (x,x + 1/n).

 If f : B - B, define f„ : B.B ' A - B, by f.(x,y) = "here

 A = {(x,x) € IRxR : x € IR}.

 For A c IRxIR let prA = {x e IR : for some y e IR, (x,y) e A}.

 If a = * », and if r e IR let a * r = a.

 The set of all E-derived numbers of f at x is denoted by D(f,E,x) (See

 Remark 2.10.) and the multifunction of E-derived numbers Df^ : IR - * IR* is
 defined as follows Df,E(x) = D(f,E,x). The proof of the next assertion is
 trivial and hence omitted.

 CD _ ļ

 Lena 4.1. For any a,b e IR*, a < b we have Df^ifajb]) = nQjPr(f0 _ ļ ((a-l/n,

 b+l/n)) n GrEn) = n,pr((f0l ((a-l/n, b+l/n)) n GrEŘ) u (fņ1 ((a-l/n, b+l/n) ) n n-l

 GrEn) ) •

 - 1 i i

 We turn now to a study of the Baire classification of Df^g, fj;, ÍE» ^E-

 Definition 4.2. Let A« (Ma) denote the family of all sets of the Borei

 additive (multiplicative) class «. A multifunction F : IR - » IR* is a lower
 (upper) semi Borei multifunction of the class a (briefly F e íBa (F e uBa) )

 if F+((a,»]) € Aa(F+([-»,a)) e A«) for all a € IR. Let Ba = ÍBa n uB«. F is

 a Baire multifunction of the class « if Fe B«. For a single valued

 multifunction, it means for a function see [8].

 Lemma 4.3. Let f : R - * IR be a function. For a € IR let

 Sa = {(x,y) : f(x) - ax > f(y) - ay}
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 Ta = {(x,y) : f(x) - ax < f(y) - ay}

 00

 (a) If f e ¿Ba, then Sa = A¿xBí where Aļ € A«, Bj € M«
 00

 (b) If f € uB«, then Ta = Aí*Bí where A± e Aa, Bļ e M«

 Proof, (a) Let r € IR. It is clear that {z € IR : f(z) - az > r} =

 {z € IR : f(z) > q} n {z e IR : q > r + az} where ® = {a e IR : a is a

 rational number}. Since {z e F : f(z) > q} € A« and since {z e IR :

 q > r + az} e A0, {z e IR : f(z) - az > r} e A«. The equality Sa =

 {x e IR : f(x) - ax > r} x {y e IR : f(y) - ay r} finishes the proof,

 (b) This case is proved analogously, because

 {z e F : f(z) - az < r} = {z e IR : f(z) < q} n {z e IR : q < r + az} c A«

 and Ta = {x c IR : f(x) - ax < r} x {y e IR : f(y) - ay ^ r}.

 Lemma 4.4. Let f : IR - * IR. For any a,b e IR, a < b

 (a) f0 1 ( (a,») ) n GrEñ = Sa n GrEñ

 (b) f0 1 ( (-®,a)) n GrEñ = Ta n GrEñ

 (c) f0 1 ( (a,») ) n GrEj = Ta n GrE¿

 (d) f0 1 ( (-»,a) ) n GrE^ = Sa n GrE£

 (e) fo '((a.b)) n GrEñ = sa n Tb n GrEñ

 (f) f0 1 ( (a,b) ) n GrEn = Sb n Ta n GrEj

 where Sa, Ta are as in Lennna 4.3.

 Proof. The trivial proof is omitted.

 00

 Lemma 4.5. If GrE = Aļ x B¿ where Aļ e A« and Bļ c IR, then GrEn,

 GrEñ, GrEn can be expressed as the union of a sequence of sets Xļ x Yļ,

 XI x Yī, XÍ x Y+ where Xi, Xļ, X{ c A« and Yļ, YJ, Yļ c IR, i = 1,2,3...,

 respectively.
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 Proof. We define the mult if unctions N, N~, N"1" : R - * IR as N(x) =

 (x-l/n,x+l/n) , N~(x) = (x-l/n,x), N+ix) = (x,x+l/n) for all x c IR. Then
 fi» 00 00

 GrN, GrN-, GrlT1" can be expressed as Hļ x Gļ, HJ x GJ, HÍ x G^

 where Hļ, Gj, HJ, GJ, HÍ, G^ € A0 for any i = 1,2,3... respectively and

 the proof is finished by the equality GrEn = GrE n GrN, GrEJ = GrE n GrN-,

 GrEn = GrE n GrN"1", respectively.

 Lemma 4.6. If Dfjgíta.b]) € Ma+i f°r any a>b € IR*, a < b, then
 f¿ e uB«+1, f¿ e ÍB«+1, DffE e B«+1 , f¿ e B«+1 (if fģ exists).

 Proof. Let a e IR. Since f¿ 1([a,»]) = Df^Cta,»]) € M«+!>
 f¿ ^[-».a)) e A<x+i . Analogously f¿ '([-«s a]) = Df ,e( ["«»a] ) e M„+1 .

 Hence f¿ '((a,®]) e Aa+1 . ^^([-».a)) = IR'Df tg( [a,®] ) € A«+i. Hence

 Df,E e uBa+|. DÝ, EC (b, «] ) = IR'Df ["".b] ) e A«+i . Hence Dffg e *B«+1.

 00

 Theorem 4.7. Let GrE = Aļ x Bļ, Aļ e A«, Bi c IR. If fe Ba, then

 Df,E([a»bJ) c M«+i for any a,b e IR*, a < b and by Lemma 4.6 fģ e uB«+i,

 f¿ e *B«+j, DfjE e B«+i , f¿ « B«+i (if f¿ exists).

 Proof. If a = -®, b = «, then Df^Qajb]) = IR e M«+i. Let a,b e IR,

 a < b. By Lemma 4.4e and Lemma 4.4f, respectively, and by Lemma 4.3 and
 00

 Lemma 4.5, we have f0 1 ( (a-l/n,b+l/n) ) n GrEñ = *i * ^i where

 Xi e A« and f0 1 ( (a-l/n,b+l/n) ) n GrEn = J -Uļ Z j * Tj where Zj e ha, J
 ® ® jļ ® jļ

 respectively. Then by Lemma 4.1 we have Df [a,b] ) = nQ^ (ļūļ u jüj Zj)
 € Mc+t.

 In the case a c IR, b = ® (a = -®, b c IR) we use analogously Lemma

 4.4a,c (Lemma 4.4b, d) .

 For E(x) = (x,®) and E(x) = (~»,x), respectively we have

 Corollary 4.8. (See [9].) The upper (lower) Dini derivatives of a Baire
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 function of the class a are upper (lower) semiBorel functions of the class

 «+1 .

 If E is unilateral, the following theorem is an improvement of Theorem

 4.7.

 00

 Theorem 4.9. Let GrE = * Bļ, e Aa, Bļ c IR.

 (a) If E is left sided on R and f e 4Ba (f e uB«), then

 Df.EÜ3»"]) € M«+1 (Df eÜ-". a])) e Ma+t) for any a e IR and consequently
 fE e uB«+i , Df,E € uB«+i (ÍE e ^Ba+i , Df^ e íB<x+i).

 (b) If E is right sided on IR and f e 4Ba (f e uBa), then

 D?,e( [-a>»a] ) € M«*! (Df tE( [a»™] ) e Ma+x) for any a e IR and consequently
 ÍÉ € *B«+1, Df e *Ba+1 (f¿ e uB«+1, Df jE e uB«+1 ) .

 Proof, (a) In this case f0 1 ( (a-l/n,b+l/n) ) n GrEj = Let f e 4B«
 (f € uB«) . By Lemma 4.4a (Lemma 4.4b), Lemma 4.3a (Lemma 4.3b), Lemma 4.5

 and Lemma 4.1 we obtain Df [a,«] ) € Ma+1 (Df ^ [-<0,a] ) c Mc+t).

 (b) In this case f0 1 ( (a-l/n,b+l/n) ) n GrEñ = ♦. Let f e ÄB«
 (f e UB«) . By Lemma 4.4d (Lemma 4.4c), Lemma 4.3a (Lemma 4.3b), Lemma 4.5

 and Lemma 4.1 we obtain D^eCC-"»0]) e Ma+i. (Df ,e( [a,»] ) e M«*!).

 The following corollary is an improvement of Corollary 4.8.

 Corollary 4.10. (a) If f e ÄB«, then D~f € uBa+x and D+f e ¿Bc^.

 (b) If f € uBa, then D_f e ÍB«+1 and D+f € uB«+! where D~f,

 D+f, D_f, D+f are upper left, upper right, lower left, lower right Dini
 derivative of f, respectively.

 It is well known that the extreme path derivatives can behave badly.

 (For example, there is a continuous function F such that given any function

 f, a system of path E can be found such that Fg = f.) In the following

 theorems we impose some restrictions on the system of paths as well as on the

 function. We shall show that under some conditions the E-derivative can have

 nice properties.
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 Theorai 4.11. (An improvement of Corollary 13 of [1].) If f € B! and

 GrE is a F<r set, then [a,b] ) e M2 for any a,b € IR*, a < b and

 by Lemma 4.6 f¿ e uB2, f¿ € ÍB2, Df^ c B2, f¿ e Ba.

 Proof. It is clear that if A c R x R is a bounded, closed set, then

 prA is closed. Since GrE is a Fv set, GrEn is a Fa set for any

 n = 1,2,... . Since f e Bļ, f0 is in Baire class one and GrEn n
 -i °»

 f0 ( (a-l/n,b+l/n) ) = Cn where Cn c R x R and Cn is a closed set

 and without loss of generality we can suppose that Cn is bounded for any

 n. By Lemma 4.1 Df^g([a,b]) e M2.

 Definition 4.12. (See [10].) A multifunction F : X - » Y (X,Y are topological

 spaces) is said to be upper c-semicontinuous (ucsc) at p e X if for any

 open V containing F(p) and such that Y'V is compact, there is a

 neighborhood U of p such that F(x) c V for any x € U. If F is ucsc

 at any p e. X, then F is said to be upper c-semicontinuous.

 By Theorem 1 of [10], if F : (R,0) -* (R,č) is a closed valued ucsc

 multifunction, then GrF is closed. Consequently, if F is use, then GrF is

 closed.

 Corollary 4.13. If E is a closed valued ucsc multifunction and f c Bt, then

 D?,E([a>b]) e M2 for any a,b e R*, a < b and by Lemma 4.6 f¿ e uB2,
 fģ e «Ba, Df,E e B2, f¿ e B2.

 The following theorem is the improvement of the main Theorem of [1]

 (Theorem 5 of [1]).

 Theorem 4.14. If f € B0 and E is lsc, then D^EÍÍajb]) e Mi for any
 a,b e R*, a < b and by Lemma 4.6 f¿ e uB,, fģ € lBt> Df,E € fg € Bt.

 Proof. It is clear that En is lsc for any n. We shall show that An =

 pr(f0 '((ajb)) n GrEn) is open. Let x0 € An. Then there is y e R such
 that (x0,y) € f0 1((a,b)) and y e En(x0). Since f € B0, f0 is
 continuous. Hence there is IxJ 3 (x0,y) where I, J c R are open intervals

 such that IxJ c f0 1((a,b)). Since En is lsc at x0, there is an open
 set G c I, x0 € G such that En(x) n J * <t> for any x € G. Thus for any
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 X e G there is yx e En(x) n J. Hence (x,yx) € GrEn. Since (x,yx) €

 f0 '((ajb)), X € An for any x e G. By Lemma 4.1 Dffg([a,b]) € M! .

 Corollary 4.15. (See Corollary 10 of [1].) The congruent derivative and the

 extreme congruent derivative of a continuous function are in Bi and B2

 respectively.

 Proof. In this case E(x) = E(0) + x for any x e R. Thus E is lsc.

 Corollary 4.16. Let E be a system of paths that is bilateral, lsc and

 satisfies the intersection condition (See [3].). Let f € B0. If fģ exists,
 then fg e Bj and fg has the Darboux property.

 Proof. By Theorem 4.14, fģ € B! and by Theorem 6.4 of [3], f¿ has
 the Darboux property.

 Definition 4.17. A multifunction F : (IR, 3") - » (R*,0*) is said to be
 3"-measurable (IT-Borel measurable) if F~(G) has the J-Baire property (is a

 3"-Borel set) for any G € 6>*.

 Theorem 4.18. If f,E : (IR, 3") - * (R,0) are 3"-measurable and E(x) is ©-closed

 for each x € R, then Df(g is ^-measurable and consequently fģ, fg, fg
 are 7-measurable.

 Proof. By [6, p. 382], GrE is (JxeO-measurable. Hence GrEn is (3"x©)-

 measurable for any n. By [5, p. 62], if A c IRxIR is (3"x0)-measurable, then

 prA has the JT-Baire property and by Lemma 4.1, Df g is ïï- measurable.

 Corollary 4.19. (See [1] Theorem 16.) If f,E are 0-Borel measurable and

 E(x) is a-closed for any x € IR, then Df^g, fg, fģ, are Lebesgue
 measurable and have the Baire property.

 Theorem 4.20. Suppose the same conditions on (IR, 7) and E as in Lemma

 3.9 and E is 7-measurable and E(x) is 0-closed for any x e IR. Let

 f : R - » IR be an arbitrary function. If f¿(x) < ® (fg(x) > -«) except for a
 set of the JT-first category, then f, Dffg, fģ, fģ, fģ are JT-measurable.

 Proof. This follows from Theorem 3.14 and Theorem 4.18.
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