Real Analysis Exchange Vol. 13 (1987-88)

M. Matejdes, Katedra matematiky Vysokej školy dopravy a spojov, Marxa-Engelsa 15, 010 88 Žilina, Czechoslovakia.

ON THE PATH DERIVATIVE

1. Introduction

Bruckner, O'Malley and Thomson in [3] introduced the concept of the path derivative as a unifying approach to the study of a number of generalized derivatives. Many proofs are based on a system of paths satisfying some of the intersection conditions. On the other hand the paper [1] uses the system of paths as a continuous multifunction. Our paper is a continuation of this approach. We study various properties of primitives and the properties of the multifunction of the E-derived numbers and the extreme path derivatives (namely the Baire classification). Our proofs are based on various generalized types of continuity and measurability of the system of paths.

2. The E-derivative

Given nonempty sets X and Y, a function $F : X \rightarrow 2^{Y}$, called a relation, and A \subset Y let

 $F^{-}(A) = \{x \in X: F(x) \cap A \neq \phi\}$ $F^{+}(A) = \{x \in X: F(x) \subset A\}$ $GrF = \{(x,y) \in XxY: x \in X, y \in F(x)\} \quad (graph of F)$

If for each $x \in X$ $F(x) \neq \phi$, then F is called a multifunction and we write $F : X \rightarrow Y$.

Let (\mathbb{R},\mathcal{O}) , $(\mathbb{R}^*,\mathcal{O}^*)$ be the real line with the usual topology and the extended real line with the topology of the two-point compactification of \mathbb{R} respectively.

Definition 2.1. Let (\mathbb{R},\mathcal{J}) be a topological space, $\mathcal{O} \subset \mathcal{J}$. A quadruple $\mathcal{E} = (\mathbb{R},\mathcal{J},\mathcal{E},\mathcal{C})$ is called a generalized system of paths, where $\mathcal{E} : \mathbb{R} \longrightarrow \mathbb{R}$ is multifunction, $\phi \neq \mathcal{C} \subset 2^{\mathbb{R}}, \phi \notin \mathcal{C}$.

Definition 2.2. Let \mathcal{E} be a generalized system of paths and let $f: \mathbb{R} \to \mathbb{R}$ be a function. A point $z \in \mathbb{R}^*$ is called a \mathcal{E} -derived number of f at point $x \in \mathbb{R}$, if for any $G \in \mathcal{O}^*$, $z \in G$ and for any $U \in \mathcal{J}$, $x \in U$ there exists a set $A \in \mathcal{C}$ such that $A \subseteq U \cap E(x) \setminus \{x\}$ and for any $y \in A$: $\frac{f(x) - f(y)}{x - y} \in G$. The set of all \mathcal{E} -derived numbers of f at a point x will be denoted by $D(f, \mathcal{E}, x)$.

Define $D_{f,\mathcal{E}} : \mathbb{R} \to \mathbb{R}^*$ by $D_{f,\mathcal{E}}(x) = D(f,\mathcal{E},x)$. If $D(f,\mathcal{E},x) \neq \phi$, then the extreme \mathcal{E} -derivatives of f at a point x are

 $\overline{f}'_{\mathcal{E}}(x) = \sup D(f, \mathcal{E}, x)$ (the upper extreme \mathcal{E} -derivative) $\underline{f}'_{\mathcal{E}}(x) = \inf D(f, \mathcal{E}, x)$ (the lower extreme \mathcal{E} -derivative)

If $D(f, \mathcal{E}, x)$ is a one point set, then that point is called the \mathcal{E} -derivative of f at x and it is denoted by $f'_{\mathcal{E}}(x)$.

Let $\ker(f, \mathcal{E}) = D_{\overline{f}, \mathcal{E}}(\mathbb{R}) = \{x \in \mathbb{R} : f \text{ has at least one finite } \mathcal{E}\text{-derivative number}\}.$

Remark 2.3. If there is a set $U \in \mathcal{J}$ such that $x \in U$ and $U \setminus \{x\}$ does not contain any set from C, then $D(f, \mathcal{E}, x) = \phi$.

Definition 2.4. Let $f: \mathbb{R} \to \mathbb{R}^*$ be a function and $\phi \neq C \in 2^{\mathbb{R}}$, $\phi \notin C$. The (C,J)-cluster set, C(J,f,x) of f at $x \in \mathbb{R}$ is the set of all points $y \in \mathbb{R}^*$ such that for all $V \in J$ with $x \in V$ and all $U \in \mathcal{O}^*$ with $y \in U$, $f^{-1}(U) \cap V$ contains a set $A \in C$. A function f is said to be (C,J)-continuous at a point $x \in \mathbb{R}$ if $f(x) \in C(J,f,x)$ and (C,J)-continuous if f is (C,J)-continuous at any $x \in \mathbb{R}$. A function $f: \mathbb{R} \to \mathbb{R}^*$ is said to be J-measurable if $f^{-1}(G)$ has the J-Baire property for any $G \in \mathcal{O}^*$ ([5, p. 306]).

Lemma 2.5. Let $\mathcal{E} = (\mathbb{R}, \mathcal{J}, \mathbb{E}, \mathcal{C})$ be a generalized system of paths and let $f : \mathbb{R} \to \mathbb{R}$. If $x \in \ker(f, \mathcal{E})$, then f is $(\mathcal{C}, \mathcal{J})$ -continuous at x.

<u>Proof.</u> If $x \in \ker(f, \mathcal{E})$, then there exists $a \in \mathbb{R} \cap D(f, \mathcal{E}, x)$. Let $U \in \mathcal{J}$, $x \in U$ and $\varepsilon > 0$. Let $M = \max\{|a - \varepsilon|, |a + \varepsilon|\}$ and $\delta < \varepsilon/M$. By Definition 2.2 there exists a set $A \subset (x - \delta, x + \delta) \cap U \cap E(x) \setminus \{x\}$ such that $\mathbf{a} - \varepsilon < \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y})}{\mathbf{x} - \mathbf{y}} < \mathbf{a} + \varepsilon$ for any $\mathbf{y} \in \mathbf{A}$. Hence for any $\mathbf{y} \in \mathbf{A}$ we have $\left|\frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y})}{\mathbf{x} - \mathbf{y}}\right| < \mathbf{M}$. Thus $|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y})| < \mathbf{M}|\mathbf{x} - \mathbf{y}| < \mathbf{M}\delta < \varepsilon$ and thus f is $(\mathcal{C}, \mathcal{J})$ -continuous at x.

We turn now to a study of properties of the E-primitives.

Theorem 2.6. Let $\mathcal{E} = (\mathbb{R}, \mathcal{J}, \mathcal{E}, \mathcal{C}_0)$ be a generalized system of paths, where $\mathcal{C}_0 = \mathcal{J} \setminus \{\phi\}$ and let $f : \mathbb{R} \longrightarrow \mathbb{R}$. If $\ker(f, \mathcal{E}) = \mathbb{R}$, then f is \mathcal{J} -quasicontinuous.

<u>Proof</u>. If $C_0 = \mathcal{J} \setminus \{\phi\}$, then (C_0, \mathcal{J}) -continuity means \mathcal{J} -quasicontinuity. (See the originial definition in [4].). The assertion follows directly from Lemma 2.5.

Theorem 2.7. Let $\mathcal{E} = (\mathbb{R}, \mathcal{J}, \mathcal{E}, \mathcal{C}_1)$ be a generalized system of paths, where $\mathcal{C}_1 = \{A \in \mathbb{R} : A \text{ is of the } \mathcal{J}\text{-second category and } A \text{ has the } \mathcal{J}\text{-Baire property}\}$ (See [5, p. 54].) and let $f : \mathbb{R} \to \mathbb{R}$. The following assertions are true.

(a) If $ker(f, \mathcal{E}) = \mathbb{R}$, then f is \mathcal{J} -quasicontinuous.

(b) If $ker(f, \mathcal{E})$ is J-dense, then f is J-measurable.

<u>Proof.</u> (a) By Lemma 2.5, f is (C_1, J) -continuous. By Theorem 2.5 of [7], f is J-quasicontinuous.

(b) Since ker(f, \mathcal{E}) is \mathcal{J} -dense and since $C_1(\mathcal{J}, f, x) \neq \phi$ for any $x \in \text{ker}(f,\mathcal{E})$, Theorem 5.5 of [7] implies that f is \mathcal{J} -measurable.

Theorem 2.8. Let $\mathcal{E} = (\mathbb{R}, \mathcal{J}, \mathbb{E}, \mathcal{C}_2)$ be a generalized system of paths, where $\mathcal{C}_2 = \{A \in \mathbb{R} : A \text{ is of the } \mathcal{J}-\text{second category}\}$. If $f : \mathbb{R} \to \mathbb{R}$ is $\mathcal{J}-\text{measurable}$ and $\ker(f, \mathcal{E}) = \mathbb{R}$, then f is $\mathcal{J}-\text{quasicontinuous}$.

<u>Proof.</u> By Lemma 2.5 f is (C_2, \mathcal{J}) -continuous. Since f is \mathcal{J} -measurable, f is (C_1, \mathcal{J}) -continuous, where C_1 is as in Theorem 2.7. By Theorem 2.5 of [7], f is \mathcal{J} -quasicontinuous.

Remark 2.9. If $\mathcal{J} = \mathcal{H}$ is the density topology, then Theorem 2.7b gives Lebesgue measurability. (See [11].)

Remark 2.10. If $\mathcal{E} = (\mathbb{R}, \mathcal{O}, \mathbb{E}, 2^{\mathbb{R}} \setminus \{\phi\})$ and if each set $\mathbb{E}(x)$ has x as a point of \mathcal{O} -accumulation, then we obtain the notion of the path derivative as defined in [3]. In this case we write $D(f, \mathbb{E})$, $\overline{f'_{\mathbb{E}}}(x)$, $\underline{f'_{\mathbb{E}}}(x)$, $\underline{f'_{\mathbb{E}}}(x)$ instead of $D(f, \mathcal{E})$, $\overline{f'_{\mathbb{E}}}(x)$, $\underline{f'_{\mathbb{E}}}(x)$, $\underline{f'_{\mathbb{E}}(x)$, $\underline{$

Theorem 2.11. Suppose that E(x) is of the \mathcal{O} -second category at x and E(x) has the \mathcal{O} -Baire property for each $x \in \mathbb{R}$. Let $f : \mathbb{R} \to \mathbb{R}$.

(a) If f has a finite E-derivative everywhere in an \mathcal{O} -dense set A, then f is \mathcal{O} -measurable.

(b) If f has a finite E-derivative everywhere, then f is θ -quasicontinuous.

<u>Proof</u>. It is clear that if f has a finite E-derivative at x, then f is E-continuous at x. Hence f is (C_1, \emptyset) -continuous at x, where $C_1 = \{A \in \mathbb{R} : A \text{ is of the } \emptyset$ -second category and A has the \emptyset -Baire property $\}$.

In the case (a) $C_1(\mathcal{O}, \mathbf{f}, \mathbf{x})$ is nonempty for each $\mathbf{x} \in A$ and by Theorem 5.5 of [7] f is \mathcal{O} -measurable.

In the case (b) f is (C_1, σ) -continuous and by Theorem 2.5 of [7], f is σ -quasicontinuous.

3. The Es-derivative

Mišik in [8] posed the following question. If the extreme, unilateral, essential derivative of a function f is almost everywhere finite, then is f Lebesgue measurable? In this section we shall show that the answer is yes and Theorem 3.10 will generalize this result. Throughout this section (\mathbb{R},\mathcal{J}) is Hausdorff topological space having no \mathcal{J} -isolated points. Let $D_{\mathcal{J}}(A) =$ $\{x \in \mathbb{R}: V \cap A \text{ is of the } \mathcal{J}$ -second category for any $V \in \mathcal{J}, x \in V\}$ and let int_JA denote the interior of A relative to \mathcal{J} . The following definition gives the topological analogue of essential derivatives.

Definition 3.1. Let $E : \mathbb{R} \to \mathbb{R}$ be a multifunction. The triplet $(\mathbb{R}, \mathcal{J}, E)$ will be denoted by $\mathcal{E}s$. Let $f : \mathbb{R} \to \mathbb{R}$, $x \in \mathbb{R}$. A point $z \in \mathbb{R}^*$ is called a $\mathcal{E}s$ -derived number of f at x if $x \in D_{\mathcal{J}}(E(x))$ and for any $G \in \mathcal{O}^*$, $z \in G$ there is a H ϵ J containing x and there is a set A $\subseteq E(x) \cap H \setminus \{x\}$ such that $E(x) \cap H \setminus D_J(A)$ is of the J-first category and for any $y \in A$ $\frac{f(x) - f(y)}{x - y} \in G$. The set of all \mathcal{E} s-derived numbers of f at x will be denoted by $D(f, \mathcal{E}s, x)$ and $\overline{f'_{\mathcal{E}s}}, \underline{f'_{\mathcal{E}s}}, f'_{\mathcal{E}s}$ are defined analogously to Definition 2.2.

Example 3.2. Let $\mathcal{E}s = (\mathbb{R}, \mathbb{M}, \mathbb{E})$, where \mathbb{M} is the density topology and $\mathbb{E}(x) = \mathbb{R}$ for any $x \in \mathbb{R}$. If $a \in D(f, \mathcal{E}s, x)$, then for any $G \in \mathcal{O}^*$, $a \in G^*$ there is a set $A \subseteq \mathbb{R}$ such that $\limsup |A \cap (x - h, x + h)|^*/2h = 1$ and $\frac{f(x) - f(y)}{x - y} \in G$ for any $y \in A \setminus \{x\}$, where $|S|^*$ is the outer Lebesque measure of S.

<u>Proof.</u> It is clear that if $A \in G \in \mathcal{H}$ and $D_{\mathcal{H}}(A) \supseteq G$, then $|A|^* = |G|$, where |G| is the Lebesgue measure of G. If $a \in D(f, \mathcal{E}s, x)$, then for any $G \in \mathcal{O}^*$, $a \in G$ there is $H \in \mathcal{H}$, $x \in H$ and there is $A \subseteq E(x) \cap H \setminus \{x\} =$ $H \setminus \{x\}$ such that $H \setminus D_{\mathcal{H}}(A)$ is of the \mathcal{H} -first category, i.e. $|H \setminus D_{\mathcal{H}}(A)| = 0$ and $\frac{f(x) - f(y)}{x - y} \in G$ for any $y \in A$. We shall show that $\limsup_{h \to 0}$ $|A \cap (x - h, x + h)|^*/2h = 1$. From the following inclusions

$$((A \cap (x - h, x + h) \cap H) \setminus (H \setminus D_{\mathcal{H}}(A))) \subset$$
$$(((x - h, x + h) \cap H) \setminus (H \setminus D_{\mathcal{H}}(A))) \in \mathcal{H}.$$
$$D_{\mathcal{H}}((A \cap (x - h, x + h) \cap H) \setminus (H \setminus D_{\mathcal{H}}(A))) \supseteq$$
$$((x - h, x + h) \cap H \setminus (H \setminus D_{\mathcal{H}}(A)))$$

we have

$$\begin{split} \lim \sup |A \cap (x - h, x + h)|^{*}/2h & \cong \\ h \rightarrow 0 \\ \lim \sup |(A \cap (x - h, x + h) \cap H) \setminus (H \setminus D_{H}(A))|^{*}/2h = \\ h \rightarrow 0 \\ \lim \sup |(x - h, x + h) \cap H \setminus (H \setminus D_{H}(A))|/2h = \\ h \rightarrow 0 \\ \lim \sup |(x - h, x + h) \cap H|/2h = 1 \quad \text{because} \quad x \in H \in \mathcal{H}. \\ h \rightarrow 0 \end{split}$$

Remark 3.3. In Example 3.2 if we put $E(x) = [x, \infty)$ ($E(x) = (-\infty, x]$) for any $x \in \mathbb{R}$, then we have the following:

If $a \in D(f, \mathcal{E}s, x)$, then

 $\lim_{h\to 0} \sup_{\substack{|A \cap (x, x + h)| / h = 1 \\ h\to 0}} |A \cap (x - h, x)| / h = 1$

for any $G \in \mathcal{O}^*$, $a \in G$, where

A = {y
$$\in \mathbb{R}$$
: $\frac{f(x) - f(y)}{x - y} \in G, y \neq x$ }.

Definition 3.4. A multifunction $F : \mathbb{R} \to \mathbb{R}^*$ is said to be upper semicontinuous (usc) (lower semicontinuous (lsc)) at a point $p \in \mathbb{R}$ if for any $G \in \mathcal{O}^*$ such that $G \supseteq F(p)$ ($G \cap F(p) \neq \phi$) there exists a set $V \in \mathcal{I}$ such that $p \in V$ and $F(x) \subseteq G$ ($F(x) \cap G \neq \phi$) for any $x \in V$. Let $\phi \neq$ $C \subseteq 2^{\mathbb{R}}$, $\phi \notin C$. A multifunction $F : \mathbb{R} \to \mathbb{R}^*$ is said to be $\ell - (C,\mathcal{I})$ -continuous at p if for any $G \in \mathcal{O}^*$ such that $G \cap F(p) \neq \phi$ and for any $V \in \mathcal{I}$ with $p \in V$ there is a set $A \in C$ such that $A \subseteq V$ and $F(x) \cap G \neq \phi$ for any $x \in A$. If F is usc, (lsc, $\ell - (C,\mathcal{I})$ -continuous) at each $p \in \mathbb{R}$, then F is said to be usc (lsc, $\ell - (C,\mathcal{I})$ -continuous).

Remark 3.5. (a) In the case of a single valued multifunction $\ell - (C, J) -$ continuity coincides with the notion of (C, J)-continuity. (See Definition 2.4.)

(b) If $C = \mathcal{J} \{ \phi \}$, then $\ell - (C, \mathcal{J})$ -continuity of F means \mathcal{J} -lower quasisemicontinuity of F (lqsc).

Lemma 3.6. If $f : \mathbb{R} \to \mathbb{R}^*$ is an arbitrary function and $C_2 = \{A \subset \mathbb{R} : A \text{ is of the } \mathcal{I}\text{-second category}\}$, then the set K of all points at which f is not $(C_2,\mathcal{I})\text{-continuous is of the } \mathcal{I}\text{-first category}.$

<u>Proof</u>. Denote by $\{G_n\}_{n=1}^{\infty}$ a countable base of $(\mathbb{R}^*, \mathfrak{S}^*)$. We have $K = \bigcup_{n=1}^{\infty} (f^{-1}(G_n) \setminus D_{\mathcal{J}}(f^{-1}(G_n)))$ and according to [5, p. 51] the set K is of the \mathcal{J} -first category.

Lemma 3.7. Let (\mathbb{R},\mathcal{J}) be a Baire space. A function $f:\mathbb{R}\to\mathbb{R}^*$ is \mathcal{I} -

nonmeasurable if and only if there are a, b $\in \mathbb{R}$, a \langle b and $\phi \neq$ H $\in \mathcal{J}$ such that $D_{\mathcal{J}}(f^{-1}((b,\infty])) \supset H$ and $D_{\mathcal{J}}(f^{-1}([-\infty,a])) \supset H$.

<u>Proof.</u> Suppose that f is not J-measurable and let $C_2 = \{A \in \mathbb{R} : A \}$ is of the J-second category). By Lemma 3.6 the set K of all points at which f is not (C_2, J) -continuous is of the J-first category. Hence $C_2(\mathbf{f}, \mathbf{J}, \mathbf{x})$ is nonempty on the J-dense set $\mathbb{R}\setminus \mathbb{K}$ because $f(x) \in C_2(f,J,x)$ for any $x \in \mathbb{R}\setminus \mathbb{K}$. Since $(\mathbb{R}^*, \mathcal{O}^*)$ is compact, the set $C_2(f, \mathcal{J}, x)$ is nonempty for any $x \in \mathbb{R}$, as Let x ε R. There is a net $\{x_{\sigma} \in \mathbb{R} \setminus K : \sigma \in \Sigma\}$ is now shown. which $(\mathbb{R}^*, \mathcal{O}^*)$ is compact, there is a converges to x. Since subnet $\{y_{\sigma^1} \in C_2(f, \mathcal{J}, x_{\sigma^1}) : \sigma^1 \in \Sigma^1 \subset \Sigma\}$ which converges to $y \in \mathbb{R}^*$. It is clear $y \in C_2(f,J,x)$. Hence $C_2(f,J,x) \neq \phi$. that

Define $C : \mathbb{R} \to \mathbb{R}^*$ as follows:

 $C(x) = C_2(f,J,x)$ for any $x \in \mathbb{R}$. By [7, Lemma 4.1] C(x) is \mathscr{O}^* -compact for any $x \in \mathbb{R}$ and by [7, Lemma 4.4] C is usc. Hence C is lsc except for a set K_1 of the J-first category (Theorem 2.1 of [7]).

We shall show that C is $\ell - (C_2, J)$ -continuous. Let $x \in \mathbb{R}$, $G \in \mathcal{O}^*$ such that $G \cap C(x) \neq \phi$, let $U \in \mathcal{J}$, $x \in U$. By Definition 2.4, there is a set A $\in C_2$ such that A \subseteq U and f(A) \subseteq G. Since f(z) $\in C_2(f,J,z)$ for any z \in A\K, $C_2(f,J,z) \cap G \neq \phi$ for any $z \in A \setminus K \in C_2$. Thus C is $\ell - (C_2, \mathcal{J})$ continuous. By [7, Theorem 1.1] C is lqsc. By [7, Corolary 2 of Theorem 5.6] M = {x $\in \mathbb{R}$: C(x) \neq {f(x)}} is of the J-second category. Hence $C(x) \stackrel{?}{\neq} \{f(x)\}$ for any $x \in M \cap (\mathbb{R}\setminus K)$. Define $f_1, f_2 : \mathbb{R} \to \mathbb{R}^*$ as follows: $f_1(x) = \sup C(x)$ and $f_2(x) = \inf C(x)$. Since C is usc, $f_2^{-1}((a, \infty)) \in \mathcal{J}$ and $f_1^{-1}((-\infty,a)) \in \mathcal{J}$ for any $a \in \mathbb{R}$. We shall show that f_1 and \mathbf{f}_2 are J-continuous except for a set of the J-first category. We introduce the following notion of continuity: A function $g : (\mathbb{R}, J) \rightarrow (\mathbb{R}^*, \mathcal{O}^*)$ is said to be H-continuous at x if $x \in int_{\mathcal{J}}D_{\mathcal{J}}(g^{-1}(G))$ for any $G \in \mathcal{O}^*$, $g(x) \in G$. By Remark 1.1 of [7], g is H-continuous except for a set of the J-first category. It is clear that if $g^{-1}((a,\infty)) \in \mathcal{J}$ (or $g^{-1}([-\infty,a)) \in \mathcal{J}$) for any $a \in \mathbb{R}$ (that is, g is J-lower (upper) semicontinuous) and g is H-continuous at a point is \mathcal{J} -upper (lower) semicontinuous at x (that is, x, then g Xε $int_{\mathcal{J}}(g^{-1}(G))$ for any $G \in \mathcal{O}^*$, $g(x) \in G$. Hence there is a set P such that \mathbb{R} is of the J-first category and f_1 and f_2 are J-continuous at x for any $x \in P$. Let $x_0 \in (int_T D_T(M \cap (\mathbb{R} \setminus K))) \cap M \cap (\mathbb{R} \setminus K) \cap P$. Since $f_1(x_0) >$ $f_2(x_0)$, there are $a, b \in \mathbb{R}$ such that $f_1(x_0) > b > a > f_2(x_0)$. The functions

f₁, f₂ are \mathcal{J} -continuous at x_0 . Hence there is a nonempty set $H \in \mathcal{J}$ such that $H \subseteq \operatorname{int}_{\mathcal{J}} D_{\mathcal{J}}(M \cap (\mathbb{R}\setminus K))$ and $f_1(p) > b > a > f_2(p)$ for any $p \in H$. We shall show that $H \subseteq D_{\mathcal{J}}(f^{-1}((b, \infty))) \cap D_{\mathcal{J}}(f^{-1}([-\infty, a)))$. Let $z \in H$, $V \in \mathcal{J}$, $z \in V$. Let $t \in H \cap V \setminus K$. Then $f_1(t) > b$, $f_2(t) < a$, $f_1(t), f_2(t) \in C(t) = C_2(f, \mathcal{J}, t)$. Hence there are $A_1, A_2 \subseteq H \cap V$; $A_1, A_2 \in C_2$, $A_1 \subseteq f^{-1}((b, \infty))$, $A_2 \subseteq f^{-1}([-\infty, a))$. Consequently $z \in D_{\mathcal{J}}(f^{-1}((b, \infty))) \cap D_{\mathcal{J}}(f^{-1}([-\infty, a)))$.

Suppose that f is *J*-measurable. Then for any $a, b \in \mathbb{R}$, a < b the sets $B = f^{-1}((b, \infty))$ and $A = f^{-1}([-\infty, a])$ have the *J*-Baire property. By [5, p. 56], $D_{\mathcal{J}}(B)\setminus B$, $D_{\mathcal{J}}(A)\setminus A$ are of the *J*-first category. Since $A \cap B = \phi$, $D_{\mathcal{J}}(B) \cap D_{\mathcal{J}}(A)$ is of the *J*-first category. Therefore, there is no nonempty set $H \in \mathcal{J}$ such that $H \subseteq D_{\mathcal{J}}(B) \cap D_{\mathcal{J}}(A)$.

Definition 3.8. A multifunction E is said to be right sided (left sided) at x if $E(x) \subset [x,\infty)$ ($E(x) \subset (-\infty,x]$). E is right sided (left sided) on $T \subset \mathbb{R}$ if E is right sided (left sided) at each $x \in T$. E is unilateral on T if E is right sided on T or left sided on T.

Lemma 3.9. Let (\mathbb{R},\mathcal{J}) be a Baire space and $\mathcal{O} \subset \mathcal{J}$. Let \mathcal{E} be unilateral on a J-residual set T, $x \in D_{\mathcal{J}}(\mathcal{E}(x))$ and let $\mathcal{E}(x)$ have the J-Baire property for each $x \in T$. If $f : \mathbb{R} \to \mathbb{R}$ is not J-measurable, then there are sets $S_1, S_2 \subset \mathbb{R}$ of the J-second category such that $\overline{f}_{\mathcal{E}S}(x) = \infty$ for any $x \in S_1$ and $\underline{f}_{\mathcal{E}S}(x) = -\infty$ for any $x \in S_2$.

<u>Proof.</u> Suppose that E is right sided on T. (If E is left sided, the proof is analogous.) By Lemma 3.7 there are $a, b \in \mathbb{R}$, a < b and there is a nonempty set $H \in \mathcal{J}$ such that $D_{\mathcal{J}}(B) \supseteq H$ and $D_{\mathcal{J}}(A) \supseteq H$, where B = $f^{-1}((b,\infty))$ and $A = f^{-1}((-\infty,a))$. Let $S_1 = A \cap H \cap T$. We shall show that $f_{\mathcal{E},\mathbf{S}}(\mathbf{x}) = \infty$ for any $\mathbf{x} \in S_1$. Let $\mathbf{x} \in S_1$, $\mathbf{c} \in \mathbb{R}$. It is clear that there is $\delta > 0$ such that (b - a)/(y - x) > c for any $y \in (x, x + \delta)$. Let $A_0 =$ $B \cap E(x) \cap (x, x + \delta) \cap H$ and $H_0 = (x - \delta, x + \delta) \cap H \in J$. We shall show that $D_{\mathcal{I}}(A_o) \supseteq D_{\mathcal{I}}(H_o \cap E(x))$. Let $p \in D_{\mathcal{I}}(H_o \cap E(x))$ and $V \in \mathcal{I}$, $p \in V$. Then $V \cap H_0 \cap E(x) = V \cap (x - \delta, x + \delta) \cap H \cap E(x) = V \cap [x, x + \delta) \cap H \cap E(x)$ is of the J-second category. Hence $V \cap (x, x + \delta) \cap H \cap E(x)$ is of the J-second category and $V \cap (x, x + \delta) \cap H \cap int_{\mathcal{T}} D_{\mathcal{T}}(E(x))$ is nonempty. Since E(x) has the J-Baire property and $D_{\mathcal{I}}(B) \supseteq H \supseteq V \cap (x, x + \delta) \cap H \cap int_{\mathcal{I}}D_{\mathcal{I}}(E(x))$, the set $B \cap V \cap (x, x + \delta) \cap H \cap E(x)$ is of the J-second category and therefore $p \in D_{\mathcal{J}}(A_0).$

Since $E(x) \cap H_0 \setminus D_J(E(x) \cap H_0)$ is of the J-first category (See [5, p. 51].), $E(x) \cap H_0 \setminus D_J(A_0)$ is also of the J-first category. Thus for any $c \in \mathbb{R}$ there is $H_0 \in J$, $x \in H_0$ and there is $A_0 \subseteq E(x) \cap H_0 \setminus \{x\}$ such that $E(x) \cap H_0 \setminus D_J(A_0)$ is of the J-first category and for any $y \in A_0$, c < (b-a)/(y-x) < (f(y) - f(x))/(y-x) because f(y) > b, f(x) < a. Hence $\overline{f'_{E_S}}(x) = \infty$.

Let $S_2 = B \cap H \cap T$. Let $x \in S_2$, $c \in \mathbb{R}$. It is clear that there is $\delta > 0$ such that (b-a)/(x-y) < c for any $y \in (x,x + \delta)$. Let $A'_0 = A \cap E(x) \cap (x,x + \delta) \cap H$, $H_0 = (x - \delta, x + \delta) \cap H \in J$. It can be proved analogously that $E(x) \cap H \setminus D_J(A'_0)$ is of the J-first category, $A'_0 \in E(x) \cap H_0 \setminus \{x\}$ and for any $y \in A'_0$, c > (b-a)/(x-y) > (f(x) - f(y))/(x-y) because f(x) > b, f(y) < a. Hence $\underline{f'_{ES}}(x) = -\infty$.

Now we present the main result of this section.

Theorem 3.10. Under the same conditions on (\mathbb{R},\mathcal{J}) and \mathbb{E} as in Lemma 3.9, if $\underline{f}'_{\mathcal{E}S}(x) > -\infty$ $(\overline{f}'_{\mathcal{E}S}(x) < \infty)$ except for a set of the \mathcal{J} -first category, then f is \mathcal{J} -measurable.

Proof. This follows directly from Lemma 3.9.

Definition 3.11. A point $a \in \mathbb{R}^*$ is called a right sided essential derived number of $f : \mathbb{R} \to \mathbb{R}$ at a point x if $\limsup_{h \to 0} |(x, x + h) \cap \{y : (f(x) - h \to 0\}|/(x-y) \in G\}|/(h > 0)$ for any $G \in \mathcal{O}^*$, $a \in G$. The set of all the right sided essential derived numbers of f at x will be denoted by $D^+_{ass}(f, x)$.

The upper (lower) right sided essential derivative of f at x is defined analogously as in Definition 2.2 and it is denoted by $\overline{f}_{ess}^+(x)$ $(\underline{f}_{ess}^+(x))$. The set $D_{ess}^-(f,x)$ of the left sided essential derived numbers of f at x and the extreme left sided essential derivatives (\overline{f}_{ess}^-) are defined analogously. (Some authors use $\overline{f}_{ap}^+, \underline{f}_{ap}^+, \overline{f}_{ap}^- \dots$ (See [1].)).

Theorem 3.12. (See Mišik's question in [8].)

l. If $\overline{f}_{ess}^+(x) < \infty$ $(\underline{f}_{ess}^+(x) > -\infty)$ except for a set of Lebesgue measure zero, then f is Lebesgue measurable.

2. If $\overline{f}_{ess}^-(x) < \infty$ $(\underline{f}_{ess}^-(x) > -\infty)$ except for a set of Lebesgue measure zero, then f is Lebesgue measurable.

<u>Proof.</u> 1. Let $\mathbf{J} = \mathbf{M}$, $\mathbf{E}^{1}(\mathbf{x}) = [\mathbf{x}, \mathbf{\omega})$ for each $\mathbf{x} \in \mathbb{R}$. By Remark 3.3 we have $D(\mathbf{f}, \mathcal{E}^{1}\mathbf{s}, \mathbf{x}) \subset D^{+}_{ess}(\mathbf{f}, \mathbf{x})$, where $\mathcal{E}^{1}\mathbf{s} = (\mathbb{R}, \mathbf{M}, \mathbb{E}^{1})$. Suppose that \mathbf{f} is not Lebesgue measurable. By Lemma 3.9 there are sets S_{1} , S_{2} such that $|S_{1}|^{*} > 0$, $|S_{2}|^{*} > 0$ and $\overline{\mathbf{f}}'_{\mathcal{E}^{1}\mathbf{s}}(\mathbf{x}) = \mathbf{\omega}$ for any $\mathbf{x} \in S_{1}$ and $\underline{\mathbf{f}}'_{\mathcal{E}^{1}\mathbf{s}}(\mathbf{x}) = -\mathbf{\omega}$ for any $\mathbf{x} \in S_{2}$. This is a contradiction.

2. If we let $E^2(x) = (-\infty, x]$ for each $x \in \mathbb{R}$, we obtain a contradiction to the assumption that the upper (lower) left sided essential derivative of f is almost everywhere less than ∞ (more than $-\infty$).

Theorem 3.13. Suppose the same conditions on (\mathbb{R},\mathcal{J}) and \mathbb{E} as in Lemma 3.9. Let $\mathcal{E} = (\mathbb{R},\mathcal{J},\mathbb{E},\mathcal{C})$ be a generalized system of paths, where $\mathcal{C} \supset \mathcal{C}_2 = \{A \subset \mathbb{R} : A \text{ is of the } \mathcal{J}\text{-second category}\}, \phi \notin \mathcal{C}$. If $\overline{f_{\mathcal{E}}}(x) < \infty$ $(\underline{f_{\mathcal{E}}}(x) > -\infty)$ except for a set of the $\mathcal{J}\text{-first category}$, then f is $\mathcal{J}\text{-measurable}$.

<u>Proof.</u> Suppose that f is not *J*-measurable. By Lemma 3.9 there are sets S_1 , S_2 of the *J*-second category such that $\overline{f}'_{\mathcal{E}S}(x) = \infty$ for any $x \in S_1$ and $\underline{f}'_{\mathcal{E}S}(x) = -\infty$ for any $x \in S_2$, where $\mathcal{E}S = (\mathbb{R}, \mathcal{J}, \mathbb{E})$. It is clear that $D(f, \mathcal{E}, x) \supseteq D(f, \mathcal{E}S, x)$. Consequently $\overline{f}'_{\mathcal{E}}(x) = \infty$ for any $x \in S_1$ and $\underline{f}'_{\mathcal{E}}(x) = -\infty$ for any $x \in S_2$. This is a contradiction.

Theorem 3.14. Suppose the same conditions on (\mathbb{R},\mathcal{J}) and \mathbb{E} as in Lemma 3.9. If $\overline{f'_{\mathrm{E}}}(x) < \infty$ $(\underline{f'_{\mathrm{E}}}(x) > -\infty)$ except for a set of the *J*-first category, then f is *J*-measurable.

<u>Proof</u>. Let $\mathcal{E}s = (\mathbb{R}, \mathcal{J}, \mathbb{E})$, $\mathcal{E}_{\mathcal{J}} = (\mathbb{R}, \mathcal{J}, \mathbb{E}, 2^{\mathbb{R}} \setminus \{\phi\})$, and $\mathcal{E} = (\mathbb{R}, \mathcal{O}, \mathbb{E}, 2^{\mathbb{R}} \setminus \{\phi\})$. Then $D(f, \mathbb{E}, x) = D(f, \mathcal{E}, x) \supseteq D(f, \mathcal{E}_{\mathcal{J}}, x) \supseteq D(f, \mathcal{E}s, x)$. The assertion follows directly from Lemma 3.9.

Corollary 3.15. (See [2].) If one of the upper (lower) Dini derivatives of a function f is less than ∞ (more than $-\infty$), then f is \mathcal{H} -measurable.

4. Extreme E-derivatives

In this section we will develop a number of properties of extreme path derivatives and we will obtain a generalization of the results in [1] and [9].

Let E be a system of paths, i.e. a multifunction E : $\mathbb{R} \to \mathbb{R}$ such that each E(x) has x as a point of \mathcal{O} -accumulation. For any $n \in \mathbb{N}$ we define the relations E_n , E_n^- , E_n^+ as follows:

$$E_n(x) = E(x) \cap (x - 1/n, x + 1/n)$$

 $E_n(x) = E(x) \cap (x - 1/n, x)$

 $E_n^+(x) = E(x) \cap (x, x + 1/n).$

If $f : \mathbb{R} \to \mathbb{R}$, define $f_0 : \mathbb{R} \times \mathbb{R} \setminus \Delta \to \mathbb{R}$, by $f_0(x,y) = \frac{f(x) - f(y)}{x - y}$ where $\Delta = \{(x,x) \in \mathbb{R} \times \mathbb{R} : x \in \mathbb{R}\}.$ For $A \subseteq \mathbb{R} \times \mathbb{R}$ let $prA = \{x \in \mathbb{R} : \text{ for some } y \in \mathbb{R}, (x,y) \in A\}.$ If $a = * \infty$, and if $r \in \mathbb{R}$ let a * r = a.

The set of all E-derived numbers of f at x is denoted by D(f,E,x) (See Remark 2.10.) and the multifunction of E-derived numbers $D_{f,E} : \mathbb{R} \to \mathbb{R}^*$ is defined as follows $D_{f,E}(x) = D(f,E,x)$. The proof of the next assertion is trivial and hence omitted.

Lemma 4.1. For any $a, b \in \mathbb{R}^*$, a < b we have $D_{\overline{f}, \overline{E}}([a, b]) = \bigcap_{n=1}^{\infty} pr(f_0^{-1}((a-1/n, b+1/n)) \cap GrE_n) = \bigcap_{n=1}^{\infty} pr((f_0^{-1}((a-1/n, b+1/n)) \cap GrE_n) \cup (f_0^{-1}((a-1/n, b+1/n)) \cap GrE_n^{+})).$

We turn now to a study of the Baire classification of $D_{f,E}$, f_E , f_E , f_E , f_E .

Definition 4.2. Let A_{α} (M_{α}) denote the family of all sets of the Borel additive (multiplicative) class α . A multifunction $F : \mathbb{R} \to \mathbb{R}^*$ is a lower (upper) semi Borel multifunction of the class α (briefly $F \in \ell B_{\alpha}$ ($F \in uB_{\alpha}$)) if $F^+((a,\infty)) \in A_{\alpha}(F^+([-\infty,a])) \in A_{\alpha})$ for all $a \in \mathbb{R}$. Let $B_{\alpha} = \ell B_{\alpha} \cap uB_{\alpha}$. F is a Baire multifunction of the class α if $F \in B_{\alpha}$. For a single valued multifunction, it means for a function see [8].

Lemma 4.3. Let $f : \mathbb{R} \to \mathbb{R}$ be a function. For $a \in \mathbb{R}$ let

$$S_a = \{(x,y) : f(x) - ax > f(y) - ay\}$$

 $T_a = \{(x,y) : f(x) - ax < f(y) - ay\}$

(a) If $f \in \ell B_{\alpha}$, then $S_{a} = \bigcup_{\substack{i=1 \\ \alpha}}^{\infty} A_{i} \times B_{i}$ where $A_{i} \in A_{\alpha}$, $B_{i} \in M_{\alpha}$ (b) If $f \in uB_{\alpha}$, then $T_{a} = \bigcup_{\substack{\alpha \\ i = 1}}^{\infty} A_{i} \times B_{i}$ where $A_{i} \in A_{\alpha}$, $B_{i} \in M_{\alpha}$

(b) This case is proved analogously, because $\{z \in \mathbb{R} : f(z) - az < r\} = \bigcup_{q \in \mathbb{Q}} \{z \in \mathbb{R} : f(z) < q\} \cap \{z \in \mathbb{R} : q < r + az\} \in A_{\alpha}$ and $T_a = \bigcup_{r \in \mathbb{Q}} \{x \in \mathbb{R} : f(x) - ax < r\} \times \{y \in \mathbb{R} : f(y) - ay \ge r\}.$

Lemma 4.4. Let $f : \mathbb{R} \rightarrow \mathbb{R}$. For any $a, b \in \mathbb{R}$, a < b

(a) $f_0^{-1}((a, \omega)) \cap GrE_n^- = S_a \cap GrE_n^-$ (b) $f_0^{-1}((-\omega, a)) \cap GrE_n^- = T_a \cap GrE_n^-$ (c) $f_0^{-1}((a, \omega)) \cap GrE_n^+ = T_a \cap GrE_n^+$ (d) $f_0^{-1}((-\omega, a)) \cap GrE_n^+ = S_a \cap GrE_n^+$ (e) $f_0^{-1}((a, b)) \cap GrE_n^- = S_a \cap T_b \cap GrE_n^-$ (f) $f_0^{-1}((a, b)) \cap GrE_n^+ = S_b \cap T_a \cap GrE_n^+$

where S_a, T_a are as in Lemma 4.3.

<u>Proof</u>. The trivial proof is omitted.

Lemma 4.5. If $\text{GrE} = \bigcup_{i=1}^{\infty} A_i \times B_i$ where $A_i \in A_\alpha$ and $B_i \subset \mathbb{R}$, then GrE_n , GrE_n^- , GrE_n^+ can be expressed as the union of a sequence of sets $X_i \times Y_i$, $X_i^- \times Y_i^-$, $X_1^+ \times Y_1^+$ where X_i , X_i^- , $X_1^+ \in A_\alpha$ and Y_i , Y_i^- , $Y_1^+ \subset \mathbb{R}$, i = 1, 2, 3..., respectively. <u>Proof</u>. We define the multifunctions N, N⁻, N⁺ : $\mathbb{R} \to \mathbb{R}$ as N(x) = (x-1/n, x+1/n), N⁻(x) = (x-1/n, x), N⁺(x) = (x, x+1/n) for all $x \in \mathbb{R}$. Then GrN, GrN^- , GrN^+ can be expressed as $\bigcup_{i=1}^{\infty} H_i \times G_i$, $\bigcup_{i=1}^{\infty} H_i \times G_i^-$, $\bigcup_{i=1}^{\infty} H_i^+ \times G_i^+$ where H_i , G_i , H_i^- , G_i^- , H_i^+ , $G_i^+ \in A_0$ for any i = 1, 2, 3... respectively and the proof is finished by the equality $GrE_n = GrE \cap GrN$, $GrE_n^- = GrE \cap GrN^-$, $GrE_n^+ = GrE \cap GrN^+$, respectively.

Lemma 4.6. If $D_{\overline{f},E}([a,b]) \in M_{\alpha+1}$ for any $a,b \in \mathbb{R}^*$, a < b, then $\overline{f'_E} \in uB_{\alpha+1}$, $\underline{f'_E} \in \ell B_{\alpha+1}$, $D_{\overline{f},E} \in B_{\alpha+1}$, $f'_E \in B_{\alpha+1}$ (if f'_E exists).

<u>Proof.</u> Let $\mathbf{a} \in \mathbb{R}$. Since $\overline{\mathbf{f}_E^{\prime - 1}}([\mathbf{a}, \mathbf{\omega}]) = D_{\overline{\mathbf{f}}, \mathbf{E}}([\mathbf{a}, \mathbf{\omega}]) \in M_{\alpha+1}$, $\overline{\mathbf{f}_E^{\prime - 1}}([-\mathbf{\omega}, \mathbf{a}]) \in A_{\alpha+1}$. Analogously $\underline{\mathbf{f}_E^{\prime - 1}}([-\mathbf{\omega}, \mathbf{a}]) = D_{\overline{\mathbf{f}}, \mathbf{E}}([-\mathbf{\omega}, \mathbf{a}]) \in M_{\alpha+1}$. Hence $\underline{\mathbf{f}_E^{\prime - 1}}((\mathbf{a}, \mathbf{\omega}]) \in A_{\alpha+1}$. $D_{\overline{\mathbf{f}}, \mathbf{E}}([-\mathbf{\omega}, \mathbf{a}]) = \mathbb{R} \setminus D_{\overline{\mathbf{f}}, \mathbf{E}}([\mathbf{a}, \mathbf{\omega}]) \in A_{\alpha+1}$. Hence $D_{\mathbf{f}, \mathbf{E}} \in uB_{\alpha+1}$. $D_{\overline{\mathbf{f}}, \mathbf{E}}((\mathbf{b}, \mathbf{\omega}]) = \mathbb{R} \setminus D_{\overline{\mathbf{f}}, \mathbf{E}}([-\mathbf{\omega}, \mathbf{b}]) \in A_{\alpha+1}$. Hence $D_{\mathbf{f}, \mathbf{E}} \in \ell B_{\alpha+1}$.

Theorem 4.7. Let $\operatorname{GrE} = \bigcup_{i=1}^{\infty} A_i \times B_i$, $A_i \in A_{\alpha}$, $B_i \subseteq \mathbb{R}$. If $f \in B_{\alpha}$, then $D_{\overline{f}, E}([a, b]) \in M_{\alpha+1}$ for any $a, b \in \mathbb{R}^*$, a < b and by Lemma 4.6 $\overline{f'_E} \in uB_{\alpha+1}$, $\underline{f'_E} \in \ell B_{\alpha+1}$, $D_{\overline{f}, \overline{E}} \in B_{\alpha+1}$, $f'_E \in B_{\alpha+1}$ (if f'_E exists).

<u>Proof.</u> If $\mathbf{a} = -\infty$, $\mathbf{b} = \infty$, then $D_{\overline{f}, \overline{E}}([\mathbf{a}, \mathbf{b}]) = \mathbb{R} \in M_{\alpha+1}$. Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}$, $\mathbf{a} < \mathbf{b}$. By Lemma 4.4e and Lemma 4.4f, respectively, and by Lemma 4.3 and Lemma 4.5, we have $f_0^{-1}((\mathbf{a}-1/n,\mathbf{b}+1/n)) \cap \mathrm{GrE}_n^- = \bigcup_{\substack{i=1\\j \in 1}}^{\infty} X_1^n \times Y_1^n$ where $X_1^n \in A_\alpha$ and $f_0^{-1}((\mathbf{a}-1/n,\mathbf{b}+1/n)) \cap \mathrm{GrE}_n^+ = \bigcup_{\substack{i=1\\j \in 1}}^{\infty} Z_j^n \times T_j^n$ where $Z_j^n \in A_\alpha$, respectively. Then by Lemma 4.1 we have $D_{\overline{f},\overline{E}}([\mathbf{a},\mathbf{b}]) = \bigcap_{n=1}^{\infty} (\bigcup_{\substack{i=1\\j \in 1}}^{\infty} X_1^n \cup \bigcup_{\substack{j=1\\j \in 1}}^{\infty} Z_j^n)$ $\in M_{\alpha+1}$.

In the case $a \in \mathbb{R}$, $b = \infty$ $(a = -\infty, b \in \mathbb{R})$ we use analogously Lemma 4.4a,c (Lemma 4.4b,d).

For $E(x) = (x, \infty)$ and $E(x) = (-\infty, x)$, respectively we have Corollary 4.8. (See [9].) The upper (lower) Dini derivatives of a Baire function of the class α are upper (lower) semiBorel functions of the class $\alpha+1$.

If E is unilateral, the following theorem is an improvement of Theorem 4.7.

Theorem 4.9. Let $GrE = \bigcup_{i \stackrel{\infty}{\underline{i}} 1} A_i \times B_i$, $A_i \in A_{\alpha}$, $B_i \subset \mathbb{R}$.

(a) If E is left sided on R and $f \in {}^{\ell}B_{\alpha}$ ($f \in uB_{\alpha}$), then $D\overline{f}_{,E}([a,\infty]) \in M_{\alpha+1}$ ($D\overline{f}_{,E}([-\infty,a])$) $\in M_{\alpha+1}$) for any $a \in \mathbb{R}$ and consequently $\overline{f'_{E}} \in uB_{\alpha+1}$, $D_{f,E} \in uB_{\alpha+1}$ ($\underline{f'_{E}} \in {}^{\ell}B_{\alpha+1}$, $D_{f,E} \in {}^{\ell}B_{\alpha+1}$).

(b) If E is right sided on \mathbb{R} and $f \in {}^{\ell}B_{\alpha}$ ($f \in uB_{\alpha}$), then $D\overline{f}, E([-\infty, \mathbf{a}]) \in M_{\alpha+1}$ ($D\overline{f}, E([\mathbf{a}, \infty]) \in M_{\alpha+1}$) for any $\mathbf{a} \in \mathbb{R}$ and consequently $\underline{f'_E} \in {}^{\ell}B_{\alpha+1}$, $D_{\mathbf{f}, \mathbf{E}} \in {}^{\ell}B_{\alpha+1}$ ($\overline{f'_E} \in uB_{\alpha+1}$, $D_{\mathbf{f}, \mathbf{E}} \in uB_{\alpha+1}$).

<u>Proof</u>. (a) In this case $f_0^{-1}((a-1/n,b+1/n)) \cap \operatorname{GrE}_n^+ = \phi$. Let $f \in \ell B_{\alpha}$ ($f \in uB_{\alpha}$). By Lemma 4.4a (Lemma 4.4b), Lemma 4.3a (Lemma 4.3b), Lemma 4.5 and Lemma 4.1 we obtain $D_{\overline{f},E}([a,\infty]) \in M_{\alpha+1}$ ($D_{\overline{f},E}([-\infty,a]) \in M_{\alpha+1}$).

(b) In this case $f_0^{-1}((a-1/n,b+1/n)) \cap \operatorname{GrE}_{\overline{n}}^{-1} = \phi$. Let $f \in \ell B_{\alpha}$ ($f \in uB_{\alpha}$). By Lemma 4.4d (Lemma 4.4c), Lemma 4.3a (Lemma 4.3b), Lemma 4.5 and Lemma 4.1 we obtain $D_{\overline{f},E}([-\infty,a]) \in M_{\alpha+1}$ ($D_{\overline{f},E}([a,\infty]) \in M_{\alpha+1}$).

The following corollary is an improvement of Corollary 4.8.

Corollary 4.10. (a) If $f \in \ell B_{\alpha}$, then $D^{-}f \in uB_{\alpha+1}$ and $D_{+}f \in \ell B_{\alpha+1}$.

(b) If $f \in uB_{\alpha}$, then $D_{-}f \in {}^{\ell}B_{\alpha+1}$ and $D^{+}f \in uB_{\alpha+1}$ where $D^{-}f$, $D^{+}f$, $D_{-}f$, $D_{+}f$ are upper left, upper right, lower left, lower right Dini derivative of f, respectively.

It is well known that the extreme path derivatives can behave badly. (For example, there is a continuous function F such that given any function f, a system of path E can be found such that $F'_E = f$.) In the following theorems we impose some restrictions on the system of paths as well as on the function. We shall show that under some conditions the E-derivative can have nice properties. Theorem 4.11. (An improvement of Corollary 13 of [1].) If $f \in B_1$ and GrE is a F_{σ} set, then $D_{\overline{f},E}([a,b]) \in M_2$ for any $a, b \in \mathbb{R}^*$, a < b and by Lemma 4.6 $\overline{f'_E} \in uB_2$, $\underline{f'_E} \in \ell B_2$, $D_{\overline{f},E} \in B_2$, $f'_E \in B_2$.

<u>Proof</u>. It is clear that if $A \subseteq \mathbb{R} \times \mathbb{R}$ is a bounded, closed set, then prA is closed. Since GrE is a F_{σ} set, GrE_n is a F_{σ} set for any $n = 1, 2, \ldots$. Since $f \in B_1$, f_0 is in Baire class one and $\operatorname{GrE}_n \cap f_0^{-1}((a-1/n,b+1/n)) = \bigcup_{n=1}^{\infty} C_n$ where $C_n \subseteq \mathbb{R} \times \mathbb{R}$ and C_n is a closed set and without loss of generality we can suppose that C_n is bounded for any n. By Lemma 4.1 $D_{\overline{f}, \overline{E}}([a,b]) \in M_2$.

Definition 4.12. (See [10].) A multifunction $F : X \to Y$ (X,Y are topological spaces) is said to be upper c-semicontinuous (ucsc) at $p \in X$ if for any open V containing F(p) and such that $Y \setminus V$ is compact, there is a neighborhood U of p such that $F(x) \subset V$ for any $x \in U$. If F is ucsc at any $p \in X$, then F is said to be upper c-semicontinuous.

By Theorem 1 of [10], if $F : (\mathbb{R}, \sigma) \rightarrow (\mathbb{R}, \sigma)$ is a closed valued ucsc multifunction, then GrF is closed. Consequently, if F is usc, then GrF is closed.

Corollary 4.13. If E is a closed valued ucsc multifunction and $f \in B_1$, then $D_{f,E}([a,b]) \in M_2$ for any $a, b \in \mathbb{R}^*$, a < b and by Lemma 4.6 $\overline{f_E} \in uB_2$, $\underline{f_E} \in \mathcal{I}B_2$, $D_{f,E} \in B_2$, $f_E \in B_2$.

The following theorem is the improvement of the main Theorem of [1] (Theorem 5 of [1]).

Theorem 4.14. If $f \in B_0$ and E is lsc, then $D_{\overline{f},E}([a,b]) \in M_1$ for any $a, b \in \mathbb{R}^*$, a < b and by Lemma 4.6 $\overline{f'_E} \in uB_1$, $\underline{f'_E} \in \ell B_1$, $D_{\overline{f},E} \in B_1$, $f'_E \in B_1$.

<u>Proof</u>. It is clear that E_n is lsc for any n. We shall show that $A_n = pr(f_0^{-1}((a,b)) \cap GrE_n)$ is open. Let $x_0 \in A_n$. Then there is $y \in \mathbb{R}$ such that $(x_0,y) \in f_0^{-1}((a,b))$ and $y \in E_n(x_0)$. Since $f \in B_0$, f_0 is continuous. Hence there is $I \times J \Rightarrow (x_0,y)$ where $I, J \subseteq \mathbb{R}$ are open intervals such that $I \times J \subseteq f_0^{-1}((a,b))$. Since E_n is lsc at x_0 , there is an open set $G \subseteq I$, $x_0 \in G$ such that $E_n(x) \cap J \neq \phi$ for any $x \in G$. Thus for any

 $x \in G$ there is $y_X \in E_n(x) \cap J$. Hence $(x, y_X) \in GrE_n$. Since $(x, y_X) \in f_0^{-1}((a, b))$, $x \in A_n$ for any $x \in G$. By Lemma 4.1 $D_{\overline{f}, E}([a, b]) \in M_1$.

Corollary 4.15. (See Corollary 10 of [1].) The congruent derivative and the extreme congruent derivative of a continuous function are in B_1 and B_2 respectively.

<u>Proof.</u> In this case E(x) = E(0) + x for any $x \in \mathbb{R}$. Thus E is lsc.

Corollary 4.16. Let E be a system of paths that is bilateral, lsc and satisfies the intersection condition (See [3].). Let $f \in B_0$. If f'_E exists, then $f'_E \in B_1$ and f'_E has the Darboux property.

<u>Proof</u>. By Theorem 4.14, $f'_E \in B_1$ and by Theorem 6.4 of [3], f'_E has the Darboux property.

Definition 4.17. A multifunction $F : (\mathbb{R}, \mathcal{J}) \rightarrow (\mathbb{R}^*, \mathcal{O}^*)$ is said to be *J*-measurable (*J*-Borel measurable) if $F^-(G)$ has the *J*-Baire property (is a *J*-Borel set) for any $G \in \mathcal{O}^*$.

Theorem 4.18. If f,E: $(\mathbb{R},\mathcal{I}) \rightarrow (\mathbb{R},\mathcal{O})$ are \mathcal{I} -measurable and E(x) is \mathcal{O} -closed for each $x \in \mathbb{R}$, then $D_{f,E}$ is \mathcal{I} -measurable and consequently $\overline{f_E}$, $\underline{f_E}$

<u>Proof.</u> By [6, p. 382], GrE is $(\mathcal{J} \times \mathcal{O})$ -measurable. Hence GrE_n is $(\mathcal{J} \times \mathcal{O})$ -measurable for any n. By [5, p. 62], if $A \subseteq \mathbb{R} \times \mathbb{R}$ is $(\mathcal{J} \times \mathcal{O})$ -measurable, then prA has the \mathcal{J} -Baire property and by Lemma 4.1, $D_{f,E}$ is \mathcal{J} -measurable.

Corollary 4.19. (See [1] Theorem 16.) If f,E are \mathcal{O} -Borel measurable and E(x) is \mathcal{O} -closed for any $x \in \mathbb{R}$, then $D_{f,E}$, $\overline{f_E}$, $\underline{f_E}$, $\underline{f_E}$, $\underline{f_E}$ are Lebesgue measurable and have the Baire property.

Theorem 4.20. Suppose the same conditions on (\mathbb{R},\mathcal{J}) and \mathbb{E} as in Lemma 3.9 and \mathbb{E} is \mathcal{J} -measurable and $\mathbb{E}(x)$ is \mathcal{O} -closed for any $x \in \mathbb{R}$. Let $f: \mathbb{R} \to \mathbb{R}$ be an arbitrary function. If $\overline{f'_E}(x) < \infty$ $(\underline{f'_E}(x) > -\infty)$ except for a set of the \mathcal{J} -first category, then f, $D_{f,E}$, $\overline{f'_E}$, $\underline{f'_E}$, $\underline{f'_E}$ are \mathcal{J} -measurable.

Proof. This follows from Theorem 3.14 and Theorem 4.18.

The author would like to thank the referees of this paper for their helpful suggestions.

References

- [1] Alikhani-Koopaei, A., Borel measurability of extreme path derivatives. Real Anal. Exchange, 12(1986-87), 216-246.
- [2] Banach, S., Sur les fonctions dérivées des fonctions measurables. Fund. Math. 3(1921), 128-132.
- [3] Bruckner, A.M., O'Malley, R.J., Thomson, B.S., Path derviatives: A unified view of certain generalized derivatives. Trans. Amer. Math. Soc., 283(1984), 97-125.
- [4] Kempisty, S., Sur les fonctions quasicontinues. Fund. Math. 19(1932), 184-197.
- [5] Kuratowski, K., Topologie I. Warszawa, 1952.
- [6] Kuratowski, K., Mostowski, A., Teoria mnogośći. Warszawa, 1978.
- [7] Matejdes, M., Sur les sélecteurs des multifonctions. Math. Slovaca, 37(1987), 111-124.
- [8] Mišîk, L., Extreme essential derivatives of Borel and Lebesgue measurable function. Math. Slovaca, 29(1979), 25-38.
- [9] Mišîk, L., Halbborelsche Funktionen und extreme Ableitungen. Math. Slovaca, 27(1977), 409-421.
- [10] Neubrunn, T., c-Continuity and closed graphs. Cas. Pést. Mat., 110(1985), 172-178.
- [11] Oxtoby, J.C., Measure and category, Springer-Verlag, New York, 1971.

Received July 13, 1987