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 ON A THEOREM OF BANACH CONCERNING PERIODIC FUNCTIONS

 S. Banach (See [1].) proved that if f : F ■+ R is a measurable periodic

 function with period 1, then lim sup f(nx) = ess sup f(t) almost everywhere
 n Oátál

 on [0,1]. In Theorem 1 we shall prove a generalization of Banach' s theorem

 which yields a measure theoretic version (Proposition 1) and a category

 version (Proposition 2).

 Let A be a ^-algebra of subsets of R and let A c ¿ be a proper

 (r-ideal of sets such that:

 1* if A € A, then A+a={x + a:xeA}€Ä for every a € R,

 2* if A € A, then a • A = {a ♦ x : x e A} e A for every a € R.
 00

 For every subset E c R put E* = U (E + k) and E** = {x € [0,1] :
 k=0

 nx e E* for infinitely many n € N}.

 Definition 1. The pair (¿,A) has property (**) means [0,1] '

 E** e A for every E c ¿ ' 4.

 Let f be a ¿-measurable function. Put A-ess sup f(t) =
 Oátál

 = inf{g : { x : f(x) > g} € A).

 Theorea 1. If the pair (¿,A) has property (#*) and if f : R ■* R is

 a ¿-measurable, periodic function with period 1, then {x : lim sup f(nx) *
 n

 4-ess sup f(t)} € A .
 Oátál

 Proof. Suppose that g = 4-ess sup f(t) < ®. Let a < g. Then Ea =
 Oátál

 = {x € [0,1] : f(x) > a} € ¿'A. From condition (**) it follows that [0,1] '

 {x € [0,1] : nx e E* for infinitely many n} c A. This means that
 &

 lim sup f(nx) i a except for a set belonging to 4.
 n
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 Put afc = g - £ < g for k e N. Then there exists a set e 4 such
 CO

 that lim sup f(nx) à afc for x i Pfc. Let P = U Pu. Obviously P € A
 n k=l

 and lim sup f(nx) * ajj = g - r for k € N and for x 4 P. Hence lim sup
 n K n

 f(nx) ii g except on a set P c A.

 Observe that lim sup f(nx) * g except for a set belonging to because
 n

 if {x € [0,1] : lim sup f(nx) > g} c then {x : f(x) > g} € 4'i. But
 n

 this contradicts the definition of A-ess sup f(t). Indeed, we have
 Otfttfl

 CO 00

 {x e [0,1] : lim sup f(nx) > g } = H U {xc [0,1] : f(nx) > g} €
 n m=l n=m

 so for every m e N there exists n0 * m such that {x c [0,1] : f(n0x) > g}

 e Â'A. Put En = {x € [0,1] : f(n0x) > g}. Then n0En = {n0x : x e En } €
 "O O o

 e ¿'A. But if ye n0En<>, then f(y) > g. Consequently, {x e R : f(x) >

 > g} 3 n0Eno and {x e F : f(x) > g) « >I'A.
 Let £ denote the cr-algebra of sets measurable in the sense of Lebesgue,

 let Tl be the <r-ideal of null sets and let m be Łebesgue measure on IR.

 Proposition 1. The pair (£,H) he« property (#*).

 Proof. Let E c [0,1] be a measurable set of positive measure. Put

 An = {x € [0,1] : nx € E*} for every n e ti. Then E** = lim sup An =
 m co co ^

 = fi U An. It suffices to prove that m( U An) = 1 for every m c N.
 m=l n=m n=m

 n~^ 1 1 k k+1
 We have An = U - (E + k) . Observe that - (E + k) c [- ,

 k=0 n n n n n=m

 k k+1
 has metric density greater than or equal to m(E) on every interval [- , - ^ - ] ,

 nim, 0 í k á n - 1.
 00

 Suppose that m([0,1] ' U An) > 0. Then there exists a point
 n=m „

 x0 € [0,1], which is a density point of the set [0,1] ' U An. (We may
 n=m

 ]{
 assume that x0 * - , k c N, n € N) . Then there exists a sequence of

 ki kļ+1 k¿ kļ+1
 intervals { [ - ,

 ni lew
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 J*(([0,1] ' U An) n [iL, iíiíi])
 n=m ni ni

 lun

 i-x» -
 ni

 but this is impossible because

 ki ki+1
 M< U A„ » [-?•, -Ł-]) ki+1
 n=m ni ni

 lim

 i-x» -
 ni

 If E € <¿ - A and m(E n [0,1]) = 0, then there exists t € N such that

 /i(E n [Ä, 4+1]) > 0. The proof in this case is analogous and uses interval

 the form [- - , - instead of [- , ^- ^-] . Other changes are obvious .
 n n n n

 Now, let B denote the ^-algebra of sets having the Baire property, i.e.

 B = {G A P; G is an open set and P is a meager set} and let K be the

 ©■-ideal of meager sets.

 Proposition 2. The pair (B, X) has property (**).

 Proof. Let E € B'K, E c [0,1]. Again put An = {x € [0,1] : nx € E*} =
 n-1 , ma

 = U - (E + k), for every n e N. Then E** = lim sup An = Í1 U An.
 k=0 n n m=l n=m

 00

 It suffices to prove that U An is a residual set for m e N. Suppose to
 n=m

 00

 the contrary that there exists m such that U An is not a residual set.
 n=m

 1 k k+1 1
 Obviously, - (E + k) c [- ,

 n n n n

 00

 set of the second category. So U An has the Baire property and is of the
 n=m

 second category on every interval [- , ^- ^] for k = 0,...,n - 1 and n * m.
 n n

 00

 We have U An - (G - Pi) u Pa» where G is an open set and Pu P2 are
 n=m

 00

 of the first category. Then [0,1]' U An = [ ( [0,1] 'G) u Pj] n [[0,l]'Pa] i A.
 n=m

 So [0,1]'G is a closed set of the second category. Hence, there exists an

 365



 interval [a,b], (a < b) such that [a,b] c [0,1]'G. There exist nim
 k k+1 w k k+1

 and k e N such that [-,

 n n n=m n n
 k k+1

 G n f- ,
 n n

 In the general case (i.e. E - [0,1] i i and E n [0,1] e Jl) the proof

 is analogous.

 Observe that the pair (£ n B, 71 n X) does not have property (**). Let

 E c [0,1] be a meager set of positive measure. Then E € £ n B'71 n K. But
 » ® n-1 ,

 E** = fi U U - (E + k) is a meager set, so [0,1]'E** i Tl n X.
 m=l n=m k=0 n

 Now we shall consider the set {x € [0,1]: lim sup f(nx) * i-ess sup f(t)}.
 n Oátíl

 Let A c [0,1). Put
 tt CB

 U(A) = fi U [- (A U (A + 1) U ... u (A + n - 1))] =
 m=l n=m n

 = lim sup [-(Au (A + 1) u ... u (A + n - 1))].
 n n

 It is easy to see that U(A u B) = U(A) u U(B) for all A,B c [0,1] and

 if A c B, then U(A) c U(B). If An c A for every n, then
 <0

 U U(An) c U(A) .
 n=l

 Let x be an irrational number and put A = {x}. We shall show that

 U(A) = ♦. Suppose otherwise that there exists a real number z such that

 z € U(A) = lim sup - (A u (A + 1) u ... u (A + n - 1)). Then there exists
 n n

 a sequence {n^} tending to infinity such that

 " J
 z e n - (A u (A + 1) u ... u (A + n» - 1)).

 m=l nm

 Hence there exist sequences {nm} and {km} , km í nm - 1 such that z =

 = (x + kjn)/n]n for every m € N. Let n^ * njn2 . We have

 (x + kn,i)/nnii = (x + kB,a)/njn2

 so x = (kffla nmļ - kjj^ n^J/ínm^ - n^). But this is impossible because x
 is an irrational number. Consequently, U(A) = ♦. It is also easy to see that
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 x+k
 if X is an irrational number, then all numbers of the form n , '

 different.
 00 00 00

 If A = U An, then U U(An) c U( U An) = U(A) because of the
 n=l n=l n=l

 monotonicity of U. Observe that the reverse inclusion need not hold. We
 00 00

 shall find a sequence of sets {An} such that U( U An) * U U(An) .
 n=l n=l

 Let z be an irrational number from the interval [0,1]. Put xn =
 00

 = n • z - [nz] , An = {xn} for n e N and A = U An. Obviously, xn is
 n=l

 an irrational number; so U(An) = ♦ for n € N. We shall show that

 z € U(A) . For every n e N we have

 xn + [nz]
 z =

 n

 00

 1
 and [nz] < n, because z < 1. Consequently, z c ft - (A u (A + 1) u ... u

 n=l n

 u ... u (A + n - 1)) « U(A) .

 Observe that if x = ^* (irreducible fraction), then ^ e U({x}) if and
 only if q is a multiple of qt . Conversely, for all natural numbers

 r Pļ
 r,s c N such that r < sq1 and r / sqj we have c U ({-}).

 Theorea 2. Let f : R •* R be a ¿-measurable, periodic function with

 period 1 and M = A-ess sup f(t). Then
 Oátál

 {x € [0,1) : lim sup f(nx) > M} =
 n

 °> ,

 = U U(f 1 ( (M + £, K •)) n [0,1)). k=l K

 Proof. Put A = {x e [0,1) : lim sup f(nx) > M} and let x € A. Then
 n

 x € [0,1) and lim sup f(nx) > M. There exists k e N such that
 n

 lim sup f(nx) > M + r. So there exists a sequence {1%} tending to infinity
 n K

 such that f (njijx) > M + j for every m e N. Observe that x €

 e U(f_1((M+i, •)) n [0,1)). Indeed, let f_1((M+^, •)) n [0,1) = B.
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 From the assumption that f is a periodic function, it follows that

 f(nmx) > M + ^ if and only if nmX € B u (B + 1) u ... u (B + n, - 1),
 i.e. xc- (Bu(B+l)u...u(B+nm-l)). We have f(nmx) > M + r
 njo K

 C» ļ
 for every m € N. So x e il - (B u (B + 1) u . . . u (B + n™ - 1) ) c

 m=l nm

 c lim^sup (B u (B + 1) u ... u (B + n - 1) = U(B). This means that

 A c U U(f_1 ( (M + £, K •)) n [0,1)). k=l K
 <D ļ

 Conversely, let xc U U(f *((M + r, ®)) n [0,1)). There exists k c N
 k=l K

 such that X c U(f 1((M + •)) n [0,1)). Put f *((M + <») ) n [0,1) = B.

 We have x c U(B). So there exists a sequence {1%} tending to infinity such
 o> i

 that x € n. - (B u (B + 1) u ... u (B + nm - 1)). This means that nmX €
 m-1 nm

 «Bu (B + 1) u ... u (B + nm - 1) for every m e N. Hence fín^x) > M + ^

 (because f is a periodic function with period 1 and B + i - f *((M + j,«)) n

 n [Ä, Í + 1) for every t e N). Consequently, lim^sup f(nx) i lim^sup f(nmx)i
 » H + f > H and x c A. k

 The converse theorem also holds:

 00

 Theorem 3. If B e A and if B = U U(A]{) for some increasing sequence
 k=l

 {A](} of it-measurable subsets of [0,1), then there exists a ¿-measurable

 periodic function f : R ■+ F with period 1 such that

 {x € [0,1) : lim sup f(nx) > A-ess sup f(t)} = B.
 n Qétál

 Proof. Put

 00

 1/min {< : x € Af} if x e ht

 f(x) =

 .0 if x € [0,1) ' U A4.
 «=1

 We shall consider the periodic extension of f on R. Obviously

 4-ess sup f(t) = 0.
 OétáV

 Observe that {x € [0,1) : lim sup f(nx) > 0} = B.
 n
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 Let x e B. Evidently, x c [0,1). There exists k € N such that x €

 € U(Aļr) = lim sup - (Au u (Au + 1) u ... u (Aw + n - 1)). So there exist
 n n

 k € N and a sequence {nm} tending to infinity such that n^x e Aķ u

 u (Ak +1) u ... o (Ajt + nm - 1) for every m e N. From the periodicity of

 f we have

 f(nmx) = 1/min {< : n^x £ A| u (A¿ +1) u ... u (A# + nm - 1)} i l/k

 for every m € N. Hence lim sup f(nx) à lim sup fín^x) i 1/k. Therefore
 n m

 x € {y e [0,1) : lim sup f(ny) > 0}. Consequently, B c {x € [0,1) :
 n

 lim sup f(nx) > 0}.
 n

 Let x e {y e [0,1) : lim sup f(ny) > 0}. Then lim sup f(nx) > 0.
 n n

 Hence there exist k c N and a sequence (nm) tending to infinity such that

 f(njnx) > 1/k for every m € N. We have

 f(nj||X) = 1/min {* : - [n^x] € A*} > 1/k

 for every m c N, and {A|} is an increasing sequence of sets; so n^x €

 € Afc + [nm*]* There are two cases:

 1* x = 0. Then the sequence (f(nx)} is constant and equals f(0).

 Thus, lim sup f(nx) = f(0) > 1/k. Hence 0 € Afc, 0 € i?(Ak "(Afc + 1))
 n *

 0 € ~ (Ak u (Ak +1) u ... u (Aķ + n - 1)),... . Consequently,

 0 € ñn (1/n) (Ak u (Ak + 1) u ... o (Ak + n - 1)) c U(Ak) c B. n=l

 2* 0 < x < 1. Then njgX < nm and [dqx] * nm - 1 for every m 6 N.

 There exist k € N and a sequence {nm} tending to infinity such that

 HqX € Ak u (Ak +1) u ... u (Ak + nm - 1) for m € N. Hence

 x € n (l/nm)(Ak u (Ak + 1) u ... u (Ak + nm " D) c
 m=l

 c lim sup - (Ak u (Ak +1) u ••• u (Ak + n - 1)) = U(Ak) c B.
 n n

 Consequently {x e [0,1) : lim sup f(nx) > 0} c B.
 n
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 Let A e [0,1). But

 £(A) = Ů ñ [- (A u (A + 1) u ... u (A + n - 1 ))] =
 m=l nim n

 = lim inf [- (Au (A + 1) u ... u (A + n - 1 ))].
 n n

 It is easy to see that £(A n B) = £(A) n £(B) for all A, B c [0,1) and

 if A c B, then £(A) <= £(b). If A = Ů An, then Û, ¿(An) « £( Û An) =
 n=l n-1 n=l

 = £(A) by the monotonicity of £. The same example as for the operation U

 shows that the reverse inclusion need not hold.

 Theorea 4. Let f : R -* R be a ¿-measurable periodic function with

 period 1 and M = A-ess sup f ( t ) . Then
 Otfttfl

 {x € [0,1) : lim sup f(nx) < M} = U £(f M - r)) « [0,1)).
 n k=l K

 Proof. Put A = {x € [0,1) : lim sup f(nx) < M} and let x e A. Then
 n

 x c [0,1) and lim sup f(nx) < M. There exists k e N such that
 n

 lim sup f(nx) < M - r. So there exists n0 € N such that f(nx) < M - £
 n k K

 for ni n0. Observe that x e £(f 1 ((-<*, M - ^)) n [0,1)). Indeed, let

 t ł((~"»M - ^)) n [0,1) = B. From the assumption that f is a periodic

 function, it follows that f(nx) < M - ^ if and only if nx e B u (B + 1) u

 u ... u (B + n - 1 ), i.e. x € ^ (B u (B + 1) u ... u (B + n - 1)). We
 have f(nx) < M - £ for n i n0. Hence x € lim inf - (B u (B + 1) u . . . "

 « n n
 <J (B + n - 1)) = £(B). This means that A c « U £(f 1 ((-«», M - ¿)) n [0,1)).

 k=l K

 Conversely, let x e U £(f 1 ((-®, M - r)) n [0,1)). There exists k € N
 k=l K

 such that x e £(f *((-*>, M - j)) n [0,1)). Put f *((-®, M - ^)) n [0,1) = B.
 We have x c £(B). Thus there exists n0 e N such that x € - (B u (B + 1) u

 n

 u ... u (B + n - 1)) for n i n0. This means that nx € (B u (B + 1) u . . . u

 u (B + n - 1)) for n i n0. Therefore f(nx) < M - ^ (because f is a
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 periodic function with period 1 and B + t - f 1 ((-«•, M - ^)) n [*,< + 1) for
 every i € N). Consequently, lim sup f(nx) é M - r < M and x c A.

 n K

 The converse theorem also holds.

 40

 Theorea 5. If B € t and if B = U ¿(Afe) for .some increasing sequence
 k=l

 {Afe} of ¿-measurable subsets of [0,1), then there exists a ¿-measurable

 periodic function f : F -* F with period 1 such that

 {x € [0,1) : lim sup f(nx) < A-ess sup f(t)} = B.
 n Oátál

 Proof. Put

 CO

 (-l)/min {< : x e A<} if xc U Af
 i=l

 f(x) =

 0 if x c [0,1) - U Af.
 «=1

 We shall consider the periodic extension of f on R. Obviously,

 A-ess sup f(t) = 0.
 Oátál

 Observe that {x € [0,1) : lim sup f(nx) < 0} = B.
 n

 Let x e B. Evidently, x e [0,1). There exists k c N such that x €

 € £(Aj{) = lim inf - (Afc u (A^ +1) u ... u (Afc + n - 1)). So there exist
 n n

 k c N and n0 € N such that nx c (Afc u (Ajj + 1) u ... u (Aķ + n - 1)) for

 n i n0. From the periodicity of f we have

 f(nx) = (-l)/min {( : nx e A| u (A< +1) u ... u

 u (A| + n - 1)) é (-l)/k

 for n à n0. Hence lim sup f(nx) é (-l)/k < 0. Therefore x e {y € [0,1) :
 n

 : lim sup f(ny) < 0}. Consequently, B c {x e [0,1) : lim sup f(nx) < 0}.
 n n
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 Let X « {y € [0,1) : lim sup f(ny) < 0}. Then lim sup f(nx) < 0.
 n n

 Hence there exist k e N and n0 € N such that f(nx) < (-l)/k for

 n i n0. We have f(nx) = (-l)/min {< : nx - [nx] € A<} < (-l)/k for n * n0

 and {A¿} is an increasing sequence of sets. Hence nx € Aķ + [nx] for

 n 4 n0. There are two cases:

 1* X = 0. Then the sequence {f(nx)} is constant and equals f(0). Thus

 lim sup f(nx) = f(0) < (-l)/k. Hence 0 e Afc,
 n

 0 € 2 ( u ( Aķ + 1 0 € ~ ( Aķ u ( A]( + 1 ) u ♦ . . u ( Aj{ + n ~ 1 ) ) , . . . .
 CO

 Consequently, 0 € fi (l/n)(Ai{ u (A + 1) u ... u (A^ + n - 1)) c £(Aj{) c B.
 n=l

 2* 0 < X < 1. Then nx < n and [nx] á n - 1 for every n € N. There

 exist k e N and n0 e N such that nx c (Afc u (Aķ +1) u ... u
 CO

 u (Aj{ + n - 1)) for n i n0. Hence x € n (l/nXA^ u ( Aję + 1)) u
 n=n0

 u ... u (Ajf + n - 1)) c lim inf - (Afc u (Afc +1) u ... u (Afc + n - 1)) =
 n n

 = £(Ak) c B.

 Consequently, {x € [0,1) : lim sup f(nx) < 0} c B.
 n
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