E. Wagner-Bojakowska, Institute of Mathematics, Łódź University, Poland.

ON A THEOREM OF BANACH CONCERNING PERIODIC FUNCTIONS

S. Banach (See [1].) proved that if $f : \mathbb{R} \to \mathbb{R}$ is a measurable periodic function with period 1, then $\limsup_{n \to \infty} f(nx) = \operatorname{ess sup} f(t)$ almost everywhere $0 \le t \le 1$ on [0,1]. In Theorem 1 we shall prove a generalization of Banach's theorem which yields a measure theoretic version (Proposition 1) and a category version (Proposition 2).

Let \pounds be a σ -algebra of subsets of \mathbb{R} and let $\pounds \subset \pounds$ be a proper σ -ideal of sets such that:

1° if $A \in \mathfrak{s}$, then $A + a = \{x + a : x \in A\} \in \mathfrak{s}$ for every $a \in \mathbb{R}$, 2° if $A \in \mathfrak{s}$, then $a \cdot A = \{a \cdot x : x \in A\} \in \mathfrak{s}$ for every $a \in \mathbb{R}$. For every subset $E \subseteq \mathbb{R}$ put $E^* = \bigcup_{k=0}^{\infty} (E + k)$ and $E^{**} = \{x \in [0, 1] : k = 0\}$ $nx \in E^*$ for infinitely many $n \in \mathbb{N}\}$.

Definition 1. The pair (\pounds, ϑ) has property (**) means $[0,1] \setminus E^{**} \in \vartheta$ for every $E \in \pounds \setminus \vartheta$.

Let f be a 4-measurable function. Put $9-ess \sup f(t) = 0 \le t \le 1$ = $\inf\{g : \{x : f(x) > g\} \in 9\}$.

Proof. Suppose that $g = \Im - ess \sup f(t) < \infty$. Let a < g. Then $E_a = 0 \le t \le 1$ = $\{x \in [0,1] : f(x) > a\} \in \Im \setminus \Im$. From condition (**) it follows that $[0,1] \setminus \{x \in [0,1] : nx \in E_a^* \text{ for infinitely many } n\} \in \Im$. This means that lim sup $f(nx) \ge a$ except for a set belonging to \Im . Put $a_k = g - \frac{1}{k} < g$ for $k \in \mathbb{N}$. Then there exists a set $P_k \in \mathfrak{s}$ such ∞ that $\lim_{n} \sup f(nx) \ge a_k$ for $x \notin P_k$. Let $P = \bigcup_{k=1}^{\infty} P_k$. Obviously $P \in \mathfrak{s}$ and $\lim_{n} \sup f(nx) \ge a_k = g - \frac{1}{k}$ for $k \in \mathbb{N}$ and for $x \notin P$. Hence $\lim_{n} \sup_{n} f(nx) \ge g$ except on a set $P \in \mathfrak{s}$.

Observe that $\lim_{n} \sup f(nx) \neq g$ except for a set belonging to 4, because if $\{x \in [0,1] : \lim_{n} \sup f(nx) > g\} \in 4 \setminus 4$, then $\{x : f(x) > g\} \in 4 \setminus 4$. But this contradicts the definition of 4-ess $\sup f(t)$. Indeed, we have $\sum_{\substack{\alpha \\ 0 \neq t \neq 1}} \{x \in [0,1] : \limsup_{n} f(nx) > g\} = \bigcap_{\substack{n=1 \\ n=1}} \bigcup_{\substack{n=n}} \{x \in [0,1] : f(nx) > g\} \in 4 \setminus 4, \}$ so for every $m \in N$ there exists $n_0 \geq m$ such that $\{x \in [0,1] : f(n_0x) > g\}$ $\in 4 \setminus 4$. Put $E_{n_0} = \{x \in [0,1] : f(n_0x) > g\}$. Then $n_0E_{n_0} = \{n_0x : x \in E_{n_0}\} \in 4 \setminus 4$. $\geq g\} \geq n_0E_{n_0}$ and $\{x \in \mathbb{R} : f(x) > g\} \in 4 \setminus 4$.

Let \pounds denote the σ -algebra of sets measurable in the sense of Lebesgue, let n be the σ -ideal of null sets and let μ be Lebesgue measure on \mathbb{R} .

Proposition 1. The pair $(\pounds, \mathbb{1})$ has property (**).

Proof. Let $E \in [0,1]$ be a measurable set of positive measure. Put $A_n = \{x \in [0,1] : nx \in E^*\}$ for every $n \in N$. Then $E^{**} = \lim_{n \to \infty} \sup_{n \to \infty} A_n = \sum_{m=1}^{\infty} \sum_{n=m}^{\infty} A_n$. It suffices to prove that $\mu(\bigcup_{n=m} A_n) = 1$ for every $m \in N$. We have $A_n = \bigcup_{k=0}^{n-1} \frac{1}{n} (E + k)$. Observe that $\frac{1}{n} (E + k) \in [\frac{k}{n}, \frac{k+1}{n}]$, so $\bigcup_{n=m}^{\infty} A_n$ has metric density greater than or equal to $\mu(E)$ on every interval $[\frac{k}{n}, \frac{k+1}{n}]$, $n \ge m$, $0 \le k \le n - 1$.

Suppose that $\mu([0,1] \setminus \bigcup_{\substack{n=m \ n=m}} A_n) > 0$. Then there exists a point ∞ $x_o \in [0,1]$, which is a density point of the set $[0,1] \setminus \bigcup_{\substack{n=m \ n=m}} A_n$. (We may assume that $x_o \neq \frac{k}{n}$, $k \in N$, $n \in N$). Then there exists a sequence of intervals $\{[\frac{k_i}{n_i}, \frac{k_i+1}{n_i}]\}_{i \in N}$ such that $x_o \in [\frac{k_i}{n_i}, \frac{k_i+1}{n_i}]$, $n_i \rightarrow \infty$ and

$$\lim_{i \to \infty} \frac{\mu(([0,1] \setminus \bigcup_{n=m}^{\infty} A_n) \cap [\frac{k_i}{n_i}, \frac{k_i+1}{n_i}])}{\frac{1}{n_i}} = 1,$$

but this is impossible because

$$\lim_{i\to\infty} \frac{\mu(\bigcup_{n=m}^{\omega} A_n \cap [\frac{k_i}{n_i}, \frac{k_i+1}{n_i}])}{\frac{1}{n_i}} \ge \mu(E) > 0.$$

If $E \in \mathcal{L} - \mathcal{L}$ and $\mu(E \cap [0,1]) = 0$, then there exists $\ell \in N$ such that $\mu(E \cap [\ell, \ell+1]) > 0$. The proof in this case is analogous and uses interval the form $[\frac{\ell+k}{n}, \frac{\ell+k+1}{n}]$ instead of $[\frac{k}{n}, \frac{k+1}{n}]$. Other changes are obvious.

Now, let \mathfrak{B} denote the σ -algebra of sets having the Baire property, i.e. $\mathfrak{B} = \{ G \land P; G \text{ is an open set and } P \text{ is a meager set} \}$ and let K be the σ -ideal of meager sets.

Proposition 2. The pair (B,K) has property (**).

Proof. Let $E \in B \setminus K$, $E \in [0,1]$. Again put $A_n = \{x \in [0,1] : nx \in E^*\} = \prod_{k=0}^{n-1} \frac{1}{n} (E+k)$, for every $n \in N$. Then $E^{**} = \lim_{n \to \infty} \sup A_n = \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} A_n$. It suffices to prove that $\bigcup_{n=m}^{\infty} A_n$ is a residual set for $m \in N$. Suppose to the contrary that there exists m such that $\bigcup_{n=m}^{\infty} A_n$ is not a residual set. Obviously, $\frac{1}{n} (E+k) \in [\frac{k}{n}, \frac{k+1}{n}]$ for $k = 0, \ldots, n-1$ and $\frac{1}{n} (E+k)$ is a set of the second category. So $\bigcup_{n=m}^{\infty} A_n$ has the Baire property and is of the second category on every interval $[\frac{k}{n}, \frac{k+1}{n}]$ for $k = 0, \ldots, n-1$ and $n \ge m$. We have $\bigcup_{n=m}^{\infty} A_n = (G - P_1) \cup P_2$, where G is an open set and P_1, P_2 are of the first category. Then $[0,1] \setminus \bigcup_{n=m}^{\infty} A_n = [([0,1] \setminus G) \cup P_1] \cap [[0,1] \setminus P_2] \notin 4$. So $[0,1] \setminus G$ is a closed set of the second category. Hence, there exists an interval [a,b], (a < b) such that $[a,b] \in [0,1] \setminus G$. There exist $n \ge m$ and $k \in \mathbb{N}$ such that $[\frac{k}{n}, \frac{k+1}{n}] \in [a,b]$. Then $\bigcup_{n=m}^{\infty} A_n \cap [\frac{k}{n}, \frac{k+1}{n}] \in \mathcal{S}$ because $G \cap [\frac{k}{n}, \frac{k+1}{n}] = \phi$. But this is a contradiction.

In the general case (i.e. $E = [0,1] \notin A$ and $E \cap [0,1] \in A$) the proof is analogous.

Observe that the pair $(\pounds \cap B, \Pi \cap K)$ does not have property (**). Let $E \in [0,1]$ be a meager set of positive measure. Then $E \in \pounds \cap B \setminus \Pi \cap K$. But $E^{**} = \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} \bigcup_{k=0}^{n-1} \bigcup_{n=1}^{1} (E+k)$ is a meager set, so $[0,1] \setminus E^{**} \notin \Pi \cap K$.

Now we shall consider the set {x $\in [0,1]$: $\lim_{n \to 0 \le t \le 1} \sup f(nx) \neq \Im$ -ess sup f(t)}.

$$U(A) = \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} \left[\frac{1}{n} \left(A \cup (A+1) \cup \ldots \cup (A+n-1)\right)\right] =$$
$$= \lim_{n} \sup_{n} \left[\frac{1}{n} \left(A \cup (A+1) \cup \ldots \cup (A+n-1)\right)\right].$$

Let $A \in [0,1)$. Put

It is easy to see that $U(A \cup B) = U(A) \cup U(B)$ for all A, B $\subset [0,1]$ and if A $\subset B$, then $U(A) \subset U(B)$. If $A_n \subset A$ for every n, then $\bigcup_{n=1}^{\infty} U(A_n) \subset U(A)$.

Let x be an irrational number and put $A = \{x\}$. We shall show that $U(A) = \phi$. Suppose otherwise that there exists a real number z such that $z \in U(A) = \limsup_{n} \frac{1}{n} (A \cup (A + 1) \cup \ldots \cup (A + n - 1))$. Then there exists a sequence $\{n_m\}$ tending to infinity such that

$$z \in \bigcap_{m=1}^{\infty} \frac{1}{n_m} (A \cup (A + 1) \cup \ldots \cup (A + n_m - 1)).$$

Hence there exist sequences $\{n_m\}$ and $\{k_m\}$, $k_m \neq n_m - 1$ such that $z = (x + k_m)/n_m$ for every $m \in N$. Let $n_m \neq n_m$. We have

$$(x + k_{m_1})/n_{m_1} = (x + k_{m_2})/n_{m_2}$$

so $x = (k_{m_2} n_{m_1} - k_{m_1} n_{m_2})/(n_{m_2} - n_{m_1})$. But this is impossible because x is an irrational number. Consequently, $U(A) = \phi$. It is also easy to see that

if x is an irrational number, then all numbers of the form $\frac{x+k}{n}$, $k \le n$, are different.

If $A = \bigcup_{n=1}^{\infty} A_n$, then $\bigcup_{n=1}^{\infty} U(A_n) \subset U(\bigcup_{n=1}^{\infty} A_n) = U(A)$ because of the monotonicity of U. Observe that the reverse inclusion need not hold. We shall find a sequence of sets $\{A_n\}$ such that $U(\bigcup_{n=1}^{\infty} A_n) \neq \bigcup_{n=1}^{\infty} U(A_n)$.

Let z be an irrational number from the interval [0,1]. Put $x_n = \infty$ = $n \cdot z - [nz]$, $A_n = \{x_n\}$ for $n \in N$ and $A = \bigcup_{n=1}^{\infty} A_n$. Obviously, x_n is an irrational number; so $U(A_n) = \phi$ for $n \in N$. We shall show that $z \in U(A)$. For every $n \in N$ we have

$$z = \frac{x_n + [nz]}{n}$$

and [nz] < n, because z < 1. Consequently, $z \in \bigcap_{n=1}^{\infty} \frac{1}{n} (A \cup (A + 1) \cup ... \cup \cup (A + n - 1)) \subset U(A)$.

Observe that if $x = \frac{p_1}{q_1}$ (irreducible fraction), then $\frac{p}{q} \in U(\{x\})$ if and only if q is a multiple of q_1 . Conversely, for all natural numbers r,s $\in N$ such that $r < sq_1$ and $r \not / sq_1$ we have $\frac{r}{sq_1} \in U(\{\frac{p_1}{q_1}\})$.

Theorem 2. Let $f : \mathbb{R} \to \mathbb{R}$ be a 4-measurable, periodic function with period 1 and M = 4-ess sup f(t). Then $0 \le t \le 1$

$$\{x \in [0,1) : \limsup_{n} f(nx) > M\} = \\ = \bigcup_{k=1}^{\infty} U(f^{-1}((M + \frac{1}{k}, \infty)) \cap [0,1))$$

Proof. Put $A = \{x \in [0,1) : \lim_{n} \sup_{n} f(nx) > M\}$ and let $x \in A$. Then $x \in [0,1)$ and $\lim_{n} \sup_{n} f(nx) > M$. There exists $k \in N$ such that $\lim_{n} \sup_{n} f(nx) > M + \frac{1}{k}$. So there exists a sequence $\{n_{m}\}$ tending to infinity such that $f(n_{m}x) > M + \frac{1}{k}$ for every $m \in N$. Observe that $x \in C$ $\in U(f^{-1}((M + \frac{1}{k}, \omega)) \cap [0,1))$. Indeed, let $f^{-1}((M + \frac{1}{k}, \omega)) \cap [0,1) = B$. From the assumption that f is a periodic function, it follows that $f(n_m x) > M + \frac{1}{k} \quad \text{if and only if} \quad n_m x \in B \cup (B + 1) \cup \ldots \cup (B + n_m - 1),$ i.e. $x \in \frac{1}{n_m} (B \cup (B + 1) \cup \ldots \cup (B + n_m - 1)).$ We have $f(n_m x) > M + \frac{1}{k}$ for every $\mathbf{m} \in \mathbf{N}$. So $x \in \bigcap_{m=1}^{\infty} \frac{1}{n_m} (B \cup (B + 1) \cup \ldots \cup (B + n_m - 1)) \subset \mathbb{C}$ $\subset \lim_{m \to 1} \sup (B \cup (B + 1) \cup \ldots \cup (B + n - 1)) = U(B).$ This means that $A \subset \bigcup_{k=1}^{\infty} U(f^{-1}((M + \frac{1}{k}, \infty)) \cap [0, 1)).$

Conversely, let $x \in \bigcup_{k=1}^{\infty} U(f^{-1}((M + \frac{1}{k}, \infty)) \cap [0, 1))$. There exists $k \in N$ such that $x \in U(f^{-1}((M + \frac{1}{k}, \infty)) \cap [0, 1))$. Put $f^{-1}((M + \frac{1}{k}, \infty)) \cap [0, 1) = B$. We have $x \in U(B)$. So there exists a sequence $\{n_m\}$ tending to infinity such that $x \in \bigcap_{m=1}^{\infty} \frac{1}{n_m}$ (B \cup (B + 1) $\cup \ldots \cup$ (B + $n_m - 1$)). This means that $n_m x \in e B \cup (B + 1) \cup \ldots \cup (B + n_m - 1)$ for every $m \in N$. Hence $f(n_m x) > M + \frac{1}{k}$ (because f is a periodic function with period 1 and $B + \ell = f^{-1}((M + \frac{1}{k}, \infty)) \cap [\ell, \ell + 1)$ for every $\ell \in N$). Consequently, $\lim_{n} \sup f(nx) \ge \lim_{m} \sup f(n_m x) \ge M + \frac{1}{k} > M$ and $x \in A$.

The converse theorem also holds:

Theorem 3. If $B \in \mathcal{A}$ and if $B = \bigcup_{k=1}^{\infty} U(A_k)$ for some increasing sequence $\{A_k\}$ of \mathcal{A} -measurable subsets of [0,1), then there exists a \mathcal{A} -measurable periodic function $f : \mathbb{R} \to \mathbb{R}$ with period 1 such that

$$\{x \in [0,1) : \limsup_{n} f(nx) > \operatorname{a-ess sup}_{0 \le t \le 1} f(t)\} = B.$$

Proof. Put

$$f(x) = \begin{cases} 1/\min \{ \ell : x \in A_{\ell} \} & \text{if } x \in \bigcup_{\ell=1}^{\infty} A_{\ell} \\ 0 & \text{if } x \in [0,1) \setminus \bigcup_{\ell=1}^{\infty} A_{\ell} \end{cases}$$

We shall consider the periodic extension of f on \mathbb{R} . Obviously \Im -ess sup f(t) = 0. \Im -ess f(t) = 0.

Observe that $\{x \in [0,1) : \limsup_{n} f(nx) > 0\} = B.$

Let $x \in B$. Evidently, $x \in [0,1)$. There exists $k \in N$ such that $x \in \varepsilon \cup (A_k) = \lim_{n} \sup \frac{1}{n} (A_k \cup (A_k + 1) \cup \ldots \cup (A_k + n - 1))$. So there exist $k \in N$ and a sequence $\{n_m\}$ tending to infinity such that $n_m x \in A_k \cup \cup (A_k + 1) \cup \ldots \cup (A_k + n_m - 1)$ for every $m \in N$. From the periodicity of f we have

$$f(n_m x) = 1/\min \{ \ell : n_m x \in A_\ell \cup (A_\ell + 1) \cup \ldots \cup (A_\ell + n_m - 1) \} \ge 1/k$$

for every $m \in N$. Hence $\limsup_{n} f(nx) \ge \limsup_{m} f(n_m x) \ge 1/k$. Therefore $x \in \{y \in [0,1) : \limsup_{n} f(ny) > 0\}$. Consequently, $B \subseteq \{x \in [0,1) : \lim_{n} \sup_{n} f(nx) > 0\}$.

Let $x \in \{y \in [0,1) : \limsup_{n} f(ny) > 0\}$. Then $\limsup_{n} f(nx) > 0$. Hence there exist $k \in N$ and a sequence $\{n_m\}$ tending to infinity such that $f(n_m x) > 1/k$ for every $m \in N$. We have

$$f(n_m x) = 1/\min \{ \ell : n_m x - [n_m x] \in A_\ell \} > 1/k$$

for every $m \in N$, and $\{A_g\}$ is an increasing sequence of sets; so $n_m x \in A_k + [n_m x]$. There are two cases:

1° x = 0. Then the sequence
$$\{f(nx)\}$$
 is constant and equals $f(0)$.
Thus, $\lim_{n} \sup_{n} f(nx) = f(0) > 1/k$. Hence $0 \in A_k$, $0 \in \frac{1}{2}(A_k \cup (A_k + 1)), \ldots, 0 \in \frac{1}{n} (A_k \cup (A_k + 1) \cup \ldots \cup (A_k + n - 1)), \ldots$. Consequently,
 $0 \in \bigcap_{n=1}^{\infty} (1/n)(A_k \cup (A_k + 1) \cup \ldots \cup (A_k + n - 1)) \subset U(A_k) \subset B$.

2° 0 < x < 1. Then $n_m x < n_m$ and $[n_m x] \le n_m - 1$ for every $m \in N$. There exist $k \in N$ and a sequence $\{n_m\}$ tending to infinity such that $n_m x \in A_k \cup (A_k + 1) \cup \ldots \cup (A_k + n_m - 1)$ for $m \in N$. Hence $x \in \bigcap_{m=1}^{\infty} (1/n_m)(A_k \cup (A_k + 1) \cup \ldots \cup (A_k + n_m - 1)) \subset$ $c \lim_n \sup \frac{1}{n} (A_k \cup (A_k + 1) \cup \ldots \cup (A_k + n - 1)) = U(A_k) \subset B$.

Consequently $\{x \in [0,1) : \limsup_{n} f(nx) > 0\} \subset B.$

Let $A \in [0,1)$. But

$$\mathscr{X}(A) = \bigcup_{m=1}^{\infty} \bigcap_{n \ge m}^{\infty} \left[\frac{1}{n} \left(A \cup \left(A + 1 \right) \cup \ldots \cup \left(A + n - 1 \right) \right) \right] =$$
$$= \liminf_{n} \left[\frac{1}{n} \left(A \cup \left(A + 1 \right) \cup \ldots \cup \left(A + n - 1 \right) \right) \right].$$

It is easy to see that $\pounds(A \cap B) = \pounds(A) \cap \pounds(B)$ for all A, B $\subseteq [0,1)$ and if A $\subseteq B$, then $\pounds(A) \subseteq \pounds(B)$. If $A = \bigcup_{n=1}^{\infty} A_n$, then $\bigcup_{n=1}^{\infty} \pounds(A_n) \subseteq \pounds(\bigcup_{n=1}^{\infty} A_n) =$ $= \pounds(A)$ by the monotonicity of \pounds . The same example as for the operation U shows that the reverse inclusion need not hold.

Theorem 4. Let $f : \mathbb{R} \to \mathbb{R}$ be a *J*-measurable periodic function with period 1 and M = *J*-ess sup f(t). Then $0 \le t \le 1$

$$\{x \in [0,1) : \limsup_{n} f(nx) < M\} = \bigcup_{k=1}^{\infty} \mathscr{L}(f^{-1}((-\infty, M - \frac{1}{k})) \cap [0,1)).$$

Proof. Put $A = \{x \in [0,1) : \lim_{n} \sup f(nx) \le M\}$ and let $x \in A$. Then $x \in [0,1)$ and $\lim_{n} \sup f(nx) \le M$. There exists $k \in N$ such that $\lim_{n} \sup f(nx) \le M - \frac{1}{k}$. So there exists $n_0 \in N$ such that $f(nx) \le M - \frac{1}{k}$ for $n \ge n_0$. Observe that $x \in \mathscr{L}(f^{-1}((-\infty, M - \frac{1}{k})) \cap [0,1])$. Indeed, let $f^{-1}((-\infty, M - \frac{1}{k})) \cap [0,1] = B$. From the assumption that f is a periodic function, it follows that $f(nx) \le M - \frac{1}{k}$ if and only if $nx \in B \cup (B + 1) \cup U \dots \cup (B + n - 1)$, i.e. $x \in \frac{1}{n} (B \cup (B + 1) \cup \dots \cup (B + n - 1))$. We have $f(nx) \le M - \frac{1}{k}$ for $n \ge n_0$. Hence $x \in \liminf_{n} \inf \frac{1}{n} (B \cup (B + 1) \cup \dots \cup U + (B + n - 1)) = \mathscr{L}(B)$. This means that $A \stackrel{\circ}{=} \bigcup_{k=1}^{\infty} \mathscr{L}(f^{-1}((-\infty, M - \frac{1}{k})) \cap [0,1])$.

Conversely, let $x \in \bigcup_{k=1}^{\infty} \mathfrak{L}(f^{-1}((-\infty, M - \frac{1}{k})) \cap [0,1))$. There exists $k \in \mathbb{N}$ such that $x \in \mathfrak{L}(f^{-1}((-\infty, M - \frac{1}{k})) \cap [0,1))$. Put $f^{-1}((-\infty, M - \frac{1}{k})) \cap [0,1) = B$. We have $x \in \mathfrak{L}(B)$. Thus there exists $n_0 \in \mathbb{N}$ such that $x \in \frac{1}{n} (B \cup (B + 1) \cup U \cup \dots \cup (B + n - 1))$ for $n \ge n_0$. This means that $nx \in (B \cup (B + 1) \cup \dots \cup U \cup (B + n - 1))$ for $n \ge n_0$. Therefore $f(nx) < M - \frac{1}{k}$ (because f is a

periodic function with period 1 and $B + \ell = f^{-1}((-\infty, M - \frac{1}{k})) \cap [\ell, \ell + 1)$ for every $\ell \in N$. Consequently, $\lim_{n} \sup f(nx) \leq M - \frac{1}{k} < M$ and $x \in A$.

The converse theorem also holds.

Theorem 5. If $B \in \mathcal{S}$ and if $B = \bigcup_{k=1}^{\infty} \mathcal{L}(A_k)$ for some increasing sequence $\{A_k\}$ of \mathcal{J} -measurable subsets of [0,1), then there exists a \mathcal{J} -measurable periodic function $f : \mathbb{R} \to \mathbb{R}$ with period 1 such that

$$\{x \in [0,1) : \limsup_{n} f(nx) < \Im - \underset{0 \le t \le 1}{\operatorname{sup}} f(t)\} = B.$$

Proof. Put

$$f(x) = \begin{cases} (-1)/\min \{ \ell : x \in A_{\ell} \} & \text{if } x \in \bigcup_{\ell=1}^{\infty} A_{\ell} \\ 0 & \text{if } x \in [0,1) - \bigcup_{\ell=1}^{\infty} A_{\ell}. \end{cases}$$

We shall consider the periodic extension of f on ℝ. Obviously, J-ess sup f(t) = 0. 0≤t≤1

Observe that $\{x \in [0,1) : \limsup_{n} f(nx) < 0\} = B.$

Let $x \in B$. Evidently, $x \in [0,1)$. There exists $k \in N$ such that $x \in \epsilon \ \pounds(A_k) = \liminf_n \frac{1}{n} (A_k \cup (A_k + 1) \cup \ldots \cup (A_k + n - 1))$. So there exist $k \in N$ and $n_0 \in N$ such that $nx \in (A_k \cup (A_k + 1) \cup \ldots \cup (A_k + n - 1))$ for $n \ge n_0$. From the periodicity of f we have

$$f(nx) = (-1)/\min \{ \{ \} : nx \in Ag \cup (Ag + 1) \cup ... \cup \cup (Ag + n - 1) \} \leq (-1)/k$$

for $n \ge n_0$. Hence $\limsup_n f(nx) \le (-1)/k < 0$. Therefore $x \in \{y \in [0,1) :$: $\limsup_n f(ny) < 0\}$. Consequently, $B \in \{x \in [0,1) : \limsup_n f(nx) < 0\}$. Let $x \in \{y \in [0,1) : \lim_{n} \sup_{n} f(ny) < 0\}$. Then $\lim_{n} \sup_{n} f(nx) < 0$. Hence there exist $k \in \mathbb{N}$ and $n_0 \in \mathbb{N}$ such that f(nx) < (-1)/k for $n \ge n_0$. We have $f(nx) = (-1)/\min \{ l : nx - [nx] \in A_l \} < (-1)/k$ for $n \ge n_0$ and $\{A_l\}$ is an increasing sequence of sets. Hence $nx \in A_k + [nx]$ for $n \ge n_0$. There are two cases:

1° x = 0. Then the sequence
$$\{f(nx)\}$$
 is constant and equals $f(0)$. Thus

$$\lim_{n} \sup_{n} f(nx) = f(0) < (-1)/k.$$
 Hence $0 \in A_{k},$
 $0 \in \frac{1}{2} (A_{k} \cup (A_{k} + 1)), \ldots, 0 \in \frac{1}{n} (A_{k} \cup (A_{k} + 1) \cup \ldots \cup (A_{k} + n - 1)), \ldots$.
Consequently, $0 \in \bigcap_{n=1}^{\infty} (1/n)(A_{k} \cup (A + 1) \cup \ldots \cup (A_{k} + n - 1)) \subset \pounds(A_{k}) \subset B.$

2°
$$0 < x < 1$$
. Then $nx < n$ and $[nx] \le n - 1$ for every $n \in N$. There
exist $k \in N$ and $n_0 \in N$ such that $nx \in (A_k \cup (A_k + 1) \cup \dots \cup \cup (A_k + n - 1))$ for $n \ge n_0$. Hence $x \in \bigcap_{n=n_0}^{\infty} (1/n)(A_k \cup (A_k + 1)) \cup \dots \cup (A_k + n - 1)) = \prod_n \inf \frac{1}{n} (A_k \cup (A_k + 1) \cup \dots \cup (A_k + n - 1)) =$
 $= \pounds(A_k) \subset B.$

Consequently, $\{x \in [0,1) : \lim_{n} \sup_{n} f(nx) < 0\} \in B$.

References

[1] Scottish book, Solution by S. Banach of Problem 162 of H. Steinhaus.

Received February 2, 1987