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MAXIMAL ADDITIVE FAMILIES FOR SOME CLASSES OF DARBOUX FUNCTIONS

Preliminaries. Let C*(f,x) and C-(f,x) denote the set of all right-side
and left-side limit numbers of the function f at the point x. For any
subset M of the plane R2?, cl(M) denotes the closure of M and card(M)
denotes the cardinality of M. No distinction is made between a function and
its graph.

In [2] Bruckner and Ceder described what it means for a real function to
be Darboux at a point. We say that a function f is Darboux from the
right-side [left-side] at a point b 4 (we write X € Dy(f), X € D_(f)
respectively) if and only if

1  f(x) € C*(£,x) [f(x) e C(£,x)]; and

2° whenever a,b € C*(f,x) [a,b € C(f,x)] and y is any point
between a and b, then for every ¢ > 0 exists a point
€ e (x,x + &) [t € (x - £,x)] such that f£(¢) = y.

In [3] C8aszar showed that a function is Darboux if and only if it is
Darboux at each point.

By D€ we denote the class of Darboux functions whose upper and lower
boundary functions are continuous. By D¥ we denote the class of functions
which take on every real value in every interval and by D*¥ we denote the
class of functions which take on every real value c-times in every interval,
where ¢ denotes the cardinality of the continuum.

It is clear that D*¥ c p¥ c pc,

For a given family F of real functions let M(F) denote the class of all
functions g such that f ¢ F implies f + g € F. This class is called the
maximal additive family for F. It is known [1] that the family of continuous
functions C is the maximal additive family for the class of Darboux Baire 1
functions DB, and the family of constant functions K is the maximal

additive family for the class of Darboux functions D.
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Definition 1. We say that g ¢ @ if g 1is a continous function and there

exists a sequence of open intervals {Iyx} such that

@
1° U Iy is dense in R; and
k=1

2° glIk is constant for every k.

Theorem 1. M(DC) = Q.

Proof. Let f ¢ D¢, g e d and x, € R. Without loss of generality we
may assume that g(x,) = 0. We shall prove that =x, € Di(f+g). If CH(f,xo)
is a one—-point set, then Xo is a point of right-side continuity of f.
Hence x, € D+(f+g). Now we consider the case in which C*(f,x,) is nonde-
generate. Let a,b € CY(f,x,) = C*(f+g,%,), £ > 0 and z € (a,b). There

exist a,, b,, &, such that

1° a<a; <z<by <b;
2° 0 <&, 6 ¢; and

3 {(%,7) : % < X < Xo + &,, a, <y < b,} ¢ cl(f).

Hence (a,,b,) < C*(f,x) for every x € (X0,Xo + £;). There exists an open

interval Iy and a point 2z, such that

1° g(x) = 2o for every x e Ikg;

2° (X0sXo + £,) N Iy * &; and
1 .
3° |zo| < 2 min{|z-a,|, |z-b,]|}.
Let (r,8) = (XosXo + £8,) N Iy. Since z - 2o € (a,,b,) < CH(f,r),

((r,s) x {z-20}) n £ *¢ and ((r,s) x {z}) n (f+g) = &. In a similar

way we can prove that x, € D-(f+g).

It is clear that the upper and lower boundary functions of f+g are

continuous. We have shown that d < M(DC).
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We will show that M(Dc) < d. Let g ¢ d. It is easy to show that if ¢
is not continuous, then there exists f e¢ D¢ such that f+g ¢ DC. Indeed, if
g ¢ D¢, then we put f(x) = 0; if g € DS, then there exists a point Xo
such that the set C(g,x%,) 1is nondegenerate. Now we put f(x) = —-g(x) for
X *xXo and f(xo) = -y, where y € C(g,%0)\{8(%0)}. We need only consider
the case: g 1is continuous and there exists an interval I such that g is
nonconstant on every subinterval of the interval I. Let M = sup{g(x):x € I}
and m = inf{g(x):x € I}. The set g !(y) n 1 is nowhere dense for every

y € [m,M]. Let {Ay} denote a family of sets which are pairwise dis-

ye [m,M]
joint, dense in R and such that I n Ay n g 1(y) = ¢. We define the function

f as follows:
y if x e Ay

f(x) =
m otherwise.

It is easy to see that f ¢ D€ but f+g is not a Darboux function.

Definition 2. We say that a function g € B iff there exists a sequence

of open intervals {Ikg} such that

[
1+ U Iy is dense in R
k=1
2° g'Ik is constant for every k.

Theorem 2. M(D¥) = B.

Proof. Let I be an open interval and let f e D¥, ge B and z € R.

There exists an interval I, € I such that g I is constant. Let g(x) =
o

zo for every x € I,. There exists Xo € Io such that f(xo) = 2 — 2Zo.

Hence (f+g)(Xo) = z. We have shown that f+g e D¥.

If g is nonconstant on some interval I, then by Theorem 1 [2], there

exists a function d € D¥ such that g+d ¢ D¥. This completes the proof.
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Definition 3. We say that g € ¢ if there exists a sequence of open

intervals {Iy} and a sequence of sets {Ak} such that

[
1° U Ik is dense in R;
k=1

2° Ag © Iy and card(Ak) < c; and

3 gllk'ﬁk is constant for every k.

Theorem 3. M(D¥¥) = c.

Proof. Let I be an open interval and let f ¢ D¥¥, ge C and z € R.

There exists an interval I, € I and a set A ¢ I, such that

1° gIIo\A is constant; and
2° card(A) < c.

Let g(x) = 2z, for every x € I, \A. There exists a set B ¢ I, such that
1° f(x) =2z - 2o for every x € B; and
2° card(B) = c.

Hence (f+g)(x) = z for every x € B\A. We have shown that f+g e D¥¥,

If g ¢ C, then there exists an open interval I, such that for every
subinterval I © I, and every real A we have card({x € I:g(x) # -A}) = c.
By Theorem 3, [2], there exists a function f € D¥* such that (f+g)(x) = 0

for every x € I, This completes the proof.
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