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 MAXIMAL ADDITIVE FAMILIES POR SOME CLASSES OF DARBOUX FUNCTIONS

 Preliminaries. Let C+(f,x) and C~(f,x) denote the set of all right-side

 and left-side limit numbers of the function f at the point x. For any

 subset M of the plane IR2, cl(M) denotes the closure of M and card(M)

 denotes the cardinality of M. No distinction is made between a function and

 its graph.

 In [2] Bruckner and Ceder described what it means for a real function to

 be Darboux at a point. We say that a function f is Darboux from the

 right-side [left-side] at a point x (we write x e D+(f), x e D_(f)

 respectively) if and only if

 1* f(x) e C+(f,x) [f(x) e C~(f,x)]; and

 2* whenever a,b e C+(f,x) [a,b € C~(f,x)] and y is any point

 between a and b, then for every e > 0 exists a point

 f e (x,x + t) [£ e (x - e,x)] such that f(f) = y.

 In [3] Cśaszar showed that a function is Darboux if and only if it is

 Darboux at each point.

 By Dc we denote the class of Darboux functions whose upper and lower

 boundary functions are continuous. By D* we denote the class of functions
 which take on every real value in every interval and by D** we denote the
 class of functions which take on every real value c-times in every interval,

 where c denotes the cardinality of the continuum.

 It is clear that D** c D* c dc.

 For a given family F of real functions let M(F) denote the class of all

 functions g such that f € F implies f + g e F. This class is called the

 maximal additive family for F. It is known [1] that the family of continuous

 functions C is the maximal additive family for the class of Darboux Baire 1

 functions DBj and the family of constant functions K is the maximal

 additive family for the class of Darboux functions D.
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 Definition 1. We say that g e a if g is a continous function and there

 exists a sequence of open intervals {I^} such that

 00

 1* U Iķ is dense in IR; and
 k=l

 2* f°r every k.

 Theorem 1. M(DC) = a.

 Proof. Let f e Dc, g e a and x0 € IR. Without loss of generality we

 may assume that g(x0) = 0. We shall prove that x0 e D+(f+g). If C+(f,x0)

 is a one-point set, then x0 is a point of right-side continuity of f.

 Hence x0 € D+(f+g). Now we consider the case in which C+(f,x0) is nonde-

 generate. Let a,b e C+(f,x0) = C+(f+g,x0), c > 0 and z e (a,b). There

 exist alt bj, t, such that

 1" a < aa < z < bt < b;

 2* 0 < c, * e; and

 3* {(x,y) : x0 < x < x0 + t,, ai < y < bx} c cl(f).

 Hence (aubj c C+(f,x) for every x c (x0,x0 + ®i). There exists an open

 interval Ifc and a point z0 such that

 1* g(x) = z0 for every x e Iļ<;

 2* (x0,x0 + «i) n Iļj < 0; and

 3* |z0| < |min{|z-ai|, | z- b x | } .

 Let (r,s) = (x0,x0 + Sj) n Ifc. Since z - z0 € (a!,bt) c C+(f,r),
 ((r,s) * {z-z0}) n f * 0 and ((r,s) * {z}) n (f+g) * 0. In a similar

 way we can prove that x0 € D_(f+g).

 It is clear that the upper and lower boundary functions of f+g are

 continuous. We have shown that a c M(DC).
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 We will show that M(Dc) <= a. Let g i a. It is easy to show that if g

 is not continuous, then there exists f e Dc such that f+g i Dc. Indeed, if

 g i Dc, then we put f(x) =0; if g € Dc, then there exists a point x0

 such that the set C(g,x0) is nondegenerate. Now we put f(x) = -g(x) for

 x * x0 and f(x0) = -y, where y e C(g,x0)'{g(x0)} . We need only consider

 the case: g is continuous and there exists an interval I such that g is

 nonconstant on every subinterval of the interval I. Let M = sup{g(x):x e 1}

 and m = inf{g(x):x c I}. The set g-1(y) n I is nowhere dense for every

 y e [m, M]. Let {Ay}y€[m m] denote a family of sets which are pairwise dis-

 joint, dense in IR and such that I n Ay n g-1 (y) = 0. We define the function
 f as follows:

 'y if X e Ay
 f(x) =

 ■ m otherwise.

 It is easy to see that f € Dc but f+g is not a Darboux function.

 Definition 2. We say that a function g e B iff there exists a sequence

 of open intervals { Ife} such that
 00

 1* U Iķ is dense in IR
 k=l

 2* ^ļijj cons^ant f°r every k.

 Theoren 2. M(D*) = B.

 Proof. Let I be an open interval and let f c D*, g e B and z e IR.

 There exists an interval I0 c I such that gļ^ is constant. Let g(x) =
 z0 for every x e I0. There exists x0 € I0 such that f(x0) - z - z0.

 Hence (f+g)(x0) = z. We have shown that f+g € D*.

 If g is nonconstant on some interval I, then by Theorem 1 [2], there

 exists a function d c D* such that g+d i D*. This completes the proof.
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 Definition 3. We say that g e C if there exists a sequence of open

 intervals {IļJ and a sequence of sets {AļJ such that
 00

 1* U Ik is dense in R;
 k=l

 2* Ak c Iļf and card(Aj{) < c; and

 3* g|T . is constant for every k.
 Uk-Ak .

 Theorem 3. M(D**) = C.

 Proof. Let I be an open interval and let f e D**, g e C and z e IR.
 There exists an interval I0 c I and a set A c I0 such that

 1* S|t 'a constant; and
 I i0 'a ' A

 2' card(A) < c.

 Let g(x) = z0 for every x € I0'A. There exists a set B c I0 such that

 1* f(x) = z - z0 for every x e B; and

 2* card(B) = c.

 Hence (f+g)(x) = z for every x € B'A. We have shown that f+g € D**.

 If g i C, then there exists an open interval I0 such that for every

 subinterval I c I0 and every real A we have card({x € I:g(x) * -M) = c*

 By Theorem 3, [2], there exists a function f e D** such that (f+g)(x) * 0
 for every x e I0 This completes the proof.
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