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 1» Introduction. The notion of the porosity of a set E c R at a point

 X e R concerns the size of "holes" in the set E near to x. A porous set

 P is not only nowhere dense but it is small in a stronger sense: near to

 each point x € P are "holes" in P which are in a sense big.

 Porosity computations arise naturally in some problems in Real Analysis,

 especially in the differentiation theory, and were used by many authors (cf.

 3.B). Porosity was used under a different nomenclature by Denjoy [16], [17]

 in the study of the second order symmetric derivative (cf. [15]), where an

 exposition of Denjoy' s results can be found. Underline the following fact:

 Denjoy's bilateral index which is his main notion is not equivalent to the

 ordinary bilateral porosity, but to the symmetrical porosity (cf. 2.B) which is

 not used in recent works. Porosity was also applied by Khintchine [41] (for

 this application it is necessary to consult [10], where some corrections are

 made).

 The investigation of »-porous sets was started in 1967 by Dolženko [18],

 who also at first used the term "porous set" ("poristoe množestvo" in

 Russian). He proved that certain exceptional sets in the theory of the cluster

 sets are »-porous (= are countable unions of porous sets). Dolženko observed

 that the class of »-porous sets is a subclass of the class of measure-zero,

 first category sets and stated that it is a proper subclass. This basic fact

 justifies the theorems which assert that some exceptional sets are not only

 measure-zero first category sets but are also »-porous. There is also another

 argument for such theorems: it is frequently easier to prove »-porosity than

 to give two proofs, one on category and the second on the measure.

 After the Dolženko's work a number of similar theorems appeared in the

 cluster sets theory (cf. 3.A). In 1978 Belna, Evans and Humke [5] proved the

 first theorem which asserts that a natural exceptional set in the differentiation

 theory is »-porous. For further results of this sort see 3.B and 3.D.

 Proofs of the existence of a measure-zero first category non »-porous set

 are relatively difficult. The first published proof is contained in [82]; now

 there exist several different proofs of this basic fact (cf. 2.A, 4.A, 4.C, 4. F and

 5).

 The existence of a number of theorems using »-porosity shows that the

 »-ideal of »-porous sets is of some importance. Thus there exists a motivation
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 for an investigation of structural properties of this <r-ideal. It was started in

 [82], where the notion of porosity and <r-porosity was considered in general

 metric spaces. In the same article also the Yanagihara's [74] notion of

 "porosity (q)" was investigated and further generalized. At the present time
 there exists a number of further notions which are variations of the notion of

 porosity.

 Many theorems using porosity and <r-porosity in the first order

 differentiation theory on the real line are presented (frequently with

 simplified proofs) in the Thomson's monograph [66]. This book contains also a

 material (30 pp.) on porosity and is frequently used and quoted below.

 2. Definitions and basic comments.

 2.A Ordinary and strong porosity in R.

 Definition 2«1. Let E c R be a set and let I be an interval. Then we

 denote by ME,I) the length of the largest open subinterval of I which

 does not intersect E.

 Definition 2.2. Let E c R, x € R. Then we define:

 (i) the porosity of E at x as

 p(E,x) = li» sup MMx-h.x+h» _
 h 0+ h

 (ii) the right porosity of E at x as

 p+(E,x) = lim sup (x?x+h) ) ^
 h -► 0+ h

 (iii) the left porosity of E at x as

 p~(E,x) = lim sup (x k|x) ) .
 h 0+ h

 Remark 2.3.

 (a) Some authors use a definition of the porosity which differs from the

 above in the trivial case x i E, namely they put p(E,x) =

 max(p+(E,x),p~(E,x)).
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 (b) Clearly O á p+(E,x) á 1, O í p-(E,x) á 1, and in the case x e E

 also 0 á p(E,x) á 1 (if x i E, then p(E,x) = 2). If x e E, then p(E,x) =

 max(p+(E,x),p-(E,x)).

 (c) Clearly p(E,x) = p(Ē,x), p+(E,x) = p+(Ē,x).

 Definition 2.4. Let E c R, x e R. Then we say that

 (i) E is porous at x if p(E,x) > 0,

 (ii) E is porous on the right at x if p+(E,x) > 0,
 (iii) E is strongly porous at x if p(E,x) * 1,

 (iv) E is strongly porous on the right at x if p+(E,x) = 1,

 (v) E is bilaterally porous at x if it is porous both on

 the right and on the left at x.

 The notions of the left porosity, the left strong porosity, and bilateral

 strong porosity are defined in the obvious way.

 Remark 2.5» (a) If E is strongly porous at x, then it is strongly

 porous on the right or on the left at x. If in addition x c E, then

 p(E,x) = 1.

 (b) If E is porous at x, then x i Int E and x is not the point of

 outer density for E.

 (c) The porosity notions are local notions.

 Definition 2.6. A set E c R is said to be

 (i) porous, if it is porous at each of its points and

 (ii) <r-porous, if it is a countable union of porous sets.

 The notions of a strongly porous set, a bilaterally porous set, a bilaterally

 strongly porous set, a a-strongly porous set, a ^-bilaterally porous set, a

 «•-bilaterally strongly porous set are defined in the obvious way.

 The following simple proposition is due to Denjoy [17] (cf. [66], p. 188).

 Proposition 2.7. If E c R is closed and nowhere dense, then the set of

 points in E at which E is bilaterally strongly porous is residual in E.

 The following important fact is easy to prove.

 Theorem 2.8. For subsets of R the following assertions hold,

 (i) A porous set is nowhere dense and has measure zero.
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 (ii) The class of <r- porous sets is a <r-ideal contained in the <r-ideal

 of measure-zero, first category sets.

 Remark 2.9. A porous set E c R has measure zero by Remark 2.5(b),

 since almost all points of an arbitrary set E are points of outer density for

 E (see [59], p. 129). It is not correct to use directly the Lebesgue density

 theorem for measurable sets, since apriori we do not know the measurability of

 E. Another (more direct) proof is via Proposition 4.24 below.

 The following theorem is a fact of basic importance.

 Theorem 2.10. There exists a perfect measure-zero set E c R which is

 not <r-porous.

 The following remarks concern proofs of this basic fact.

 Consider at first the best known perfect measure-zero set - the classical

 Cantor ternary set C. It is easy to see that p(C,x) i 1/2 for each x € C

 and therefore C is porous. Now it is natural to consider more general

 symmetric perfect sets.

 00

 Definition 2.11. Let « = {an)n_ļ be a sequence with 0 < an < 1. Then
 the symmetric perfect set C(a) c [0,1] can be defined similarly as the Cantor

 ternary set. The only difference is that in the n-th step of the construction

 we delete from the 2n_1 remaining closed intervals of length dn the

 concentric open intervals of length otj, dn. Thus C = C(l/3, 1/3, ...).

 Remark 2.12. For more formal definition see [36] (cf. also [3], [66], and

 [39], where a slightly different notation is used).

 If ocn - * 0, then it is not too difficult to prove that the set of points

 x € C(oc), at which C(a) is not porous, is dense in C(a). In addition, an
 0D

 easy computation yields that M(C(a) ) = 0 iff J) «n = "• Therefore C(a)
 n=l

 for an = (n+1)-1 is the most natural candidate for an example of a perfect

 measure-zero non <r-porous set. The following theorem implies that in fact

 this set is not o- porous.

 Theorem 2.13 ([37], [66]). The symmetric perfect set C(«) is non

 c-porous iff an - ► 0.
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 Nevertheless, the complete proof of Theorem 2.13 given in [34] is rather

 complicated. The proofs in [37] and [66] are sketched only and seem to be

 incomplete. Note that Humke [34] considers perfect sets which are generated

 by a more general process than symmetric perfect sets and thus he proves a

 theorem which is more general than Theorem 2.13.

 Further note that the single information that the set N(F) of points, at

 which a given perfect set F c R is not porous, is dense in F does not

 imply non »-porosity of F. Moreover, it seems that no reasonable

 "topological" information concerning N(F) and F implies non or-porosity of

 F.

 In [82] a construction of a perfect set, more complicated than the

 construction of a symmetric perfect set but similar to it, is chosen, which

 makes the proof of non <r-porosity easier in comparison with the proof in [34].

 Tkadlec [67] generalized the method of [82] and solved in this way several

 open problems. Although the method of [67] and [82] is not too complicated, it

 is necessary to prefer new methods of constructions of non »-porous sets

 given by Konjagin (cf. Theorem 5.1 below) and by Foran [26] (cf. 4.A and 4.D),

 which are more analytical.

 The existence of a porous perfect set which is not »-strongly porous is

 obtained in [82] as a consequence of a more general proposition. In fact, the

 Cantor ternary set has this property, as the following theorem shows.

 Theorem 2.14 ([66]). A symmetric perfect set C(«) is non »-strongly

 porous iff lim sup an < 1.

 The following structural proposition for »-porous sets ([82], cf. [66]) is a

 very useful technical tool.

 Proposition 2.15. Let c < 1. Then any »-porous set A c R may be

 expressed as the union of a sequence of sets (An) such that the porosity of

 each An at each of its points is at least c.

 2.B Denjoy's index and symmetric porosity.

 Denjoy used the following definitions of indexes in the case when E is a

 perfect set (cf. [15], pp. 87-88).
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 Definition 2.16. Let E c R and x € R. Then the right index of E at

 X, i+(E,x), is defined to be the infimum of all numbers r for which a

 sequence of points {x + hn} in E can be found with hn > 0, hn - * 0

 and 1 < hn/hn+! < r. The left index is defined in the obvious way.

 Definition 2.17. Let E c R, x € R. Then the index of E at x, i(E,x),

 is defined to be the infimum of all numbers r for which a sequence of

 points {x + hn} in E can be found with hn -* 0 and 1 < | hn/hn+! | < r.

 To the index, the following notion of symmetric porosity corresponds [63].

 Definition 2.18. Let E c R, x e R and r > 0. Then we define:

 (i) s(E,x,r) as the supremum of all numbers h > 0 for which there

 exists t > 0 such that t + h * r, (x+t,x+t+h) n E = <f> and

 (x-t-h,x-t) n E = 0;

 (ii) the symmetric porosity of E at x as

 ps(E,x) = lim sup ^
 r -* 0+ r

 Remark 2.19. It is easy to see that ps(E,x) = p+(Es,x), where

 Es = E u (2x - E) is the symmetrization of E about the point x.

 The notions of symmetrically porous sets, strongly symmetrically porous

 sets etc. are defined in the obvious way (cf. Definitions 2.4, 2.6).

 Of course, symmetric porosity is more restrictive than the bilateral

 porosity. It seems to be probable that there exist strongly bilaterally porous

 sets which are not ^-symmetrically porous and that the analogue of

 Proposition 2.15 for symmetric porosity does not hold.

 The connection between indexes and porosities is given in the following

 lemma ([15] and [63], pp. 415-416).

 Lemma 2.20. If E c R and x e R, then

 i+(E,x) = (1 - p+(E,x))-1 and i(E,x) = (1 - ps(E,x))_1 ,
 where 0_1 = «.

 Finally note that Denjoy proved some general properties of the index; his

 result can be reformulated in the porosity language as follows. For the

 original formulation see Corollary 2 of [15], p. 96.
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 Proposition 2.21. Let a perfect set P c R be strongly porous at each of

 its points. Then there exists a point x c P at which P is strongly

 symmetrically porous.

 2»C Porosity in general metric spaces.

 In this section we suppose that P is a metric space. The notion of set

 porosity was generalized to P in [82]. A slightly different definition was

 used in [2] (cf. Definition 2.31 below).

 The open ball with the center x e P and the radius r > 0 will be

 denoted by B(x,r).

 Definition 2.22. Let M c P, x € P and R > 0. Then we denote the

 supremum of the set of all r > 0 for which there exists z e P such that

 B(z,r) c B(x,R) - M by r(x,R,M). The number p(M,x) = 2 lim sup
 R -> 0+

 is called the porosity of M at x.

 Remark 2.23. In the definition of porosity, the coefficient 2 is usually

 omitted (cf. [82], [56], [26]). The present definition is a direct generalization

 of the usual one-dimensional porosity. Dolženko [18] considered porosity on

 surfaces in Euclidean spaces.

 Porous, »-porous, strongly porous and »-strongly porous sets in P are

 defined in the same manner as in 2.A.

 The notion of strong porosity in more dimensions is not so natural as in

 one dimension. Nevertheless, it is easy to see that the following generalization

 of Den joy 's Proposition 2.7 holds (for the proof in Rn cf. [26], p. 195).

 Proposition 2.24. Let E be a nowhere dense set in P. Then the set of

 all points of E at which E is strongly porous is residual in E.

 Also the structural Proposition 2.15 holds for A c P (cf. Proposition 4.4

 which provides a further generalization).

 If P = Rn or, more generally, P is a finite dimensional Banach space,

 then Theorem 2.8 still holds; in particular, each <r-porous set is a first

 category null set. In an arbitrary P we easily obtain that a »-porous set is

 of the first category, but we have no "measure smallness". For example, the
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 next proposition follows from results of [56].

 Proposition 2.25. Let H be a separable infinite-dimensional Banach space

 and let v be a Radon measure on H. Then there exists a convex compact

 «■-porous set K with i/(K) > 0.

 Remark 2.26. In fact, it is proved in [56] that K is porous. Moreover,

 it is porous in a more restrictive sense (it is e.g. totally porous - see

 Theorem 3.13 below).

 The following lemma is a special case of [82], Lemma 3.4, which deals with

 generalized porosities.

 Lemma 2.27. Let M c R and put N = M x Rn c Rn+i. Then N is a

 porous subset (or a <r-porous subset, or a strongly porous subset, or a

 «■-strongly porous subset) of Rn+l iff M is of the same type as a subset
 of R.

 Using this lemma and Theorem 2.10 we obtain the following

 Theorem 2.28. In an arbitrary Euclidean space there exists a

 non-c-porous perfect set of measure zero.

 The following lemma can be proved by the same method as Lemma 2.27.

 Lemma 2.29 ([56]). Let X be a Banach space, 0 t P € X* and let
 K c R be a nowhere dense non «r-porous set. Then p~'(K) is a nowhere

 dense non «--porous subset of X.

 Consequently we obtain the following important fact.

 Proposition 2.30. The notion of a «-porous set is strictly more restrictive

 than the notion of a first category set in each Banach space P.

 Agronsky and Bruckner [2] proved the same proposition (using a slightly

 different notion of porosity) for more general metric spaces P - closed

 non-locally compact convex subsets of a separable Banach space. However, it

 seems that it is not known at which more general metric spaces Proposition

 2.30 holds. In particular, it is probably not proved in the space C of all

 convex bodies in Rn. Note that «--porosity in C was used in [94]; cf. 3.C.

 In [2], the following definitions are used.
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 Definition 2«31. Let E c P, x e E and let S c P be an open ball such

 that x is in the boundary of S. Then E is said to be porous at x with

 respect to S if there exists a c > 0 such that for every e > 0 there

 exist open balls Sļ c Sa c S such that x is a boundary point of S2,

 n E = 0 and * > diameter Sj * c (diameter S2).

 If each x e E is porous w.r.t. some sphere, we say that E is a porous

 set. If E is porous at x € E w.r.t. every open ball containing x in its

 boundary, we say that E is totally porous at x.

 A related very restrictive notion of the directional porosity in Banach

 spaces is used in [88].

 Definition 2.32. Let X be a Banach space. We say that E c X is

 directionally porous at x € X if there exist 0 t v € X, p > 0, tn i 0 and

 rn V 0 such that

 B(a + tnv, prn) c B(a,rn) - E .

 2.n fîftnftmlî -žati porosity defined by a function.

 There exist several slightly different notions of a generalized porosity

 defined by an increasing function g : [0,®) - » [0,®) or by a family of such

 functions ([82], [12], [31], [66], [92]). Probably the most interesting case

 (different from ordinary porosity) when g(x) = xQ, 0 < q < 1, was firstly

 considered and applied by Yanagihara [74] (he used the term "set of

 «»•-porosity (q)").

 In [82], the (g)-porosity was considered in a general metric space P. In

 the following the symbols P, B(x,r) and 7(x,R,M) have the same meaning as

 in 2.C.

 Let G be the system of all real functions g which are increasing and

 continuous on [0,h) for some h > 0, with g(0) = 0. Functions from G

 will be called "porosity functions". Note that some authors used the following

 definitions also for more general (e.g. discontinuous) functions.

 Definition 2.33. Let g € G, M c P and x € P. We say that M is (g)~

 porous at x if lim sup ¿ g(7(x,R,M)) > 0.
 R -> 0+
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 Definition 2.34. Let gc G, HCG, MCP and x € P. Then we say-

 that M is <g>-porous at x if there exists a sequence of spheres

 (B(sn,rn)} such that sn - * x, B(sn,rn) n M = <t> and g(rn) > p(x,an). We
 say that M is <H>-porous at x if it is <h>-porous at x for each h € H.

 The above definitions are used in [82]. Similar definitions on R are

 given in [12], [31], [66], [92]. The symbol X(E,I) has the same meaning as in

 2.A.

 Definition 2.35 ([12]). Let E c R, x e R and let V- be a porosity

 function. We say that E is (Y') -porous on the right at x if p^(E,x) =
 lim sup r (x,x+h) ) ) > 0.
 h ->• 0+ h

 Another definition is used in [31] and [32].

 Definition 2.36. Let g € G, HCG, ECR and x e R. We say that

 (i) E is g-porous at x if there exists a sequence of intervals (In)

 with In n (E u {x}) =0 so that In - * x and dist(x,In) < g(|Inl)« The

 right, left and bilateral g-porosities are defined similarly;

 (ii) the set E is H-porous at x if there is g e H such that E is

 g-porous at x;

 (iii) E is strongly H-porous at x if for every g € H, E is g-porous

 at x.

 A very similar definition is used in [66].

 Definition 2.37. Let E c R, x € R and V be a porosity function. Then

 the right (Y')-porosity index of E at x is defined as PI*(E,x) =

 lim sup Í : (x+h,x+h+k) n E = 0, h+k < e, 0 á h, 0 é ki. } If this index e-K)+ sup e, }
 is positive (is ®) , then E is said to be (V)-porous (or strongly porous)

 on the right at x.

 Finally, the following definition is used in [92].

 Definition 2.38. Let g be a porosity function. We say that a set E c R

 is [g]-porous on the right at a point x € R if there is a sequence hn ^ 0

 such that g(X(E,(x,x+hn))) > hn.
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 Remark 2.39. If the porosity function equals to xQ, 0 < q < 1, then all

 the above definitions give the same notion of corresponding generalized

 »-porosity on R.

 Moreover, the following theorem holds (for further generalizations see 4.B

 below).

 Theorem 2.40 [82]. Let P be a metric space. Then the notion of

 <r-(xQ) -porosity in P does not depend on 0 < q < 1.

 The following proposition [82] is easy to prove.

 Proposition 2.41. Let 0 < q < 1. Then there exists a perfect (x^) -porous

 set E c R of positive Lebesgue measure.

 Remark 2.42. (a) Definitions 2.34 and 2.36 (for the families H =

 {ax; a > 1} and H = {ax; a > 0}) yield the notion of strong porosity.

 (b) A generalization of Denjoy's Proposition 2.7 using strong bilateral

 (V") -porosity is contained in [66], p. 200.

 (c) Some relationships between the above definitions are mentioned in

 [92].

 For further results on generalized porosity see 4.B below.

 2.E Globally and ftfl-totally porous seta.

 We start with some technical definitions.

 Definition 2.43. If I c R is an open interval and r > 0, then

 J = r * I is the concentric interval with |J| = r|I|.

 Q>

 Definition 2.44. If {an}_ • is a sequence with lim an = ®, lim an = -® • n-*o ir*-«

 and ••• < a_2 < a-j < a0 < ax < • • • , we say that D = {[an.an+x] : n is an

 integer} is a division of R. If an+x - an is constant, then D is called

 an equidistant division. The norm of D is defined as inf{an+j - an} .

 The following definition of globally porous sets was given in [38].
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 Definition 2.45. Let E c H be a bounded set and r > 0. If E has at

 least two points, put a = inf E, b = sup E and let (a,b) - E = U In,
 n=l

 where {In} are pairwise disjoint open (possibly empty) intervals. Let EP(N)

 denote the set of endpoints of the intervals Ix , . . . , Ijj-i . If there is an
 * N*

 r > 0 such that for each N there is an N* * such that E - EP(N) c U r # In,
 n=N

 then E is called r-globally porous. If card E < 2, then E is r-globally

 porous by definition. A set is called globally porous, if it is r-globally

 porous for some r > 0.

 It is not difficult to prove that the following definition of a globally

 porous set is equivalent to the original one. For the definition of X(E,I) see

 Definition 2.1.

 Definition 2.47. We say that a bounded set E c R is globally porous, if

 there is c > 0 such that for any d > 0 there exists a division D of R

 with the norm less, than d such that for each I e D the inequality

 X(E,I) > c 1 1| holds.

 Clearly a globally porous set is porous. A remarkable property of

 globally porous sets is contained in the following lemma.

 Lemma 2.47 [38]. If E is globally porous, then E is globally porous as

 well.

 The proof of the following proposition [38] is based on Lemma 2.47.

 Proposition 2.48. There is a perfect porous set P c R which is not

 »-globally porous.

 The notion of a [g]-totally porous set from [92] is similar to the notion of

 a globally porous set.

 Definition 2.49. Let g be a porosity function. We say that E c R is a

 [g]-totally porous set if for each d > 0 there is an equidistant division D

 of R with the norm less than d such that g(X(E,I)) > f 1 1 for each
 I € D.

 2.F Very porous sets.

 Roughly speaking, if in a definition of a type of porosity "lim inf" is

 used instead of "lim sup", for the corresponding "porous sets" the name

 326



 "very porous sets" will be used.

 In the following, P is a metric space and r(x,M,R) is the number from

 Definition 2.22.

 Definition 2.50. Let E c P, x € P. Then we say that E is very porous

 at x if lim inf rixjR^jR-1 > 0. We say that E is very strongly porous
 R*0+

 at x if lim 27(x,R,M) »R-1 è 1. The notions of very (strongly) porous sets
 fr»0+

 and <r- very (strongly) porous sets are defined in the obvious way.

 Definition 2.51. A set M c P is called

 (i) globally very porous if there exists c > 0 such that y(x,R,M) > cR

 for each x € P and R > 0, and

 (ii) uniformly very porous if there exists c > 0 such that

 lim inf r(x,R,M)R~ł > c for each x € M.
 R-H)+

 The above notions were considered in the theory of quasiconformal

 mappings in Rn ([61], [30], [69]).

 The globally very porous sets were considered in [30] under the name

 "thin sets" and in [69] under the name "porous sets".

 In [69] uniformly very porous sets were considered under the name

 "locally porous sets" and uniformly porous sets under the name "weakly

 locally porous sets".

 Mattila considered very strongly porous sets in [48] and [49]; cf. 4.F.

 2.G Superporous sets.

 The superporosity was defined [86] in a connection with an investigation

 of the ^-density topology on R, which was considered by Wilczyński and

 others (cf. [72]).

 In the following P is a metric space.

 Definition 2.52. We say that E c P is superporous at x € P if E u F

 is porous at x whenever F is porous at x. A set G c P is said to be

 p-open (porosity open) if P - G is superporous at each point of G.
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 Remark 2.53. (a) The system of all sets which are superporous at x

 obviously forms an ideal. Therefore the system of all p-open sets forms a

 topology p which is called porosity topology.

 (b) The system of all sets of the form G = H - N, where H is p-open

 and N is a first category set, forms a topology, called p*-topology.
 (c) In the case P = R the p* -topology coincides with the ^-density

 topology [86], [90].

 The superporosity is a rather restrictive notion. For example, Proposition

 8 of [86] implies the following simple fact.

 Remark 2.54. If E c P is superporous at x € P, then E is very

 porous at x.

 If we consider strong porosity instead of ordinary porosity in above

 definitions, then we obtain notions of "strong p-topology" and "strong

 p*-topology". Some of their properties were investigated by Kelar [40].

 3. Applications.

 3.A Cluster seta.

 Let G denote a Jordan domain in Rn with smooth boundary r. For any

 x € r, V* denotes a Stolz angle in G (with vertex at x), and C(x,Vx,f)

 denotes the corresponding Stolz cluster set of a (real or complex) function f

 defined in G. A point x € r is said to belong to Eyy(f) if there exist

 two Stolz angles V*. V* such that C(x,V*,f) ý C(x,V*,f).

 Do 1 ženko [18] has proved the following theorem.

 Theorem 3.1. For an arbitrary f on G, Eyv(f) is a se^ which is

 a <r-porous subset of T.

 The most interesting case is when n = 2 and G is the unit disc; other

 authors consider the (factually equivalent) case when G is the upper

 halfplane.

 After the Dolženko's paper a number of articles investigating similar

 questions followed ([74], [75]-[79], [1], [81], [42], [19], [51], [70], [6], [46],

 [47]).
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 Yanagihara [74] considered cluster sets with respect to some "generalized

 angles" - regions which are bounded by two curves of a certain type. This

 investigation led him to the definition and an application of <r - (x<l)-porous

 sets (0 < q < 1). These sets are applied also in [76].

 Dolženko [18] has proved that Theorem 3.1 is in a sense the best possible.

 In fact, he proved that for each <r-porous set E c r there exists a function

 f on G such that E c Eyv(')»

 It seems that the following question is still open even in the case when

 G is the unit disc.

 Question 3.2. Let E c r be a <r-porous G^ set. Does there exist f

 on G such that E = EyvW?

 Some partial answers to this question are given in [19] (the case of a

 «•-porous F<r set), [70] and [42], where a characterization of sets EyvW *s
 given.

 The following theorem [81] is an example of a "one-dimensional" result in

 the theory of cluster sets, which applies <r-porosity. The symbols C*(f,x)

 and Ce(f,x) denote the right and left essential cluster sets of f at x
 (cf. [4]).

 Theore« 3.3. If f : R - > R is arbitrary, then the set of points x c R

 at which C*(f,x) f Ce(f,x) is a <r-porous set of the type F^o-.

 Remark 3.4. Samuels [60] has shown that the exceptional set from Theorem

 3.3 can have the Hausdorff dimension 1.

 3.B Differentiation theory in R.

 These applications can be divided roughly into two groups - the first

 uses porosity and the second works with <r-porosity.

 Applications of porosity. In most applications of this type, the porosity

 computations are used in a definition of a generalized derivative or in

 assumptions of theorems. The first results of this sort are probably due to

 Denjoy (cf. [15] - Lemma 3, p. 106, Corollary 2, p. 109, Theorem 1, p. 139). A

 result of Khintchine [41] of this type is not correct (cf. [10]). Denjoy defined

 the notion of the index of a point w.r.t. a perfect set which is equivalent to

 329



 the notion of the symmetric porosity (cf. 2.B) and applied it in the study of

 second symmetric Schwartz derivative and the corresponding T| - totalization
 which has applications to trigonometric series. Porosity computations are

 used in many subsequent works (e.g. [20], [80], [62], [44]).

 The best reference for recent theorems {e.g. [12], [64], [10], [11], [63]) is

 Thomson's book [66], pp. 26, 123-127, 153, 155-157, 159, 161, 165, 191-196,

 203-205. One from these theorems . is the following Thomson's result ([64,

 [66, p. 153]).

 Theorem 3.5. Let S be a local system of sets that has the property

 that, for each x € R and for each set M e S(x), M is not bilaterally

 strongly porous at x. Then, for any continuous function f : R - * R, the

 set of points

 {x : (S) - Df (x) f ÏÏf(x) or (S) - Df(x) f Df(x)}

 is of the first category.

 Thomson [64] asked whether the assumptions concerning S can be

 weakened. By [92] it is sufficient to assume that there exists a porosity

 funtion g, g(t) > t, for which no M € S(x) is bilaterally [g]-porous at x.

 The following question [92] is open.

 Question 3.6. Let S be a local system such that for any porosity

 function g, g(t) > t, there exists a second category set Mg c R such that
 for any x € Mg there is a set A e S(x) which is bilaterally [g]-porous at
 x. Does there exist a continuous function f such that Df(x) t (S) - Df(x)

 for all x from a second category set?

 Applications of <r-porosity.

 The first theorem in the differentiation theory which asserts that a set of

 "singular" points is <r-porous is due to Belna, Evans and Humke [5]. They

 proved the following theorem in which C(f) denotes the set of all points at

 which f is continuous.

 Theorem 3.7. If f is a function such that C(f) is dense, then for all

 but a <r-porous set of points both of the following equalities hold:

 (i) Dsf(x) = min{D+f(x), D_f(x)}
 (ii) Dsf(x) = max{D+f(x), D~f(x)}.
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 Similar subsequent theorems concern Dini derivates of monotone and

 Lipschitz functions [23], Dini derivates of arbitrary functions [7], [83],

 approximate derivates [85], [55] and qualitative derivates [25]. All these

 theorems except Theorem 3.7 can be found in Thomson's book [66].

 Note that <r-strongly porous sets were firstly applied in [83] (cf. [66],

 p. 177).

 In some theorems both porosity and <r-porosity are applied, e.g. in

 Thomson's Theorem 66.3 of [66]. We present here its analogue proved in [12]

 (cf. [66], p. 161).

 Theorem 3.8. Let i> be a porosity function with V+(0) = « and let f

 be a continuous function such that

 |f(x) - f (y) I • Ý(lx - y|) whenever |x - y| ml.

 Let S be a local system that has the property that, for each x € R and

 for each set M e S(x), M is not bilaterally strongly porous at x. Then at

 every point x, with the possible exception of a set that is <r - (V-) -porous

 (in the sense of Definition 2.35 or 2.37),

 (S) - Df(x) = Df(x) and (S) - Df(x) = Df(x) .

 3.C Typical behaviour.

 There is a number of theorems which concern level sets of typical

 continuous functions on [0,1] (cf. [8] and [65]) or, more generally,

 intersections of a typical continuous function with functions from a fixed

 classs of functions F. In [9] F is an arbitrary ^-compact class of

 functions, in [35] F is the class of all monotone functions and in [31] and

 [32] F is the class of all ł-Lipschitz (Holder) functions given by a fixed

 "modulus of continuity" ♦. In all these cases porosity and generalized

 porosity are natural tools for "measuring of smallness" of the intersection

 sets.

 The case when F is the class of all absolutely continuous functions or

 the class of all functions of bounded variation was considered in [35], [13],

 and [14]. Buczolich proved the following proposition [13].
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 Theorem 3.9. Every continuous function on [0,1] agrees with an

 absolutely continuous function on a set which is not bilaterally strongly

 porous.

 Buczolich obtained results also in the opposite direction. For example,

 Theorem 1 of [14] easily implies the following

 Proposition 3.10. Let 0 < a < 1. Then, for a typical continuous function

 f on [0,1], the set {x : f(x) = g(x)} is bilaterally (xa)-porous for each

 function g of bounded variation.

 Remark 3.11. (a) Any definition of (xa)-porosity can be chosen.

 (b) It seems that it is not known whether it is possible to write

 "strongly porous" or "bilaterally porous" instead of "bilaterally (xa)-porous"

 in Proposition 3.10.

 Theorems dealing with differential properties of typical continuous

 functions are very close to theorems dealing with intersection sets. They are

 contained, e.g., in [9], [31], [32], [92]. [73]; an application of both porosity

 and a-porosity is quite natural in theorems of this type.

 Zamfirescu [94] proved that all convex bodies in Rn, except those which

 belong to a a-porous set, are smooth and strictly convex.

 Larson [45] proved that a typical compact subset of [0,1] is bilaterally

 strongly porous.

 Note that at some cases an application of porosity notions is only one from

 possibilities how to describe that a set is very small. For example, a result of

 [92] which uses the notion of a [g]-totally porous set is only one from

 possible consequences of a theorem (see [91], p. 106) which uses the notion of

 7l-game.

 3.D Banach spaces.

 Most applications of porosity in Banach spaces concern the differentiation

 theory. The following theorem is from [56].

 Theorem 3.12. The set of points of Fréchet nondifferentiability of any

 continuous convex function on a Banach space with a separable dual is

 a-porous.
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 This theorem was generalized in [87], where it is shown that the

 convexity can be replaced by a weaker property - the almost

 subdifferentiability.

 Theorem 3.12 is improved in [57], where it is shown that the exceptional

 set from Theorem 3.12 is "ff- porous" in a more restrictive sense - it is "angle

 small". The question of sharpness of this result naturally led [57] to another

 type of "<r-porosity", the "ball smallness", which is more restrictive than angle
 smallness.

 The angle smallness is applied to the differentiation of distance functions

 in Banach spaces in [89]. The notion of directionally porous sets (cf.

 Definition 2.32 above) was considered in the same context in [88], p. 299.

 Agronsky and Bruckner [2] proved the following theorem which uses the

 notion of a totally porous set (cf. Definition 2.31).

 Theorem 3« 13. Let X be a separable Banach space and A a closed

 non-locally compact convex subset of X with more than one element. Let B

 be any compact subset of A. Then B is totally porous with respect to A.

 4. Structural resulta on a-porous sets.

 4. A A ff« n «rali nation of a Foran's lemma.

 Most proofs ([82], [67], [37], [26], [34]) which show that a perfect nowhere

 dense set is non <r-porous are based on a construction of a decreasing

 sequence of closed sets. Foran used in [26] a lemma which makes some proofs

 of this type more transparent. We present here an abstract reformulation of

 Foran's lemma, which is applicable to all types of o- porosity.

 Definition 4.1. Let P be a metric space and let V = V(x,A) be a

 relation between points x € P and sets A c P. We shall say that V is a

 porosity relation if:

 (i) If A c B and V(x,B), then V(x,A);

 (ii) V(x,M) iff there is r > 0 such that V(x, M n B(x,r));

 (iii) V(x,A) iff V(x,A).

 We say that A is V-porous at x if V(x,A) holds. The notions of V- porous

 and <7-V-porous sets are defined in the obvious way.
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 Définition 4,2. Let P be a complete metric space and V a porosity

 relation. We say that ? c exp P is a non-c-V-porosity family if the following

 conditions hold:

 (a) J is a nonempty family of nonempty closed sets.

 (b) For each F € ? and each open set G c P with F n G t 0

 there exists F* € 2 such that 0^F*nGcFnG and F n G

 is V-porous at no point of F* n G.

 Lemma 4»3. Let ? be a non-<r-V-porosity family in a complete metric

 space. Then no set from ? is «r-V-porous.

 Proof. Suppose on the contrary that F e j' is o- V-porous. Then
 00

 F = U An, where each An is a V-porous set. We shall define inductively a
 n=l
 oo CO

 sequence {*n}n-o c ^ a sequence of open balls (B(xn>rn)}n=o such
 that rn - * 0, F = F0 and Fn_! n B(xn_,, rn-x) 3 Fn n B(xn,rn),

 Fn-i n B(xn-i • rn-x ) t 0, Fn n B(xn,rn) n An = 0 for n = 1,2,... :
 1. Put F0 = F, choose x0 € F and put r0 = 1.

 2. If Fn_i and B(xn_t> rn_t) are defined for some n i 1,

 then we define Fn and B(xn,rn) distinguishing two cases:

 2a. If An n Fn_i n B(xn_!, rn_!) is not dense in

 Fn_x n B(xn_1,rn_1), then put Fn = Fn_! and choose

 xn e Fn-i n B(*n-i»rn-i) an<^ rn < l/n such that

 Fn-i n B(xn,rn) n An - 0.

 2b. If An n Fn_i n B(xn_i,rn_j) is dense in

 Fn_, n B(xn_1,rn_1 ), then we use Definition 4.2(b)

 (for F = Fn_! and G = B(xn_!,rn_i )) and obtain a set

 Fn € ? such that Fn_! n B(xn_,,rn_i) is V-porous at no

 point of Fn n B(xn_i,rn_!) t 0. Since

 Fn_x n B(xn.urn_i) c An and An is a V-porous set,

 we obtain by Definition 4.1 that Fn_x n B(xn_1,rn_1)

 is V-porous at each point of An and consequently

 A-n n ^n n Bfxn-prQ.t) = 0. Now choose xn e Fn and

 0 < rn < 1/n such that B(xn,rn) c Bfcn-urn-x).
 00 00

 Clearly fi Fn n B(xn,rn) = {a}, a € F and a i U An = F, which is a
 n=l n=l

 contradiction .
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 4.B Some resulta on flp>n«i-«li>-ed <r-porosity.

 We shall reproduce some results of [82]. The main results show that

 under some assumptions a notion of generalized <r-porosity coincides with

 another one.

 In the sequel G denotes the system of all porosity functions and

 a-(£) -porosity is considered in the sense of Definition 2.33.

 Proposition 4.4. Let h c G, f c G be porosity functions with the

 following property: there is an integer r and d > 0 so that the r-fold

 composition

 h • h • ••• • h(x) à f(x) for 0 < x < d .

 Then, in an arbitrary metric space, any set that is <r-<f>-porous is

 necessarily also <r-<h>-porous.

 As an easy consequence we obtain the following

 Proposition 4.5. Let h and f be porosity functions with the following

 property: for any B > 0 there are A > 0, d > 0, and an integer r so

 that the r-fold composition

 (Ah) • (Ah) • ••• • (Ah)(x) 4 Bf(x) for 0 < x < d .

 Then, in an arbitrary metric space, any set that is <r-(f) -porous is necessarily

 also <r-(h)-porous.

 Remark 4.6. (a) Proposition 4.5 for subsets of R is proved in [66] for

 <r-(g)-porosity in the sense of Definition 2.37.

 (b) Proposition 2.15 and Theorem 2.40 above are the most important

 consequences of Propositions 4.4 and 4.5.

 In the sequel G denotes the system of all functions g e G for which

 » > g'(x) > 1. The following proposition shows that the assumptions of

 Proposition 4.4 cannot be essentially weakened.

 Proposition 4.7. Let f € G and H c G. Let there exist a sequence

 {hļ} c H and a sequence {dn} of positive numbers such that

 hn
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 Then in any Euclidean space there exists an <f>-porous perfect set F which

 is not <r-<H>-porous.

 Remark 4.8. Proposition 4.7 implies (via Remark 2.42) the existence of a

 porous set which is not »-strongly porous. Of course, Theorem 2.14 implies

 that the ternary Cantor set has this property. Proposition 4.7 also implies a

 partial converse to Proposition 4.5 (see Proposition 5.3 of [82]).

 Proposition 4.9. Let g e G and lim x/g(x) = 0. Then in any Euclidean
 x-K)+

 space there exists a perfect set of measure zero which is (g) -porous and is

 not »-porous.

 Proposition 4.7 implies that, for each g e G, there exists a perfect

 nowhere dense P c R which is not »-(g)-porous. The question whether P

 can be chosen to be a measure-zero set was asked in [82] and [33]; also the

 case g(x) = xQ , 0 < q < 1, was open. The positive answer to this question

 was given by Konjagin in 1985; see Theorem 5.2 below.

 4.C Non <r-porouB sets need not be big

 Let A c R be a Borei set which is not of the first category or is not of

 measure zero. Then A is in a sense big, e.g. A + A contains an interval

 (Steinhaus theorem). Further, each family of pairwise disjoint sets of the

 same type as A is clearly countable.

 For the »-ideal of »-porous sets no such results hold. Tkadlec, answering

 questions asked by Humke [33] and Wilczyński, proved the following results

 [67].

 Theorea 4.10. There exists a perfect non »-porous set S c R such that
 n

 for every finite sequence (clt...,cn) € Rn the set I cj S is of measure
 j=l

 zero.

 Theorem 4.11. Let K c R be a first category set. Then there exists a

 perfect non »-porous set S of measure zero disjoint from K. Consequently

 there exists an uncountable family of pairwise disjoint non »-porous perfect

 subsets of R.
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 Remark 4.12. There is a perfect porous set P (e.g. the Cantor ternary

 set) such that P - P contains an interval. Moreover, such set P can be

 found in each second category set with the Baire property [50].

 Reclaw [58] showed that Theorem 4.11 and a general result of Mycielski

 easily implies the following

 Theorem 4.13. There exists a family of cardinality of the continuum of

 pairwise disjoint, non »-porous, perfect subsets of R.

 Foran [26] constructed a non »-porous set using expansions (slightly more

 complicated than the decadic ones) of real numbers. A slight change of his

 construction gives a quite explicit example [93] of a family from Theorem 4.13.

 Let X € (0,1). As usual, we write x = 0,alta3,..., if x =
 00

 1 aļ(x) • IO-1. The uniqueness of the expansion is obtained using
 i=l

 terminating O's whenever x has two expansions. Let a € {0,1,..., 9} be a

 digit. The density of a in the expansion of x is defined as

 d(a,x) = li« 'ffc • 1 ' k é ah(x) = a)
 n-*» n

 Proposition 4.14. Let a c {1,...,8}. Then, for any 0 < d < 1, the set

 A<ļ = {x : d(a,x) = d} is a Borei non »-porous set.

 4.D Descriptive properties.

 Reclaw [58] observed that each 7-set X c R is »-porous and, using a

 known result on r-sets, obtained the following proposition concerning

 cardinality and »-porosity.

 Proposition 4.15. Assume Martin's axiom. Then every set X c R of

 cardinality less than that of the continuum is »-porous.

 Foran and Humke obtained [29] the following results concerning "envelope

 properties" of linear sets.

 Proposition 4.16. A. Every »-porous set is contained in a »-porous

 set.

 B. Some »-porous sets are contained in no G¿ first category set.

 C. Some »-porous sets are contained in no F & measure-zero set.
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 The question whether there exists a porous set which is contained in no

 »-porous G¿ set was posed in [29]. It was answered by Tkadlec [67], p.
 476:

 Proposition 4.17» There exists a perfect nowhere dense set S c R such

 that the set P(S) of all points x e S at which S is porous is contained

 in no «"-porous G¿ set.

 Remark 4.18. (a) P(S) is clearly porous.

 (b) It would be interesting to know whether an arbitrary non »-porous

 perfect nowhere dense set has the property of S from Proposition 4.17.

 (c) It seems that the question whether each porous (or »-porous) set is

 contained in a »-porous Fa¿ set was not considered in the literature.

 Using Proposition 4.14 and the Lebesgue method of universal funtions it

 is not difficult to prove the following theorem [93] which shows a further

 difference between the »-ideal of measure-zero, first category sets and the

 »-ideal of »-porous sets. This result answers a question mentioned by

 Wilczyński [71].

 Theorem 4.19. Let Ba be the system of all linear Borei sets of additive

 class a. Then there exists a Borei set D such that, for each C £ Ba, the

 symmetric difference D A C is not »-porous.

 We finish this section with a natural question which seems to be open.

 Question 4.20. Let B be a non »-porous Borei set. Does there exist a

 closed non »-porous set P c B?

 4.B Images of »-porous sets.

 It is easy to see that »-porous sets (e.g. on R) are not invariant with

 respect to all homeomorphisms. On the other hand, we have the following

 obvious but useful proposition.

 Proposition 4.21. Let P be a metric space and f : P - » P a Lipschitz

 bijection such that f-1 is also Lipschitz. Then any set A c P is porous

 (or »-porous) iff f(A) is.
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 A further related one-dimensional discussion is contained in [52].

 Further results in another direction were obtained by Rec law [58]. He

 observed that each y-set is <r-porous, and, as consequences of known results

 on 7-sets, he obtained the following propositions.

 Proposition 4.22. Assume Martin's axiom. Then there exists X c R of

 cardinality of the continuum such that every continuous image of X is

 «■-porous.

 Proposition 4.23. Assume that it is consistent that there exists a

 measurable cardinal. Then it is consistent that there exists X c R of

 cardinality of the continuum such that every Borei image of X is c-porous.

 4.F Measures and «r-porosity.

 Each »-porous set A c Rn is of Lebesgue measure zero. On the other

 hand, there exist (cf. Remark 3.4) <r-porous sets A c R of Hausdorff

 dimension 1. Moreover, there exists [28] a bilaterally strongly porous perfect

 set A c R of Hausdorff dimension 1.

 The connection between generalized porosity and Hausdorff measures was

 considered in [32]. If h e G is a porosity function, then we denote by ph
 the Hausdorff measure determined by h. If h(x) = xa, then /¿h is the
 «-dimensional Hausdorff measure Ha. The following theorem is proved in [32]

 (cf. also [66], p. 202).

 Proposition 4.24. Let g be a porosity function and let h = g-1. If

 E c R is g-porous in the sense of Definition 2.36, then p^ME) = 0.

 For very porous sets the following results are known [48].

 Proposition 4.25. Let E c Rn, n à 2, 0 < p < 1. If

 lim inf 2r(x,E,r)/r 4 p for x € E, then the Hausdorff dimension
 r-K)+

 dim E á d(p) , where d(p) , n - 1 é d(p) < n, is a constant depending only

 on n and p.

 Remark 4.26. Proposition 4.25 shows that a uniformly very porous set

 E c Rn, n > 1, is of the Hausdorff dimension dim E < n. This result for

 globally very porous sets is contained in [61].
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 Mattila [49] (cf. [48]). proved the following deeper result.

 Theorem 4.27. lim d(p) = n - 1. In particular, if E is very strongly
 P->1"

 porous, then dim E é n - 1.

 We shall say that a measure a» is absolutely continuous w.r.t. a «--ideal

 I, if pA = 0 for each Acī. Obviously, if a Radon measure on R is

 absolutely continuous w.r.t. the Lebesgue measure, then it is absolutely

 continuous w.r.t. the system of all <r-porous sets. Tkadlec [68] showed that

 the converse does not hold; he constructed a singular Radon measure m in

 R such that each <r-porous sets is ^-null (we shall label such measures as

 T-measures).

 This T-measure n is concentrated on a perfect set of Lebesgue measure

 zero. Thus the construction of Tkadlec gives a "measure" proof of the

 existence of a perfect measure-zero non <r-porous set, unlike the other proofs.

 Tkadlec used the following interesting lemma which was formulated by D.

 Preiss (cf. [68], p. 353). The symbol d * I is defined in Definition 2.43.

 Lemma 4.28. Let m be a finite Borei measure concentrated on S c R

 and let the following conditions hold.

 (1) There is d > 1 such that Z n(d *1) < », where I runs

 through the set of all bounded intervals contiguous to S.

 (2) There are c > 1, K > 0 and d > 0 such that n(c % I) é Ka»(I)

 for every interval I with |I| < d and with center in S.

 (3) Countable sets are p-null sets.

 Then A»(P) = 0 for every cr-porous set P.

 Humke and Preiss [36] showed that, surprisingly enough, there are perfect

 non »-porous linear sets which carry no T-measure.

 In fact, they proved the following deep result.

 Theorem 4.29. A symmetric perfect set C(«) (cf. Definition 2.11)

 carries a nontrivial Radon measure which is absolutely continuous w.r.t. the
 00

 system of all »-porous sets iff there exists s > 0 such that E (an)s ^ "•
 n=l

 Remark 4.30. (a) If «n = (n+l)-1, then Theorem 4.29 gives a "measure"

 proof of non »-porosity of C(«). If an = (ln(n + 2))"1, then such
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 "measure" proof does not exist.

 (b) The definition of the notion of a Tkadlec measure in [36] is not

 convenient.

 It would be of some interest to know relations between the systems of all

 Radon measures which are absolutely continuous w.r.t. the »-ideals of »- porous

 sets, »-strongly porous sets, »-bilaterally porous sets, »-globally porous sets,

 etc. In particular, probably no answer to the following natural question was

 published.

 Question 4.31. Does there exist a Radon measure in R which is

 absolutely continuous w.r.t. »-strongly porous sets and is not absolutely

 continuous w.r.t. »-porous sets?

 For a recent result concerning T-measures in R2 which are carried by a

 graph of a continuous function see 6.B below.

 5« Konjagin's example.

 In [43], Konjagin proved the following theorem. His construction gives,

 among other things, the shortest description of a closed non »-porous set of

 measure zero.

 00

 Theorea 5.1. The set E = { x : Z | sin(n!łTx) | /n ú il is a closed non
 n=l

 »-porous set of measure zero. Moreover, there exists a symmetrically

 continuous function on R which is discontinuous at every point of E.

 Of course, the basic part of the proof of Theorem 5.1 is the proof of non

 »-porosity of E. A well known fact from the theory of trigonometric series

 immediately implies that E is of measure zero. In fact, E is an N-set

 (A c R is an N-set iff there are bn such that E |bn| = » and

 I I bn sin(w nx) | < ® for each x € A) and every N-set is of measure zero
 (cf. [3]). Since the sum from the definition of E is a lower semicontinuous

 function, E is closed. The last assertion of Theorem 5.1 follows from a

 construction of Preiss [53], who factually proved that for each N-set A there

 exists a symmetrically continuous function which is discontinuous at every

 point of A. Further note that Theorem 5.1 answers in negative the question

 [33] whether each N-set is »-porous.
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 Konjagin also observed that a slight modification of the construction from

 Theorem 5.1 gives the following Theorem 5.2. We shall give here a proof of

 Theorem 5.2 only, since the proof of Theorem 5.1 is simpler and quite similar.

 All ideas of the proof are due to Konjagin, but he did not use Lemma 4.3.

 Theorem 5.2. Let g € G be a porosity function. Then there exists a

 closed measure-zero set which is not <r-[g]-porous.

 CD

 Proof. Define inductively a sequence {pn)n_1 of natural numbers so that

 (1) Pn+i/Pn is a natural number à 2, n = 1,2,... and

 (2) Pk g(l/Pn) < l/w n2> k = l,...,n - 1, n = 1,2,... .
 00

 Put Ea = I X : X (|sin(pk 7Tx)|/k) * a}, a > 0. All Ea are closed
 k=l

 measure-zero sets (cf. text after Theorem 5.1). We shall say that a > 0 is

 "good", if
 00

 (3) { X : Z (|sin(p}( 7rx)|/k) < a] = U E5 is dense in Ea.
 k=l 0<b<a

 Now observe that the set W of all a > 0 which are not "good" is

 countable. In fact, to each a € W corresponds an interval Ia with rational

 endpoints such that Ia n Ea i- <t> and Ia n Efc = whenever b < a. This

 property immediately implies that the mapping a - » Ia is injective and

 consequently W is countable. To prove the theorem, it is sufficient to prove

 that the system {Ea : a € (0,») - W} is non-<r-[g]-porosity family in the

 sense of Definition 4.2. At first observe that 0 € Ea, a > 0. Further choose

 a > 0, a i W and an open set G such that Ea n G t 0. Since a is

 "good" and W is countable, we can choose 0 < b < a such that b i W

 and Eb n G is [g]-porous at no point of Eb n G. Suppose on the contrary

 that there exists y € Eb n G at which Ea is [g]-porous. Then for each

 c > 0 we can find 0 < R < « and an interval (yi,y2) c (y-R» y+R) - Ea

 such that g(y2 - Y') > R. Fix t ú l/p, R, yx, y2 and find n such that

 (4) l/Pn+1 < Ya - Yi < 1/Pn •

 Since |Pn+i Ya ~ Pn+i Yi I ^ 1» we can find z e (ylt y2) such that

 pn+! z is an integer. On account of this fact and (1) we have
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 » n

 A : = 1 (|sin(pj{ 7Tz)|/k) = I (Isiníp^ wz)|/k) *
 k=l k=l

 n-1

 - I ( I sinCpjf 7rz)|/k) + 1/n .
 k=l

 Further

 n-1 n-1

 Ī (Isinípk 7Tz)/k) á I ( |sin(pļ{ wy)|/k) +
 k=l k=l

 I n_1
 + I (1/k) ( I sin(p]{ ttz)| - |sin(pj{ Try) | ) á

 1 k=l

 n-1

 < b + J) (l/k)p}{ TT I z - y I : = b + B .
 k=l

 Since I z - y I < R, g(ya ~ Yi) > R and y 2 ~ Yi * 1/Pn> we obtain
 n-1

 g(l/Pn) > z - y. On account of (2) we have B * J) (1/n2) < 1/n and
 k=l

 A < b + 2/n. On account of (1) and (4) we see that A á b + 2/n a, if

 c > 0 is sufficiently small. This implies z € Ea, which is a contradiction.

 Remark 5.3. It is easy to see that for each porosity function h there

 exists a porosity function g such that each (h)-porous set A c R (in the

 sense of Definition 2.33 or in another one) is [g] -porous (cf. [92]).

 Consequently Theorem 5.2 holds for <r-(g) -porosity as well. Thus Theorem 5.2

 solves problems from [82] and [33], which are mentioned after Proposition 4.9.

 6. Other resulta.

 6.A Graphs of continuous functions.

 Foran [26] proved the following theorem.

 Theorem 6.1. There is a continuous real function defined on [0,1] whose

 graph is a non <r-porous subset of the plane.

 The following stronger result was recently proved by Bandt, Mattila and

 Preiss [54]. Let X/M denote the restriction of the Lebesgue measure to a

 measurable set M c R and let Gf(x) = (x,f(x)) for each f : R - > R.
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 Theorem 6.2. There is a continuous real function f on [0,1] such that

 the image measure Gf(X/M) is absolutely continuous w.r.t. the system of all

 cr-porous subsets of Ra (cf. 4.F) for each M c [0,1], XM > 0.

 Remark 6«3. For the function f from Theorem 6.2, {(x,f(x)) : x e M) is

 non or-porous for each M c [0,1], XM > 0.

 It seems that the following question [26] is still open.

 Question 6.4. Does there exist a function of bounded variation on [0,1]

 which has non «r-porous graph?

 Foran [27] proved the following

 Proposition 6.5. There is an absolutely continuous function f on [0,1]

 such that the set of points of non-porosity of the graph Gf is c-dense in

 Gf.

 6.B Trigonometric series and porosity.

 2

 1. Den joy used porosity computations (cf. 2.B) in his theory of Tg -
 totalization (cf. [15]) which was motivated by the theory of trigonometric

 series.

 2. A result of Piatecki-Shapiro says that there exists a U-set which is

 not Ha-set (for definitions of U-sets and H-sets see [3] or [39]). In [3] a

 proof of this result is given which uses the notion of porosity (under another

 nomenclature). The result is proved in three steps:

 (i) It is observed that the closure of a H-set is bilaterally

 porous. (Note that it is easy to see that each H-set is

 globally porous).

 (ii) A perfect U-set P is constructed which contains a dense

 subset D c P such that P is non-porous on the right at

 each point of D.

 (iii) The Baire category theorem easily yields that P is not

 an H^-set.

 Remark 6.6. The above U-set P is cr-porous.

 The following problem seems to be open.
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 Question 6.7. Is each Borei (perfect) U-set <r-porous?

 Rwn»i»lr RJL (a) The negative answer is very probable.

 (b) There are symmetric perfect porous sets which are not U-sets [3].

 The question whether each N-set is o- porous was asked by Humke in [33]

 and answered in negative by Konjagin (Theorem 5.1 above).

 6.C Ad'«*'»"*! remarks.

 A simple but interesting application of Theorem 3.7 which concerns

 approximately symmetric functions is contained in [24].

 Some questions concerning c-porosity of some exceptional sets are

 contained in [21]. In particular, the following problem [21] seems to be still

 open.

 Question 6»9. Must the set of points of discontinuity of a symmetric

 function be »-porous?

 Note that the similar question concerning symmetrically . continuous

 functions has the negative answer (see Theorem 5.1 above).
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