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ON METRIC PRESERVING FUNCTIONS

Definition 1. We call a function f : RY* — Rt metric preserving iff
fod:MxM — R' is a metric for every metric d : M x M — Rt, where
(M,d) is an arbitrary metric space and Rt denotes the set of nonnegative

reals. We denote by M the set of all metric preserving functions.

In the papers [1] and [2] some properties of metric preserving functions
were investigated. The purpose of this paper is to extend some results of [1]
and [2]. We shall show that each metric preserving function has a derivative

(finite or infinite) at O.

We recall some properties of M

Proposition 1. (See [l; Theorem 1].) Let f : R* — R*. Then f e M, iff

vae R" f(a) = 0 ¢=> a =0, and

va,b,c e R* |]a-b| 6§ c € a+b=>f(a) § f(b) + f(c) .

Corollary 1. (See [1l; Lemma 2.5 and Corollary 2.6].) Let f € M. Then
va, b ¢ R* f(atb) € f(a) + f(b) ,
va, b e Rt a ¢ 2b => f(a) € 2f(b) ,
vae R"vn e N2 " f(a) & £(2 "a) ,

va, b € R* |f(a) - f(b)| € f(]a - b]) .
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Proposition 2. (See [l; Proposition 1.2].) Let a function f : Rt — R*

have the following properties:

va ¢ R* f(a) =0 ¢<=> a =0, and

f is concave .

Then f is metric preserving.

Proposition 3. (See [1; Proposition 1.3].) Let a function f : Rt — Rt

have the following properties:

f(0) =0,

3a >0 vx >0 a € f(x) € 2a .
Then f i8 metric preserving.

Proposition 4. (See [1; Proposition 2.6].) Let f e m Let d,k > 0. Let
g(x) = kx for x € [0,d) and g(x) = f(x) for x € [dy®»). Then g ¢ m iff

f(d) = kd ,

vx, y € [d,®) |f(x) - f(y)| € k |x - y] .

Proposition 5. (See [1; Corollary 2.22].) Let fpemM (n=1,2,...).

[ ]
If Y fp converges to f, then f e M.
n=1

Proposition 6. (See [l; Proposition 2.23].) Let @ #Z £ © M  Suppose

£x = {f(x) : f € £} is a bounded set for every positive x. Let g(x) = sup

£4x for each x ¢ R*. Then g is metric preserving.

Proposition 7. (See [1l; Theorem 2.9].) Let f € M Then the following

three conditions are equivalent:
f 1is continuous ,
f is continuous at 0 ,

ve >0 x>0 f(x) <=
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Proposition 8. (See [2; Corollary 3].) Let f : R® — R* be differenti-

able on some neighborhood of . If 1lim f'(x) = o, then f is not metric

. X
preserving.
The following example shows that the assumption "lim f'(x) = " in
Proposition 8 cannot be replaced by "lim sup f'(x) = =", X
X
Example 1. There is a function f € M such that
(1) f 1is continuous ,
(2) f'(0) = =,
(3) f is differentiable on (0,«) ,
(4) lim sup f'(x) = o .
X0
Put aj =1-v1-22Y (i=1,2,3,...). For i=1,2,3,... let
0 for x =0,
-i-1
2 for x € (0,ai+1)
h,(x) =
i —i-2 . 2X - a, ~ 8,
2 [3 + sin (§ a1 - 8171 )] for x e [ajrg, aj) ,
27! for x e [aj,=) .
Since 2-i-1 ¢ h(x) & 2(2-i-1) for each x > 0, by Proposition 3 hi ¢ m  For

i+l -1
(2 ai+1) x for any x € [0,ai+1) s
g.(x) =

i

hi(x) for x € [ai+1,w) .

Since |hi(x)| & 2712 n(a; - aj41)~! & (2i*] a;41)"1 for each x e [aj4+1,®), by
Proposition 4 g € M For i = 1,2,3,... let
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o—i-1 2(x—-i-1 . .
ri(x)z 2 [3+cos—£—ai——)-] for xe[1+1—§ai,1+l+%ai]

2—i

otherwise .

Since 2-1 & ri(x) € 2(2-1) for each x > 0, by Proposition 3 ri € M. For
i= 1,2,3,... let

(21ai)~lx for x € [O,ai) s
s;(x) =

ri(x) for x € [ai,w) .

Since |ri(x)| € (2t ai)‘1 for each x > 0, by Proposition 4 s € M. For

t (x) = sup g.(x) for each x € RY .
n . i
12n

By Proposition 6 we get tp € M. Now let

Vox - x° for x € <0,1) ,

fo(x) =
1 for x e [l,®) .

By Proposition 2 we have f, ¢ M. Further for n = 1,2,3,... let fn(x) =

max{tp(x),sp(x)} for each x e R'. By Proposition 6 fp € M. Finally let
[+ ]

f(x) = I fp(x) for each x ¢ R'. By Proposition 5 we get f ¢ M. By a

n=0
routine calculation we can verify that (1) - (4) hold.

Proposition 9. (See [2; Proposition 8].) Let f : Rt — Rt be

differentiable and let f' be continuous at 0. If f is metric preserving,

then it is increasing on some neighborhood of O.

The following example shows that the assumption "f' is continuous at

the point 0" in Proposition 9 is essential.
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Example 2. There is a function f ¢ M such that

(5) f is differentiable

(6) f' is continuous on (0,«) ,

(7 f is not increasing on any neighborhood of 0 ,

(8) each neighborhood of 0 contains an interval on which f

is strictly convex.

n
For n=1,2,3,... put r = (2 -1)(ntl) and let
(2n+1)n

0 for x =0,

gn(x) = a x3 + bn x2 + c, X + dn for x € [rn, n_l) s
(2—n_1) n_1 otherwise ,

where

a = (16n7 + 24n6 + 8n5 - 2n4 - n3)(n + 1)"1

b= (-48n° - 720° - 120% + 180 + 20% - 2) (@ + DT,

c, = (48n6 + 72n5 - 30n3 + n2 + 5n - 1)(n2 + n)_1 .

d = (-16n - 8n° + 120% + 20 - 2)n" .
By Proposition 3 g € M. Further for n = 1,2,3,... let

-1
(2-n )x for x € [O,rn) .
£ (x) =

gn(x) for x € [rn,w) .

By Proposition 4 fn € M Let fo(x) = x for each x ¢ Rt. Finally, let
f(x) = sup{fp(x); n = 0,1,2,...} for each x e R*.

By Proposition 6 f e M. By a routine calculation we can verify that (5)
- (8) hold.

289



Proposition 10. (See [2; Proposition 5].) If a function f : Rt — Rt s

continuous at 0, if f(0) = 0 and if f is strictly convex at 0, then f is

not metric preserving.

Proposition 11. (See [2; Proposition 6].) Let f : Rt — Rt be twice

differentiable on Rt and satisfy the following properties:
f(x) =0<¢=>x=0,
f'(x) *a0 forall xaoO0,

there is number h > 0 such that f“(x) 2 0 for all
x ¢ [0,h] and there is an x, € [0,h] such that f"“(x,) > O.

Then f is not metric preserving.

We shall generalize these assertions.

Theorem 1. Let fe M and h > 0. If f is convex on [0,h], then f

is linear on [0,h].

Proof. From the convexity we obtain

(9) va, be R 0<asébeéh= Hal Ib),

We shall show that f(x) = f-l(lll)x for each x € [0,h]. Let x € (0,h]. Let

n be a positive integer such that 2™ h € x. Then according to (9) and
-n

Corollary 1 £(270 h) = 270 f(h). Then LB -T2 R 100  fh) e
27y X h

yields f(x) = %ﬁ X.

Now we shall show that metric preserving functions have a derivative at

Lemma 1. Let f € M. Suppose there are h, k > 0 such that f(x) € kx
for each x € [0,h]. Then

(10) vx € Rt f(x) € kx and

(11) vk, vy € Rt |f(x) - f(y)| €k |x - y| .
290



Proof. Let x ¢ R'. Let n be a positive integer such that 2-0x & h.
By Corollary 1 2N f(x) & £f(2°1 x) € k 271 x, which yields (10). Observe
that (11) follows from Corollary 1 and (10).

Lemma 2. Let f e M k > 0. If in every neighborhood of 0 there is a
point a such that f(a) = ka, then f(x) = kx holds in a suitable
neighborhood of O.

Proof. Let h > 0 be such that f(h) = kh. We shall show that f(x) =
kx for each x € [0,h]. Assume that f(x) # kx for some x € (0O,h). We

distinguish two cases.

1.) Suppose that f(x) > kx. Put A = {y ¢ Rt : f(y) = ky}). Since f is
continuous (by Proposition 7), the set A n [0,x] 1is closed and bounded.
Hence m = max(A n [0,x]) e R. Let y e A be such that 0 <y < x - m.
Then by Corollary 1 f(m+y) € f(m) + f(y) = km + ky = k(m+y). Since
f(x) > kx and since f is continuous, there is 2z ¢ [m+y, x] such that
f(z) = kz, which contradicts the definition of m.

2.) Suppose that f(x) < kx. Since the set A n [x,h] is closed and
bounded, M = min(A n [x,h]) e R. Let r ¢ A be such that 0 < r < M - x.
Then by Corollary 1 kM = f(M) & f(M-r) + f(r) = f(M-r) + kr, which yields
f(M-r) » kM - kr = k(M-r). Since f(x) < kx and f is continuous, there is

8 € [x, M-r] such that f(x) = ks, which contradicts the definition of M.

Lemma 3. Let f ¢ M. Then

= () o5 £(y)

vk, y> 0 xay " v

Proof. Let xay > 0. Then xy ! a1l. Let n be a positive integer
such that 2""! € xy™! < 2, Then 2'™" x < 2y. Therefore by Corollary 1
f(2'™" x) & 2f(y). By Corollary 1 27" f(x) & f(2'™" x) & 2f(y). Thus
f(x) & 27! 2f(y) & xy ! 2f(y). From this we get -f—’((& € 2 %ﬂ .

Theorem 2. Let f e M. Then f'(0) exists (finite or infinite) and

£'(0) = inf{k > 0 : f(x) € kx for each x ¢ R'} .
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Proof. Put K¢ = {k > 0 : f(x) § kx for each x e R'}. We distinguish
two cases.

1.) Suppose that Ke # ¢. By Proposition 7 the function f is
continuous. Hence Kgf is closed. Put ko = inf K¢z Then ko, € Kf and
ko > 0. We shall show that
(1z) k= lin £

x-0

let & > 0. Then
(13) vh > 0 3x € [0,h] f(x) > (ko — &)x .

Indeed if not, we have k, - ¢ € Kf, which contradicts the definition of k,.
We shall show that

(14) 3h > 0 wvx e (0,h] f(x) > (ko — &)x .
Suppose that
(15) vh > 0 3Ix € (0,h] f(x) € (ko — £)x .

Let h > 0. Then by (13) there is x, € (0,h] such that f(x,) > (ko — £)x,
and by (15) there is x, € (0,h] such that f(x,) € (ko — £)x,. By the
continuity of f there is x5 ¢ (0,h] such that f(x;) = (ko — £)x5.
By Lemma 2 f(x) = (ko — £)x holds on some neighborhood of 0, which
contradicts (13). Since ko, € Kf, we have f(x) < (ko + #)x for each x > 0.
Thus by (14) we obtain ve > 0 3h > 0 wx € (0,h] ko — & < iﬁ!l < ko + &,
i.e. (12) holds.

2.) Suppose that Kf = ¢ (which yields inf Kf = =). Let n € N.

Let h >0 be such that f(h) > 2nh. Let x € (0,h]. By Lemma 3
ﬁﬁ&l 2 % iﬁh)i % 2n = n. Therefore vh e N 3h > 0 wx e (0,h] iﬁ!l 2 n, i.e.
f'(0) = o,

Theorem 3. Let f e M Let f'(0) < ». Then
(16) vx ¢ Rt f(x) € £'(0)x , and
(17) vx, y € Rt |f(x) - f(y)| € £'(0) |x - y| .
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Proof. Let & > 0. Then there is h > 0 such that f(x) € [f'(0) + £]x
for each x € [0,h]. By Lemma 1 f(x) € [f'(0) + £]x for each x e R}
Since ¢ > 0 was arbitrary, (16) holds.

Observe that (17) follows from Corollary 1 and (16).

Corollary 2. (Compare [2; Lemma 5].) Let f ¢ M be differentiable. Then
|£f'(x)| & £'(0) for each x e R*.
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