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 ON METRIC PRESERVING FUNCTIONS

 Definition 1. We call a function f : R+ - ► R+ metric preserving iff

 f • d : M * M - » R* is a metric for every metric d : M * M - * R1", where

 (M, d) is an arbitrary metric space and R+ denotes the set of nonnegative

 reals. We denote by Dl the set of all metric preserving functions.

 In the papers [1] and [2] some properties of metric preserving functions

 were investigated. The purpose of this paper is to extend some results of [1]

 and [2]. We shall show that each metric preserving function has a derivative

 (finite or infinite) at 0.

 We recall some properties of in.

 Proposition 1. (See [1; Theorem 1].) Let f : R* - * R+. Then f € Bl, iff

 va € IR+ f(a) = 0 <=> a = 0, and

 Va,b,c e R"1" ļ a - b ļ f c í a + b => f(a) á f(b) + f(c) .

 Corollary 1. (See [1; Lemma 2.5 and Corollary 2.6].) Let f € Ml. Then

 va, b e F*" f(a+b) ú f(a) + f(b) ,

 Va, b € Rf a < 2b => f(a) é 2f(b) ,

 Va € R+ Vn € N 2 n f(a) é f(2 na) ,

 va, b e R+ I f (a) - f (b) | í f(|a - b|) .
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 Proposition 2. (See [1; Proposition 1.2].) Let a function f : IR+ - * IR+

 have the following properties:

 va € F4" f(a) = 0 <=> a = 0, and

 f is concave .

 Then f is metric preserving.

 Proposition 3. (See [1; Proposition 1.3].) Let a function f : IR4" - » IR+

 have the following properties:

 f(0) = 0 ,

 3a > 0 vx > 0 a * f(x) é 2a .

 Then f is metric preserving.

 Proposition 4. (See [1; Proposition 2.6].) Let f e Jli. Let d,k > 0. Let

 g(x) = kx for X € [0,d) and g(x) = f(x) for x e [d,®). Then g e 111 iff

 f (d) = kd ,

 vx, y e [d,®) |f(x) - f(y)| é k |x - y| .

 Proposition 5. (See [1; Corollary 2.22].) Let fn e W (n = 1,2,...).
 CO

 If I fn converges to f, then f € ÏÏI.
 n=l

 Proposition 6. (See [1; Proposition 2.23].) Let <t> i- i. c BI. Suppose

 £x = (f(x) : f € £} is a bounded set for every positive x. Let g(x) = sup

 £x for each x e F+. Then g is metric preserving.

 Proposition 7. (See [1; Theorem 2.9].) Let f e Īli. Then the following

 three conditions are equivalent:

 f is continuous ,

 f is continuous at 0 ,

 vc > 0 3x > 0 f(x) < B .
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 Proposition 8. (See [2; Corollary 3].) Let f : IR+ - » R+ be differenti

 able on some neighborhood of ». If lim f ' (x) = », then f is not metr ic
 . _ x-*»

 preserving. _

 The following example shows that the assumption "I im f'(x) - in

 Proposition 8 cannot be replaced by "lim sup f (x) = <»".
 x-*»

 Ex«"ple 1. There is a function f € HI such that

 (1) f is continuous ,

 (2) f ' (0) = » ,

 (3) f is differentiate on (0,®) ,

 (4) lim sup f'(x) = » .
 x-*»

 Put ai = 1 - A - 2"21 (i = 1,2,3,...). For i = 1,2,3,... let

 0 for x = 0 ,

 2 * ^ for x € (0,a. )
 i_ / ' l+l
 hi(x) i_ / ' = 2x - a. - a.

 2 1 2 [3 + sin (tJ ¿ ¿ ai ai+l

 2 1 for x € [aj,®) .

 Since 2-i~l á h(x) ú 2(2~i~l) for each x > 0, by Proposition 3 hj c Īli. Kor
 i = 1,2,3,... let

 (21+1 ai+ļ) 1x for any x c [0,a.+ļ) ,
 «¿(x) =

 h^ (x) for x c [ai+1.œ) •

 Since |h'¡(x)| é 2~i~2 7T(ai - aļ+i)~l á (2*+l aj+i)-! for each x € [aļ+i,«), by
 Proposition 4 gļ € W. For i = 1,2,3,... let
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 0 for x = 0 ,

 r.(x) - 2 * ^ [3 + cos ŽÍ2ÍZZÍ- łl] J for X€ L + ļ _ ZI 4 a ' i + l+ ja.] 4 iJ i a. J L 4 i ' 4 iJ
 i

 2 1 otherwise .

 Since 2~i á rļ(x) é 2(2~i) for each x > 0, by Proposition 3 r¡ t E For
 i = 1,2,3,... let

 (21ai) *x for x c [0,ai) ,
 Sj(x) =

 r . (x) for x e f a. ,») .
 i i

 Since |r'i(x)| * (2* aj)~l for each x > 0, by Proposition 4 s¿ c E For
 n 1,2,3,... let

 t (x) = sup g.(x) for each x € IT1" .
 n ihn 1

 By Proposition 6 we get tn e W. Now let

 y 2x - x2 for x € <0,1) ,

 f0(x) =
 1 for x e [1,») .

 By Proposition 2 we have f0 € IH. Further for n = 1,2,3,... let *n(x) =

 max{tn(x) ,sn(x)} for each x € IR*. By Proposition 6 fn € ÏÏI. Finally let
 00

 f(x) = £ fn(x) for each x € IR*. By Proposition 5 we get f € Īli. By a
 n=0

 routine calculation we can verify that (1) - (4) hold.

 Proposition 9. (See [2; Proposition 8].) Let f : UT1" - ^ IR+ be

 differentiable and let f be continuous at 0. If f is metric preserving,

 then it is increasing on some neighborhood of 0.

 The following example shows that the assumption "f' is continuous at

 the point 0M in Proposition 9 is essential.
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 Example 2. There is a function f e HI such that

 (5) f is differentiable

 (6) f' is continuous on (0,®) ,

 (7) f is not increasing on any neighborhood of 0 ,

 (8) each neighborhood of 0 contains an interval on which f

 is strictly convex.

 For n = 1,2,3,... put r = ^ - 1) (n+l) antj
 n (2n+l)n

 0 for X = 0 ,

 3 2 -1
 g (x) = a X + b X + c x + d for x € [r , n ) ,
 u n n n n n

 . (2-n n ^ otherwise ,
 where

 a = (16n^ + 24n^ + 8n^ - 2n^ - n^)(n + 1) ^
 n

 bn = (-48n6 - 72n5 - 12n4 + 18n3 + 2n2 - 2n)(n + I)"1 ,

 Cn = + ^2n^ - 30n3 + r? + 5n - l)(n2 + n) ^ ,

 d = (-16n4 - 8n3 + 12n2 + 2n - 2)n_1 .
 n

 By Proposition 3 gn € fll. Further for n = 1,2,3,... let

 (2-n *)x for x c [0,r ) ,
 f„(x) =

 g (x) for x € [r ,») .
 n n

 By Proposition 4 fn € !J1. Let fo(x) = x for each x € R+. Finally, let
 f(x) = sup{fn(x); n = 0,1,2,...} for each x e VT4*.

 By Proposition 6 f e IB. By a routine calculation we can verify that (5)

 - (8) hold.
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 Proposition 10. (See [2; Proposition 5].) If a function f : IR* - * IR+ is

 continuous at 0, if f (0) = 0 and if f is strictly convex at 0, then f is

 not metric preserving.

 Proposition 11. (See [2; Proposition 6].) Let f : R+ - ► IR+ be twice

 differentiate on R+ and satisfy the following properties:

 f(x) = 0 <=> X = 0 ,

 f'(x) à 0 for all X à 0 ,

 there is number h > 0 such that f"(x) * 0 for all

 X € [0,h] and there is an x0 € [0,h] such that f"(x0) > 0.

 Then f is not metric preserving.

 We shall generalize these assertions.

 Theorem 1. Let f e in and h > 0. If f is convex on [0,h], then f

 is linear on [0,h].

 Proof. From the convexity we obtain

 (9) va, b e IT1" 0 < a < b < h => ílâl ¿ _
 a d

 We shall show that f(x) = f°r each x e [0,h]. Let x e (0,h|. l.et

 n be a positive integer such that 2-n h í x. Then according to (9) and

 Corollary 1 f(2~n h) = 2~n f(h). Then = f<^2~ é i which
 li n H* X lì

 yields f(x) = x.
 n

 Now we shall show that metric preserving functions have a derivative at

 0.

 Lemma 1. Let f € ID. Suppose there are h, k > 0 such that f(x) í kx

 for each x c [0,h]. Then

 (10) Vx € F* f(x) * kx and

 (11) vx, y e F1" I f (x) - f(y)| * k |x - y| .
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 Proof. Let x c F+. Let n be a positive integer such that 2_nx é h.

 By Corollary 1 2-n f(x) á f(2_n x) í k 2~n x, which yields (10). Observe

 that (11) follows from Corollary 1 and (10).

 Lemma 2. Let f e ID, k > 0. If in every neighborhood of 0 there is a

 point a such that f(a) = ka, then f(x) = kx holds in a suitable

 neighborhood of 0.

 Proof. Let h > 0 be such that f(h) = kh. We shall show that f(x) =

 kx for each x € [0,h]. Assume that f(x) t kx for some x € (0,h). We

 distinguish two cases.

 1.) Suppose that f(x) > kx. Put A = (y c R+ : f(y) = ky}. Since f is

 continuous (by Proposition 7), the set A n [0,x] is closed and bounded.

 Hence m = max (A n [0,x]) e F. Let y « A be such that 0 < y < x - m.

 Then by Corollary 1 f(m+y) é f(m) + f(y) = km + ky = k(m+y). Since

 f(x) > kx and since f is continuous, there is z e [m+y, x] such that

 f(z) = kz, which contradicts the definition of m.

 2.) Suppose that f(x) < kx. Since the set A n [x,h] is closed and

 bounded, M = min(A n [x,h]) € R. Let r € A be such that 0 < r < M - x.

 Then by Corollary 1 kM = f(M) < f(M-r) + f(r) = f(M-r) + kr, which yields

 f(M-r) * kM - kr = k(M-r). Since f(x) < kx and f is continuous, there is

 s € [x, M-r] such that f(x) = ks, which contradicts the definition of M.

 Lemma 3. Let fem. Then

 vx, y > 0 x k y -> tSjÛ. t 2 ÍM .
 x y

 Proof. Let x i y > 0. Then xy""1 à 1. Let n be a positive integer

 such that 2n"~1 é xy"1 < 2n. Then 21_"n x < 2y. Therefore by Corollary 1

 f(2l"n x) é 2f(y). By Corollary 1 21~~n f(x) é f(21_n x) é 2f(y). Thus

 f (x) é 2n_1 2f (y) á xy"1 2f (y) . From this we get é 2 .
 x y

 Theorem 2. Let f e Ul. Then f ' (0) exists (finite or infinite) and

 f'(0) = inf{k > 0 : f(x) í kx for each x € R"1"} .
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 Proof. Put Kf = {k > 0 : f(x) * kx for each x c R*}. We distinguish
 two cases.

 1.) Suppose that Kf i- <t>. By Proposition 7 the function f is

 continuous. Hence Kf is closed. Put k0 = inf Kf. Then k0 € Kf and

 k0 > 0. We shall show that

 (12) k = lim .
 0 x-»0 x

 Let e > 0. Then

 (13) vh > 0 3x € [0,h] f(x) > (k0 - «)x .

 Indeed if not, we have k0 - e c Kf, which contradicts the definition of k0.
 We shall show that

 (14) 3h > 0 Vx ( (0,h] f(x) > (k0 - Ox .

 Suppose that

 (15) Vh > 0 3x e (0,h] f(x) á (k0 - e)x .

 Let h > 0. Then by (13) there is xx € (0 , h] such that f(xj) > (k0 - e)*i

 and by (15) there is x2 € (0,h] such that f(x2) * (k0 - ®)x2. By the

 continuity of f there is x3 € (0,h] such that f(x3) = (k0 - ®)x3.

 By Lemma 2 f(x) = (k0 - e)x holds on some neighborhood of 0, which

 contradicts (13). Since k0 c Kf, we have f(x) < (k0 + e)x for each x > 0.

 Thus by (14) we obtain Ve > 0 3h > 0 vx € (0 , h] k0 - « < < k0 + «,

 i.e. (12) holds.

 2.) Suppose that Kf = $ (which yields inf Kf = »). Let n € N.

 Let h > 0 be such that f(h) > 2nh. Let x € (0,h]. By Lemma 3

 ííii x à ^ z n 4 z 2n = n. Therefore vn c N 3h > 0 Vx e (0,h] x * n, i.e. x z n z x

 f'(0) = ».

 Theorem 3. Let f € W. Let f'(0) < <». Then

 (16) VX € R+ f(x) é f'(0)x , and

 (17) vx, y € R+ I f (x) - f(y)| á f'(0) |x - y| .
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 Proof. Let c > 0. Then there is h > 0 such that f(x) ú [f'(0) + e]x

 for each x e [0,h]. By Lemma 1 f(x) é [f'(0) + c]x for each x € F*.

 Since t > 0 was arbitrary, (16) holds.

 Observe that (17) follows from Corollary 1 and (16).

 Corollary 2. (Compare [2; Lemma 5].) Let f e BI be differentiate. Then

 |f'(x)| é f'(0) for each x € IR+.
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