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NON-STANDARD ANALYSIS AND NUMERATION SYSTEMS

Abstract :

I will show how non-standard analysis can help in describing numeration
systems, such as that used by fixed-point arithmetics in computers.

To achieve the non-standard extension of the total order, instead of
the usual definition using ultrafilters, a lexicographical ordering
will be used.
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O.Notations

Because of the incompletude of the printing machine I could use,
to denotate the usual mathematical characters, I will use the following

Existence quantifier HE ]
Universal quantifier : ¥
Membership relation t €
Inclusion relation HE o]
Intersection relation H|

Union relation HE )

Empty set :t 0

Power operation ¢ xXx

Logical "and" operator : °

Logical "or" operator . : v

Logical "not" operator : =

Indices : ali]
Mapping : f(x) f(x,y)
Indexed mapping : fl[1i)(x[3]))

1.Construction of the non-standard extension of a set, with its properties
Definitions
E 1s a set of "standard objects" or "standard numbers"”
X is a set of "indices"
A is the set of all the mappings X-->E
A=E**X={f:X-->E}

Identification
For A to be considered an extension of E , we must identify the
elements of E with some elements of A .
The elements of A identified to those of E are called the
"standard elements"” of A , the others the "non-standard elements"
of A .
If X=0 , there is only 1 element in A : not enough.
If X={x} , there is a bijection between E and A : nothing new.
We will no more consider these two cases.
If X contains at least 2 elements, A contains at least as many
elements as the set P(E) of all the subsets of E , that is
stri¢tly more than E .
A method to make the identification having been chosen (several
are possible), we can then write EcA .
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Properties
We want to transfer the properties of the "small" set E to the
"big" set A . We can translate : : .
elements
e(1l,e[2]),...e[n]€E f(1),f(2),...f[n]€ER

properties
pll1)(e(1]) pl1)(£f[1))="{xeX:p[1](f[1](x))}EFcA"
pl2](e([1]),e[2]) Pl2](f[1],f(2))="{x€X:p[2)(£f[1](x),f(2])(x))}I€EFcA"

where F is a chosen fixed subset of P(X) .
What needs to be F ?
That depends of which properties we want to be transfered.
Without any hypothesis on F , equality is transfered to an
equivalence relation, and we take the classes : A=(E**X)/F

Examples:

Transfer of a reflexive relation ~ :
reflexivity of ~ on E : ¥e€E e~e
then : ¥feA ¥xeX f(x)“f(x)
then : ¥feA {x€X : f(x) " f(x)}=X
so that the transfer just needs

Transfer of a symmetric relation ~
symmetry of ~ on E : ¥d€E ¥e€E d~e==>e"~d
then : ¥feA ¥geA ¥xeX f(x)~g(r)==>g(x)~f(x)
then : ¥feA ¥geA {x€X : f(x)"g(x)lc{xe€X : g(x)~“f(x)}
so that the transfer just needs : ¥PEF PcQ==>Q€F

Transfer of an antisymmetric relation ~ :
antisymmetry of ~ on E : ¥d€E ¥e&E (d~e) " (e~d)==>d=e
then : ¥f€A ¥geA ¥x€X (f(x)~g(x)) " (g(x) " f(x))==>Ff(x)=g(x)
then : ¥f€A ¥geA {x€X : f(x)~g(x)iN{xeEX : g(x)"f(x)ici{xeX : f(x)=g(x)}
so that the transfer just needs : ¥P€EF ¥QeF P2QeF

XeF

e oo

and : ¥PeF PcQ==>0Q€F
i.e.: F is a filter
Transfer of a transitive relation ~ :

transitivity of ~ on E : ¥Ya€E ¥e€E ¥beE (a“e)“(e~b)==>a"b
then : ¥f€A ¥g€EA ¥YheA ¥xeX (f(x)"g(x)) " (g(x) h(x))==>f(x) h(x)
then : ¥feA ¥g€A ¥heA {xeX : f(x) g(x)IN{xeX : g(x) h(x)}c{xeX : f(x)“h(x)}
so that the transfer just needs : ¥YPeF ¥Q€F P2Qe€F
and ¥PeF PcQ==>0€F
i.e.: F is a filter

.
:

o s o

~

Transfer of a total relation
totalness of ~ on E : ¥d€E ¥e€E (d~e)v(e~d)
then : ¥f€A ¥g€A ¥xeX (f(x)~g(x))v(g(x)~f(x))
then : ¥feA ¥g€eA {xeX : f(x) g(x)}fxeX : g(x)~"f(x)}=X
so that the transfer just needs : PeEF<==>-(X-P€F)
. and : ¥PeF PcQ==>Q€F
i.e.: F is an vltrafilter
thus : {x€X : f(x)~g(x)} and {x€X : g(x)~f(x)} contain two
complementary subsets of X , one of which being in F , with
the sets including it.
remark : both complementary subsets cannot be in F , otherwise their
empty intersection would also be in F , and the resulting
system would be inconsistent, since the properties could
be accepted even if true for no x€X .

General case :

If F is an ultrafilter, all properties can be transfered,
and the theorems on A can be demonstrated as on E , using the
classical logic ; in particular, the identification can be done
by the equivalence class of the constant applications :
e(0]"="{feE**X:{xeX:f(x)=e[0]}€F}

If F is only a filter, the properties expressed with an irreductible
"or" or "there exists” or a "not" which is not in terminal
position are not transfered ; it seems to be linked with the
non-transfer of the excluded-third-case principle, so that
the intuitionnistic logic would work, but not the classical.

The transfer of preorder, equivalence, and order relations need only
a filter. But a total order would be transfered to a partial
order, unless the filter is an ultrafilter. But this partial
order can be completed into a total order using other methods,
which will be studied further on.
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2.Application to numeration systems : filter or ultrafilter ?
Definitions

E : set of digits, finite, totally ordered

X : set of index

If b=Card(E) , we can see a base-b number as a mapping X-->E
The order on the numbers should be deduced from the order on the
digits, and should be total.
Let's take X finite, since the number of places where you can
write a digit is always finite in practice, though it can be big.
Then, with E**X , you can represent (Card(E))**(Card(X)) different
numbers, that can still be chosen at your convenience, several
conventions being used in practice.

But what happens with an ultrafilter ?
On a finite X , all the ultrafilters are principal (i.e. contain
exactly one singleton).
If you take the classes (E**X)/F , all the mappings that have the
same value at x[F)] (where {x[F)}€F ) are equivalent, so that we
have in fact as many numbers as we have digits : no new numbers.

Could we take an infinite X ?
Example :
with X=N , there are infinite numbers and no infinitesimals
with X=7 , there are infinite numbers and infinitesimals
But there are some drawbacks :
1/ This means some circularity : to construct N , we need N .
2/ Assume I want to decide if f<g :
-if the ultrafilter F is principal, with {x[F]}eF :
I just need to look if f(x[(F))<g(x(F])
-if the ultrafilter F is not principal, there are 3 cases :
with K={fxeX : f(x)<qg(x)}
1-if K is finite, it is a finite union of singletons,
which are not in F , so that K is not in F .
2-if X-K is finite, K is a finite intersection of
complements of singletons, which are in F, since the
singletons are not, so that K is in F .
3-neither K nor X-K is finite, and I must decide which
of them is in F . That means that before I can compare
any f,g I must have done an infinite (non-denumerable)
choice between the parts of X and their complement.
This is impossible in practice for anybody and any
computing machine.

3/ We must allow F to be a filter, and will then be allowed to
make only a denumerable choice (which can be defined by a
certain algorithm) to decide if a part is in F or its
complement is in F , knowina that both cannot be in F ,
but it is possible that neither is in F (it is even
almost always the case).

But the order is not total, because of the undecided pairs.

Remark
Assume X is finite and F is a filter which is NOT an ultrafilter.
We find the same type of discussion in 3 cases than .for an
ultrafilter on an infinite X .
If this could be more precisely formalized, it could perhaps be
used to simulate or imitate proofs involving the non-denumerable
chnice with a system that is finite, so that every calculation
and case-checking would be assured to terminate in finite time.
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3.Application to computers : use of a lexicographical order
E={0,1} is the set of logical values of the elementary bits
X is the set of indexes of the bits in a machine word
(usually card(X) will be a power of 2 , often 8,16,32,64)
We now take E**X , and F={X} , which is a (degenerate) filter,
but not an ultrafilter if X has more than one element.
Thus, we have the full richness of new numbers in A=(E**X)/F=E**X ,
and the order relation § can be transfered, but it is not total.

But this partial order can be enriched, so as to become total :
take a total order on X (finite), and on A the lexicographical
order induced by the order on the indexes : it is compatible

and richer than the order generated by the filter, and it is total.
This was possible because X was finite (in fact, we needed only
that X has a maximum to define a lexicographic order).

There are many ways to define the identification function
between the "new numbers"” and the "standard” ones, as can be seen
on the figures 1 to 4 .

Other possible applications :

-Integer Double- or Multi- Precision :
E is the set of single precision integers (standard numbers),
X has 2 elements for double precision, or "n" for multi-precision,
A=E**X is the set of double or multi-precision numbers,
with an identification function similar to Fig. 3.0 (if positive
unsigned integers) or to Fig. 3.2 with E={-2,-1,0,1% (if signed
integers)

~-Fixed-point real numbers
similar to Fig. 2.2

-Floating-point real numbers
similar to Fig. 2.2 but with an non-constant "density", the new numbers
being more numerous near 0 , and the big numbers being more and more
far from each other, in an approximately exponential manner.

4.Conclusion

There are many ways to use such non-standard analysis, I tried to
show that the often neglected finite models that can be built

are usable in a great variety of situations, in particular to get
adequate models of the calculations made in cnmputers.

Other approaches can be found in the biblioaraphy aiven.
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