Gabriela Ene, Institute of Matbematics, str. Academieil 14, 70109
Bucharest, Romanis

Peano_curves and continuous functions whose all
level sets are perfect

In the present paper we give an analytic representation of
the Peano curve (see fig., 1) and we prove that its graph fills a
square and its compounents are continuous functions whose all level
sets are perfect. These two components seem to be simpler than the
example given in [2](p.223). Note that in 1930, Nina Bary ([1],p.
640) mentioned the existence of functions whose all level sets are
perfect: "On obtient de telles fonctions en considérant l'une des
cowposantes d'une courbe péanienne convenablement construite".
In 19%9 Gillis [3] constructed a nonconstant continuous function
on [0,1] with the property that every level set is perfect, but
the author has not seen his paper (see [2],p.214).

Let f;,f51[0,1—>[0,1] be two contimous functions defined

as follows: for each t€ [0,1], t = §1 1:1/3»:l y b4€ {0,1,2}, t,=0,

©0

£,(8) = 8,/3 + ;;2 h(ty) b(ts) -eue B(bpy_3) (855/3%) (see fig.3);

where 8y = t]_; ay = ti if ti-l is even; a; = 3»-1:1 if ti-l is odd;

h(ti) = +1 if ti is even; h(ti) = =1 if ti is odd.

156



let F:[0,1]—>[0,1] X [0,1], F(t) = (£,(£),£5(%)). Prom fig,2 and
fig.3 we can see that F is in fact the Peano curve of fig.l.

Let A(t) = {1 : tyy ; 18 0dd} = {15,15,15,000d, 4ty 4 k=
1,2,..0 ’ io =1. If ie{1,2’.oo’il-l]U{ik+l,.oo,ik+1-l}’ k =
1,2,40s, then t,4_; is even, hence a,; = t,; and b(tZi-l) = +1l.

i i -1
k+ 1 k+l
£,(8) = Z(-DES eyt = T (DE (ST /3t 4
k =i+ k 1=1, 41
i =1
i kel i, =1
(3=t /3 Ly = Sk 3 gyt %(-1)“(1/3 kel 7y o
=%k
i -1 i -1
P+l i p+1l
St/ o+ 3 (2=t,4)/3% .
=2Lp i:lp
p=even p=o0dd

Let B(t) = {1 : t,y 15 odd }= {31,32.33,...}, Je<dg,1 v K=

1,2, 000, Jo = 0. Then by an analogous argumentation we bhave:

ap+]. jp+l

e = 2, tau1/3 ¢ 3 (=t /3t
=Jp* i=3 +1
p=even p=odd

Theorem. a) The function F is & surjection.
b) Let x,s¥, € [0,1] . Then {t : £,(¢) = x,} amd {t : £,(t) = 3.}

are perfect sets.

oo
Proof. a) Let (x,,y,)¢€ [0,1] X [0,1] with x = El xi/B1 and

o0
Yo = 121 y4/3 4 x4,34€10,1,2]. Iet {1}, be the increasing
157



sequence of all 1 such that x; = 1 and let {jk}k be the increasing

sequence of all i sucb that ¥4 1, Let to = :f;l ti/§1 such that:

for 1€L{jp+l,...,jp+l} we have t,, ; = x; if p is even and tyy_; =
2-xi if p is odd; and
for 1€l{ip,...,ip+1-1} we have t21 = ¥y if p is even and t,y =
2-w1 if p is odd.
Then A(to) = {11,12’..‘ } [ B(to) ={ jl’jz’ 0..} arld F(to) = (Xo,yo) .
& i
b) Let t €{t 1 £5(t) = 3.}, &, = {;l /3, t;€10,1,2}.

1) If A(t,) =11;,15,...} 18 infinite let

2i, =1 i -1 i -1
2n 2n+p+1 2n+p+1l 21
u, = 3 st . S t1/3° 4 3 (2=%4)/57
i=1 i=2n4p i=2n+p
p=even i=zo0dd

Then A(u,) = {il,...,iZn}, up— t, and f£,(uy) = y,.

2) If A(t,) = {11,...,;9} let

24 _+2n
21i_+2n+1 oo
u, = 2 /38 + 13 P N tyy /30 .
i=1 1=ip+n+1

Then A(un) = '{11,12, ...,ip,1T+n+1}, un—'—> to and fz(un) = yoo
By 1) and 2), {t : £5(¢) = y,} is perfect. For f; the proof is

analogous.

We are indebted tb Professor Solomon Marcus for his help in
preparing this article.
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