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 For n = 2, localization by rectangular sums holds for / G HBV. For any ABV (f.

 HBV , there is an / G. ABV for which localization by square sums does not hold, [2].

 For n > 2, localization by rectangular sums holds for all / G > n - 1, but

 fails for some / G W*-1, [4]. By square sums, it holds for all / G W^-1 but, for every

 p < n - 1, it fails for some / G Wf, [lļ.

 For (C, 1) localization the difference between localization by square sums and by

 rectangular sums is great in contrast with the above facts. For n > 2, (C, 1) localization

 by square sums holds for every f (E Lp,p > n - 1, but for any p < n - 1, there is an / G Lp

 for which (C, 1) localization by square sums fails, [3]. However, there is no p such that

 (C, 1) localization by rectangular sums holds for all / G Lp, [5].

 In this note, the matter is further elucidated using a slight modification of the tech-

 nique in [3]. We consider (C, l) localization for particular sequences of n tuples of positive

 integers. For square sums the sequence is ...,i)}. For each real r > 1, we consider

 the sequence { ( j , • • J'*, J r> ) } , where jr' is the integer part, [j r] , of jr.

 Let Tn = [- 7r,7r)n be the n torus, let e > 0, and ge(x) = 1, for |x| > e , and ge(x) = 0,

 for |x| < e. For each n tuple of positive integers, let K}'

 Fejer kernel. Then

 K}'

 where y = (yi,...,yn).

 In order to show that for some / G Lp, ( C , 1) localization with respect to a sequence

 {(ai(i), ...,an(j))} of n tuples of positive integers does not hold it suffices to show that

 Ij= Í '9e{y)KaiU)t..,tanU){y)'qdy
 J Tn
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 is unbounded as j -* oo, where q is the conjugate to p.

 For r > 1, let a,(j) = j,j = l,...,n - 1, and let an(ji) = jr> . Then an(j) is an integer.

 By substituting for ge and Kai (y)

 > y1y-ł(»-l)-9«-J+(2g-l)(n-2)+(29-l) ri i

 The sequence {Jy} is unbounded if the limit of the sequence of powers of j is positive.

 This limit is
 - q(n - 1) - qr + (2 q - l)(n - 2) + (2 q - l)r

 = qn + qr - 3q - n + 2 - r

 So we wish to know for which p we have

 qn + qr - 3p - n + 2 - r > 0,

 or

 q{n + r - 3) > n - 2 + r

 or

 n - 2 + r
 q >

 n + r-3

 But q = -
 p- 1

 p n-2+r
 so

 p - 1 n + r - 3

 - p > -n + 2 - r,

 p < n + r - 2,

 Accordingly, there is no ( C , 1) localization of the specified type for some / 6 -Łp, for

 every p < n + r - 2.

 We now suppose ry satisfies jr> = [jr] + 1.
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 The question regarding the value of p for which ( C , 1) localization for the sequence

 (j, of n tuples holds for all f E Lp reduces as in (3) to those p for which

 suPky
 3,*

 Now, by Holder's inequality,

 Wj

 where

 Ji = J [ (x - y) I qdv- J Tn

 So

 Jj < yiy-9(n-9)-9rj+(2q-l)(n-2) + (2g-l)ryi

 The limit of the power of j is nonpositive if

 p > n + r - 2.

 Accordingly, there is (C, 1) localization of the specified type for every f E Lp for

 p > n + r - 2.

 It also follows that ( C , l) localization fails with respect to the sequence {(j,j, jJ)}

 for some / G Lp, for every p.

 We combined the above in the theorem.

 THEOREM. (C, 1) localization holds for every f E Lp, for all p > n - 1 for sequences

 of n tuples satisfying a parameter of regularlity.

 For any r > 1, (C, 1) localization holds with respect to the sequence {( j , for

 every f E Lp for every p > n + r - 2 and fails for some f E Lp for every p < n + r - 2.

 For any p,(C, 1) localization fails for some f E Lp, with respect to the sequence

 ofn tuples.
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