A Remark on Localization and (C, 1) Localization

CASPER GOFFMAN

Purdue University

For n = 2, localization by rectangular sums holds for $f \in HBV$. For any $\wedge BV \not\subset HBV$, there is an $f \in \wedge BV$ for which localization by square sums does not hold, [2].

For n > 2, localization by rectangular sums holds for all $f \in W_1^p, p > n - 1$, but fails for some $f \in W_1^{n-1}$, [4]. By square sums, it holds for all $f \in W_1^{n-1}$ but, for every p < n - 1, it fails for some $f \in W_1^p$, [1].

For (C,1) localization the difference between localization by square sums and by rectangular sums is great in contrast with the above facts. For $n \ge 2$, (C,1) localization by square sums holds for every $f \in L^p$, $p \ge n-1$, but for any p < n-1, there is an $f \in L^p$ for which (C,1) localization by square sums fails, [3]. However, there is no p such that (C,1) localization by rectangular sums holds for all $f \in L^p$, [5].

In this note, the matter is further elucidated using a slight modification of the technique in [3]. We consider (C, 1) localization for particular sequences of n tuples of positive integers. For square sums the sequence is $\{(j, j, ..., j)\}$. For each real $r \ge 1$, we consider the sequence $\{(j, ..., j, j^{r_j})\}$, where j^{r_j} is the integer part, $[j^r]$, of j^r .

Let $T^n = [-\pi, \pi)^n$ be the *n* torus, let $\varepsilon > 0$, and $g_{\varepsilon}(x) = 1$, for $|x| > \varepsilon$, and $g_{\varepsilon}(x) = 0$, for $|x| < \varepsilon$. For each *n* tuple $(j_1, ..., j_n)$ of positive integers, let $K_{j_1,...,j_n}$ be the associated Fejer kernel. Then

$$K_{j_1,...,j_n}(y) = K_{j_1}(y_1), K_{j_2}(y_2), ..., K_{j_n}(y_n)$$

where $y = (y_1, ..., y_n)$.

In order to show that for some $f \in L^p$, (C, 1) localization with respect to a sequence $\{(a_1(j), ..., a_n(j))\}$ of n tuples of positive integers does not hold it suffices to show that

$$I_j = \int_{T^n} |g_{\varepsilon}(y) K_{a_1(j),\dots,a_n(j)}(y)|^q dy$$

is unbounded as $j \to \infty$, where q is the conjugate to p.

For $r \ge 1$, let $a_i(j) = j, j = 1, ..., n - 1$, and let $a_n(j) = j^{r_j}$. Then $a_n(j)$ is an integer. By substituting for g_{ε} and $K_{a_1(j),...,a_n(j)}$ their values, we have

$$I_{j} \geq A j^{-q(n-1)-qr_{j}} \int_{\varepsilon}^{\pi} \left(\frac{\sin(j+1)\frac{y_{1}}{2}}{\sin\frac{y_{1}}{2}} \right)^{2q} dy_{1} \int_{0}^{\pi} \left(\frac{\sin(j+1)\frac{y_{1}}{2}}{\sim \frac{y_{1}}{2}} \right)^{2q} dy_{2} \dots$$
$$\dots \int_{0}^{\pi} \left(\frac{\sin(j+1)\frac{y_{n-1}}{2}}{\sin\frac{y_{n-1}}{2}} \right)^{2q} dy_{n-1} \int_{0}^{\pi} \left(\frac{\sin(j^{r_{j}}+1)\frac{y_{n}}{2}}{\sin\frac{y_{n}}{2}} \right)^{2q} dy_{n}$$
$$\geq A j^{-q(n-1)-qr_{j}+(2q-1)(n-2)+(2q-1)\cdot r_{j}}.$$

The sequence $\{I_j\}$ is unbounded if the limit of the sequence of powers of j is positive. This limit is -a(n-1) - ar + (2a-1)(n-2) + (2a-1)r

$$-q(n-1) - qr + (2q-1)(n-2) + (2q-1)r$$
$$= qn + qr - 3q - n + 2 - r$$

So we wish to know for which p we have

$$qn+qr-3p-n+2-r>0,$$

or

$$q(n+r-3) > n-2+r$$

or

$$q > \frac{n-2+r}{n+r-3}.$$

But $q = \frac{p}{p-1},$
so $\frac{p}{p-1} > \frac{n-2+r}{n+r-3}$
 $-p > -n+2-r,$
 $p < n+r-2,$

Accordingly, there is no (C,1) localization of the specified type for some $f \in L^p$, for every p < n + r - 2.

We now suppose r_j satisfies $j^{r_j} = [j^r] + 1$.

The question regarding the value of p for which (C, 1) localization for the sequence $(j, ..., j, j^{r_j})$ of n tuples holds for all $f \in L^p$ reduces as in (3) to those p for which

$$\sup_{j,x} |\sigma_{j,\ldots,j,j} r_j(x,g_{\varepsilon}f)| \leq A \|f\|_p.$$

Now, by Hölder's inequality,

$$|\sigma_{j,\ldots,j,j^{r_j}}(x,g\varepsilon f)| \leq ||f||_p J_j^{\frac{1}{q}}$$

where

$$J_j = \int_{T^n} |g_{\varepsilon}(y) K_{j,\ldots,j,j^{r_j}}(x-y)|^q dy.$$

So

$$J_j \le A j^{-q(n-q)-qr_j+(2q-1)(n-2)+(2q-1)r_j}$$

The limit of the power of j is nonpositive if

 $p \ge n + r - 2$.

Accordingly, there is (C,1) localization of the specified type for every $f \in L^p$ for $p \ge n + r - 2$.

It also follows that (C, 1) localization fails with respect to the sequence $\{(j, j, ..., j, j^j)\}$ for some $f \in L^p$, for every p.

We combined the above in the theorem.

THEOREM. (C,1) localization holds for every $f \in L^p$, for all $p \ge n-1$ for sequences of n tuples satisfying a parameter of regularlity.

For any r > 1, (C, 1) localization holds with respect to the sequence $\{(j, ..., j, j^{r_j})\}$ for every $f \in L^p$ for every $p \ge n + r - 2$ and fails for some $f \in L^p$ for every p < n + r - 2.

For any p, (C, 1) localization fails for some $f \in L^p$, with respect to the sequence $\{(j, ..., j, j^j)\}$ of n tuples.

REFERENCES

- [1] C. GOFFMAN AND F.C. LIU, On the localization property of square partial sums of multiple Fourier series, Studia Math 44 (1972), 61-69.
- [2] C. GOFFMAN AND D. WATERMAN, The localization principle for double Fourier series, Studia Math 49 (1980), 41-57.
- [3] S. IGARI, On the localization property of multiple Fourier series, J. Approximation Theory 1 (1968), 182-188.
- [4] F.C. LIU, On the localization of rectangular partial sums for multiple Fourier series, Proc. Amer. Math. Soc. 34 (1972), 90-96.
- [5] A. ZYGMUND, "Trigonometric Series," Chap. 17., Cambridge University Press, Cambridge, 1959.

West Lafayette, Indiana