R.M. Shortt, Department of Mathematics, Wesleyan University, Middletown, Connecticut 06457, U.S.A.

SETS WITH THE COUNTABLE CHAIN CONDITION

§0. Definitions

Let X be a subset of the real line R . Let $B(X)$ be the Borel o-algebra of X, i.e.

 $B(X) = {B \cap X : B \text{ Borel subset of } R}.$

Two subsets X_1 and X_2 of R are Borel-isomorphic if there is a one-one correspondence $f : X_1 \rightarrow X_2$ such that $B \in B(X_1)$ if and only if $f(B) \in B(X_2)$. Given an uncountable $X \subseteq R$, define

 $t(X) = \{Y \subseteq R : X \text{ and } Y \text{ Borel-isomorphic}\},$

the isomorphism type of X. If X is countable, write $t(X) = 0$. Put

 $S = {t(X) : X \subseteq R}.$

 The set S has both an algebraic and an order structure. Define a relation \leq on S by declaring $t(X_1) \leq t(X_2)$ if either

1) X_1 is countable

or

2) there is a Borel-isomorphism of
$$
X_1
$$
 onto a Borel subset of X_2 .

0.1 Fact: The relation \le partially orders the set S. Given t₁ and t₂ in S, let $X_1 \subseteq (0,1)$ and $X_2 \subseteq (1,2)$ be such that

 t_1 = $t(X_1)$ and t_2 = $t(X_2)$. Then put $t_1 + t_2$ = $t(X_1 \cup X_2)$. A similar method defines $t_1 + t_2 + \cdots$ for any sequence t_n in S. Write

nt = t +
$$
\cdots
$$
 + t (n times)
wt = t + t + \cdots .

 Thus, the elements to S have properties analogous to those of cardinal numbers. Indeed, (S,+,0) as defined above is a cardinal algebra in the sense of Alfred Tarski [6]. In fact, some of the following results can be derived using his theory. Let us simply note

0.2 Fact: Under the operation $+$ and order \leq , the set S becomes a commutative, ordered semi-group with identity element 0.

0.3 Fact: The set S has cardinality 2^C . A subset R of S is bounded above if and only if $card(R) \leq c$.

0.4 Fact: The partially ordered set S is not a lattice. It contains two elements with no infimum.

Say that a set $X \subseteq R$ is measurably rigid if whenever $f : X \rightarrow X$ is a Borel-isomorphism of X onto itself, then $\{x : f(x) \neq x\}$ is countable. The existence of uncountable measurably rigid sets was demonstrated in [1] (see also [5]). Call t ϵ S rigid if $t \neq 0$ and $t = t(X)$ for some measurably rigid $X \subseteq R$.

§1. Spaces with c.c.c.; complete subsets of S

51

A set $X \subseteq R$ will satisfy the (measurable) countable chain condition (c.c.c.) if every collection of pair-wise disjoint uncountable sets in 8(X) is countable. The existence of uncountable c.c.c. sets can be demonstrated using the Continuum Hypothesis (CH). The well-known Lusin and Sierpinski sets are of this type: see [2] and [4]. Define

 $K = {t \in S : t = t(X), X c.c.c.}.$

Then K is an ideal in S closed under countable sums.

 1.1 Proposition: The partially ordered set K is a conditionally complete lattice. In fact

 $t \wedge \sup\{t_\alpha : \alpha \in A\}$ = $\sup\{t \wedge t_\alpha : \alpha \in A\}$

for each t ϵ S and each collection $\{t_\alpha : \alpha \epsilon A\}$ bounded above by an element of K. Also,

t v inf $\{t_\alpha : \alpha \in A\}$ = inf $\{\text{tvt}_\alpha : \alpha \in A\}$

whenever t and t_{α} are elements of K.

1.2 Proposition: Let t and t_{α} be elements of K for $\alpha \in A$. Then

 $t + inf{t_{\alpha} : \alpha \in A} = inf{t+t_{\alpha} : \alpha \in A}.$

If the family $\{t_\alpha : \alpha \in A\}$ is bounded above, we have

 $t + \sup\{t_\alpha : \alpha \in A\} - \sup\{t + t_\alpha : \alpha \in A\}.$

1.3 Proposition: Let t_1 and t_2 be elements of K. Then

 $t_1 + t_2 = (t_1 \vee t_2) + (t_1 \wedge t_2).$

1.4 Example: Let $X \subseteq R$ be an uncountable, measurably rigid set. Partition X into uncountable Borel sets $X = X_1 \cup X_2 \cup X_3$. Put t_1 = $t(X_1)$. Then (t_1+t_2) v (t_2+t_3) = $t_1 + t_2 + t_3 \neq (t_1+t_2) + (t_2+t_3)$. Thus, the operations of v and $+$ are distinct.

1.5 Example: Let t ϵ S be rigid. Then nt \neq mt for $n \neq m$ $(including n = \omega).$

 1.6 Example: Let A be an infinite Borei subset of R. Then $nt(A) = t(A)$ for all n (including $n = \omega$).

1.7 Proposition: Suppose that $s \leq t$ are elements of K. Then there is a largest element c in K such that $t - s + c$. For this c, if $0 \le x \le c$, then $s \le s + x$.

Given $s \leq t$ in K, we define $c(t,s)$ to be the element c of proposition 1.7.

1.8 Proposition: Let t_1 , t_2 ... be a sequence in S. Then

 $t_1 + t_2 + \cdots = \sup\{t_1 + \cdots + t_n : n \ge 1\}.$

§2. Covers of 0

Say that t ϵ S is a cover of 0 if t > 0 and t \ge s implies $s = t$ or $s = 0$. For $X \subseteq R$, we see that $t = t(X)$ is a cover of 0 if and only if X is Borel-isomorphic with each of its uncountable Borel subsets. If A_1 and A_2 are uncountable Borel subsets of R, then

 $t(A_1) - t(A_2)$ (see [3]); it follows that $t(R) - t(A_1)$ is a cover of 0. We show, under assumption of CH, that many such covers exist.

2.1 Proposition $(CH):$ Let $a > 0$ be an element of S. There is some $x \in K$ such that

- 1) $x \wedge a = 0$
- 2) X is a cover 0.

2.2 Corollary $(CH):$ There are at least $c⁺$ covers of 0 in K, where $c⁺$ is the cardinal successor of the continuum.

The corollary follows from the proposition via Fact 0.3 and an inductive argument. These covers of 0 can actually be chosen as isomorphism types of Sierpinski sets. Are there 2^C of them?

§3. Join-irreducible types

An element s in the lattice K is join-irreducible if $s = s_1 \vee s_2$ implies $s = s_1$ or $s = s_2$. Clearly, 0 and every cover of 0 in K is join-irreducible. Define $sec(t) = {s : s \le t}.$

 3.1 Proposition: An element t of K is Join-irreducible if and only if sec(t) is linearly ordered.

3.2 Proposition (CH): There is a Sierpinski set $X \subseteq [0,1]$ of outer Lebesgue measure $\lambda^*(X) = 1$ such that sets A,B in $B(X)$ are Borel-isomorphic if and only if $\lambda^*(A) = \lambda^*(B)$.

Putting $t_0 = t(X)$, we see that $t_0 \in K$ is join-irreducible (proposition 3.1); in fact, we have

3.3 Corollary (CH): With t_0 as above, the lattice sec(t_0) is order-isomorphic to the linearly ordered set $[0,1]$.

Remarkably, there is a sort of converse to this proposition as follows:

 3.4 Proposition: Let t be an element of K. Then t is join-irreducible if and only if exactly one of the following obtains:

Case 1: $t = 0$.

Case 2: t is a cover of 0.

Case 3: $t > 0$ is not a cover of 0; indeed, $t \neq \omega t$. Then there is a Sierpinski set $X \subseteq [0,1]$ with $t = t(X)$ and $\lambda^*(X) = 1$ such that sets A and B in $B(X)$ are Borel-isomorphic if and only if $\lambda^*(A) = \lambda^*(B)$.

Case 4: $t > 0$ is not a cover of 0, yet $t = \omega t$. Then there is a Sierpinski set $X \subseteq R$ with $t = t(X)$ and $\lambda * (R\lambda X) = 0$ such that sets A and B in $B(X)$ are Borel-isomorphic if and only if $\lambda^*(A) = \lambda^*(B)$.

§4. References

- [1] Bhaskara Rao, K.P.S. and Rao, B.V., Borel spaces, Dissertationes Mathematlcae CXC 1981.
- [2] Brown, J.B. and Cox, G.V., Classical theory of totally imperfect spaces, Real Analysis Exchange 7 (1981-2) 185-232.
- [3] Kuratowski, K., Topology, Volume I, Academic Press-PWN, New York- Warszawa 1966.
- [4] Miller, A.W., Special subsets of the real line, Handbook of Set-Theoretic Topology, Elsevier, Amsterdam (1984) 201-234.
- [5] Shortt, R.M. and van Mill, J., Automorphism groups for measurable spaces, Topology and Its Appl. (to appear).
- [6] Tarski, A., Cardinal Algebras, Oxford Univ. Press, New York 1949.