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 SETS WITH THE

 COUNTABLE CHAIN
 CONDITION

 §0. Definitions

 Let X be a subset of the real line R. Let 8(X) be the Borei

 o-algebra of X, i.e.

 8(X) - {BOX : B Borei subset of R}.

 Two subsets Xj and X2 of R are Borei- 1 somorphi c if there is a one-one

 correspondence f : Xļ -»• X2 such that B e B(X1) if and only if

 f(B) e B(X2). Given an uncountable X c R, define

 t(X) - {ï c R : X and Y Borei- isomorphic} ,

 the isomorphism type of X. If X is countable, write t(X) - 0. Put

 S - {t(X) s X c R}.

 The set S has both an algebraic and an order structure. Define a relation

 á on S by declaring t(Xx) á t(X2) if either

 1 ) X, is countable

 or

 2) there is a Borei- isomorphism of Xļ onto a Borei subset of X2.

 0.1 Fact: The relation á partially orders the set S.

 Given tj and t2 in S, let Xx c (0,1) and X2 c (1,2) be such that
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 t1 - t(Xi) and t2 - t(X2). Then put tl + t2 - tCX^X,). A similar

 method defines tj + t2 + ••• for any sequence tn in S. Write

 nt - t + • • • + t (n times)

 wt ■ t + t + • • • .

 Thus, the elements to S have properties analogous to those of cardinal

 numbers. Indeed, (S,+,0) as defined above is a cardinal algebra in the

 sense of Alfred Tarski [6]. In fact, some of the following results can be

 derived using his theory. Let us simply note

 0.2 Fact: Under the operation + and order á, the set S becomes

 a commutative, ordered seml'-group with identity element 0.

 0.3 Fact;. The set S has cardinality 2e. A subset R of S is

 bounded above if and only if card(R) á c.

 0.M Fact: The partially ordered set S is not a lattice. It

 contains two elements with no infimum.

 Say that a set X Ç R is measurably rigid if whenever f : X •+• X is a

 Borei- isomorphism of X onto itself, then {x : f(x) ¿ x} is countable.

 The existence of uncountable measurably rigid sets was demonstrated in [1]

 (see also [5]). Call t e S rigid if t ¿ 0 and t - t(X) for some

 measurably rigid X £ R.

 §1. Spaces with c.c.c.; complete subsets of S
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 A set X c R will satisfy the (measurable) countable chain condition

 (c.c.c.) if every collection of pair-wise disjoint uncountable sets in

 8(X) is countable. The existence of uncountable c.c.c. sets can be

 demonstrated using the Continuum Hypothesis (CH). The well-known Lusin and

 Sierpiński sets are of this type: see [2] and [4]. Define

 K - {teS : t - t(X), X c.c.c.}.

 Then K is an ideal in S closed under countable sums.

 1.1 Proposition: The partially ordered set K is a conditionally

 complete lattice. In fact

 t a sup{ta : aeA} - sup{tAta : aeA}

 for each t e S and each collection {t0 : aeA} bounded above by an

 element of K. Also,

 t v inf{ta : aeA} - inf{tvta : aeA}

 whenever t and ta are elements of K.

 1.2 Proposition: Let t and ta be elements of K for aeA.

 Then

 t + inf {t0 : aeA} • inf{t+ta : aeA}.

 If the family {ta : aeA} is bounded above, we have

 t + sup{ta ; aeA} - sup{t+ta : aeA}.

 1.3 Proposition: Let tļ and t2 be elements of K. Then
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 tl ♦ tj - (tļVtj) + (tļAtj).

 1.4 Example: Let X c R be an uncountable, measurably rigid set.

 Partition X Into uncountable Borei sets X • X, U X, U X,. Put

 tļ - t(Xļ). Then (tx+t2) v (t2+t,) - tx + t2 + ts ^ (tļ+t2) + (t2+t,).

 Thus, the operations of v and + are distinct.

 1.5 Example: Let t e S be rigid. Then nt 4 mt for n ¿ m

 (including n - w).

 1.6 Example: Let A be an infinite Borei subset of R. Then

 nt(A) - t(A) for all n (including n - w).

 1.7 Proposition: Suppose that sát are elements of K. Then there

 is a largest element c in K such that t - s + c. For this c, If

 0 < X Ú c, then s < s + x.

 Given sát in K, we define c(t,s) to be the element c of

 proposition 1.7.

 1.8 Proposition: Let t, t2 ... be a sequence in S. Then

 tj + t2 + ••• ■ suplt^* • • +tn : nž1}.

 §2. Covers of 0

 Say that t e S is a cover of 0 if t > 0 and t ¿ s implies

 s ■ t or s - 0. For X c R, we see that t - t(X) is a cover of 0 if

 and only if X is Borei- isomorphic with each of its uncountable Borei

 subsets. If Aļ and A2 are uncountable Borei subsets of R, then

 53



 fc(Ax ) - t(Aa) (see [3]); it follows that t(R) - t(Aj) is a cover of 0.

 We show, under assumption of CH, that many such covers exist.

 2.1 Proposition (CH): Let a > 0 be an element of S. There is

 some X e K such that

 1 ) X A a - 0

 2) X is a cover 0.

 2.2 Corollary (CH): There are at least c+ covers of 0 in K,

 where c+ is the cardinal successor of the continuum.

 The corollary follows from the proposition via Fact 0.3 and an

 inductive argument. These covers of 0 can actually be chosen as

 isomorphism types of Sierpiński sets. Are there 2C of them?

 §3. Joln-lrreduclble types

 An element s in the lattice K is jol ^irreducible if s - sx v s2

 implies s • sx or s • s2. Clearly, 0 and every cover of 0 in K is

 joln^irreducible. Define sec(t) • {s : sát}.

 3.1 Proposition: An element t of K is Join-irreducible if and

 only if sec(t) is linearly ordered.

 3.2 Proposition (CH): There is a Sierpiński set X £ [0,1] of outer

 Lebesgue measure X*(X) - 1 such that sets A,B in 8(X) are

 Borei- isomorphic if and only if A*(A) - X*(B).

 Putting t0 - t(X), we see that t0 e K is join- irreduci ble

 (proposition 3.1); in fact, we have
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 3.3 Corollary (CH): With t0 as above, the lattice sec(t0) is

 orders isomorphic to the linearly ordered set [0,1].

 Remarkably, there is a sort of converse to this proposition as follows:

 3.4 Proposition: Let t be an element of K. Then t is

 J oin* irr educi ble if and only if exactly one of the following obtains:

 Case 1 : t - 0.

 Case 2: t is a cover of 0.

 Case 3: t > 0 is not a cover of 0; indeed, t 4 wt. Then there is

 a Sierpiński set X c [0,1] with t • t(X) and X*(X) - 1 such that sets

 A and B in 8(X) are Borei- isomorphic if and only if X*(A) - A*(B).

 Case 4: t > 0 is not a cover of 0, yet t - ut. Then there is a

 Sierpiński set X c R with t - t(X) and X*(R'X) - 0 such that sets A

 and B in B(X) are Borel-isomorphlc if and only if '*(k) - X*(B).
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