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 HEARTS DENSITY THEOREMS

 The Lebesgue density theorem is clearly one of the most
 important results of real analysis. On the other hand, from the

 general point of view it just claims that one out of the many
 differentiation systems on the real line has the density pro-
 perty. However, since the Lebesgue density theorem (LDT) plays
 the key role in so many questions of real analysis, one might

 expect that it is canonical in some sense, e.g. that it is the

 only density theorem connected in a reasonable way with the

 algebraic structure of the reals. In the language of abstract

 density topologies this question was asked by L. Zajíček at

 Scuola di Analisi Reale, Ravello 1985 and in M.
 Here we intend, after giving a precise formulation of the

 problem, to point out several other density theorems connected

 with the algebraic structure of the reals. This shows, surpri-

 singly enough, that the LDT is not canonical in the sense of
 translation invariance nor in the sense of affine invariance*

 Let us recall that in a general differentiation system (DS)
 (for the Cebesgue measure (denoted by (*| ) on the real line R)
 to each x € R there correspond Moore-Smith sequences (families
 filtering to the right) of sefs of finite and positive measure*
 (Cf. ChpJ. ) A point x CR is said to be a density point of a
 measurable set E c h (for the given DS) if

 lim[EAEtł /|Etl »1
 for every Moore-Smith sequence corresponding to x.

 In an obvious way one defines the notion of the density

 property (DP): A DS has the DP if almost every point of every
 measurable set is its density point.

 For example, in the Lebesgue differentiation system (LDS)
 to each x Ä R there corresponds the Moore-Smith sequence of
 intervals (x-h, x+h) (with h^O). In this language the LDT says
 that the LDS has the DP.

 For any DS 0 one of the following situations may happen:
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 (a) Whenever x is a density point of E for the LDS, it is

 also a density point of E for 0 . In this case the DP for Q
 (obviously) f 0II0W8 from the LDI.
 (b) There is some measurable set E such that some x e R is

 a Lebesgue density point but not & density point of E« If,
 nevertheless, 0 has the DP, we shall say that the DP for &
 does not follow from the LDI.

 To illustrate this, let us consider the following examples,

 (a) The DP for the DS assigning to each x £ R the sequence
 (x, x+l/n) follows from the LDT.

 (bl) The DP for the DS assigning to each x € R, x / 0 the
 sequence (x, x+l/n) and to x = 0 the sequence (l,n) does not
 follow from the LDT.

 The example (bl) might seem to be cheating. However, the
 reader may construct wore sofisticated examples using the

 following argument:
 o

 (b2) Whenever g:R R is a Borei isomorphism, the DS defined
 as the inverse image of, say, the interval basis has the DP

 provided that, of course, g carries the one -dimensional Lebesgue

 measure to the two-dimensional Lebesgue measure.
 We will not consider (b2) in detail since more concrete

 examples will be given later.

 Motivated by (bl) and (b2), one might believe that, if a
 DS has the DP then this property follows from the LDT provided

 that the DS is defined for each x C R "in the same way". To
 make this notion more precise, we shall that the DS is

 translationally invariant (TI) if for any Uoore-Smith sequence

 S^ corresponding to x and for any translation t the sequence
 t(S^) corresponds to t(x). Thus our question is whether for
 TIDS the DP necessarily follows from the LDT. Noting that a

 TIDS is given by one family of Moore-Smith sequences (in the

 following special cases just by one sequence), namely by
 those sequences corresponding to zero, we may formulate the

 negative answer in the following way.

 (b3) The TIDS given by the sequence (k/(k+l)l, 1/kl) (k = 1,
 2,...) has the DP which does not follow from the LDT.

 Clearly, the DP for this system cannot follow from the

 LDT since zero is a Lebesgue density point of the set
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 R - (k/(k+I)*» l/kl) • Surprisingly enough, to show
 the DP is also quite easy:

 Theorem 1 (Second Hearts Density Theorem, cf. Cpl)« I* I^.
 is a sequence of intervals converging to zero such that

 liusup dia«(Ik>è.1u {o})/l Ik I < oc

 then the T1DS given by Ik has the DP.
 Proof. Let Sk = Ik u {0> and s£ = {x€R; sk ^ Up»k <*+sp ) ¿ ti-
 lt Ik has end points ak •<- bk then

 Sk C ^C«k-C(l>k-ak),bk+C(bk-ak)3,
 where C = sup«[diaa(Sk<|.^)/lSkl ; k+1, 2, ...}-. Hence

 |s£| s? (C+4)(bk-ak) = (C+4)|Skl.

 It f 0II0W8 that the TIDS given by Sk has the halo property*
 Consequently it has the DP (cf . £"HP3p Theorem 2*2).

 The next natural step is to consider affine invariant (Al)

 differentiation systems. They are defined in the same way as
 the TIDS; only "translations" are replaced by "affine bije-
 ction8". Again, an AIDS is given by a single family of Moore
 -Smith sequences.

 Our next result shows that for AIDS the situation is

 more complicated thaá for TIDS.

 Theorem 2. If Ik is a sequence of intervals such that the
 AIDS given by it has the DP then

 (i) the sequence Ik converges to zero, and

 (ii) liminf | Ikl /diam(Iku{b} ) >• 0.
 Hence the DP for this DS follows from the LDT.

 Proof. Let 0 be the AIDS given by a sequence Ik of intervals.
 If limsup diam(Ik u {0} ) >*0, one easily sees that sets

 of sufficiently small diameter contain no ® density points.
 Suppose that lim diam(Ik = 0 and

 liminf j Iki /diam(Iku {0}) = 0.
 Then it is easy to find a subsequence k. such that

 J

 I. * and 1 1. |/diam(I. 'j {Ó}) -ļ> 0
 *j J J j
 so quickly that the set E = R - Ui *k«re

 oO
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 has positive Le be ague measure.
 For each z € R let

 G*.J = frcH: «»♦rIkj'cFjV
 Ve claim that wheneyer x€R, j=l,2,,.., r£K, and |rj se j
 then G,, . r' (r-l/j, r+l/j) / 0, Indeed, if bü H is such

 Xt J

 that n 3 j (x+ssj )/l a^ļ €. Z, and
 I j (x+sa . )/l a .J - j (x4ra . )/la .1 ļ 1,

 J J J J

 then |s-r|<l/j and, since the interval x+sl^ contains
 n j a jl / j and has length a? I slil. 1 ^ 2 j 1 1 J , s £ G . .

 Łj *j
 Hence our claim is proved. Using it, we can see that

 for each p = 1,2, ... the set tJj-p Gx j is a dense °Pen

 subset of R. Consequently Gx * ^j=p Gx j is a dense
 subset of R« Finally, we note that for every x £ R and

 every r £ G^ -{O} there are infinitely many values of k

 for which (x+slj^'tE = 0» which shows that S does not
 have the DP.

 The above result, (bl), and (b2) seem to suggest that
 for AIDS the DP necessarily follows from the LDT. Again,

 in the language of abstract density topologies this con-

 jecture was formulated by L. Zajíček £zj. However, our
 last results disprove even this conjecture:

 Theorem 3. There is a sequence of measurable subsets

 of R converging to zero such that

 (i) zerò is a Lebesgue density point of R - ÜS^, and
 (ii) the AIDS given by has the DP.

 It might be worthwhile to reformulate (ii) in a more

 normal language:

 (ii') Every measurable set E contains a subset N of measu-
 re zero such that for every x € E-N and every r / 0

 lim j(x+rSk) a El/lrSkl =1.
 Our final result has the flavour of the "sphere

 theorems" of Stein and Waigner CswJ (for Rn, n^3) and
 Bourgain [bJ (for R^). Using a double sequence, it can be
 also formulated in the language of DS.

 31



 Theorem 4» There is a continuous probability measure >t>
 on R such that

 (i) |spt(/t)l s 0, and
 (ii) for every Lebesgue measurable set £ almost every point
 x££ (with respect to the Lebesgue measure) fulfils

 lilBr*0 s
 The proof of Theorems 3 and 4 will appear elsewhere.

 Here we just remark that it uses probabilistic methods and

 hence it does not give any concrete examples* For example,

 the following question is open: Does th»>>robability mea-

 sure associated with the Cantor set in the natural way

 have the property described in Theorem 4?
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