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POINTS OF APPROXIMATE CONTINUITY,
APPROXIMATE SYMMETRY, AND L—POINTS

All functions considered here will be measurable real valued functions defined on the
interval {0,1]. For such a function { let
AC(f) = {x : { is approximately continuous at x},
AS(f) = {x: { is approximately symmetric at x}

={x: aﬁ—lil(lll f(x+h) + f(x-h) — 2f(x) = 0},
and

L(f) = {x: lim I}Jh f(x+t)dt = {(x)}.
h- 0770

Furthermore, let

£A¢= {f: AC(f) = [0,1]},

A= {{: AS(f) = [0,1]},
and

&= {f: L({) = [0,1]}.

Then b.€¢ will denote those bounded functions in €% and similarly for b.fef and b.¥
By equipping these sets with the sup norm, each becomes a Banach space.

The results announced here are a continuation of the work begun in [2].
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Theorem 1. For a measurable f:[0,1] - R, the set A AC(f) is of first category.

It should be noted that in the event that f € .#of we have the stronger result that
AS(f) \ C(f) = [0,1] \ C(f) is a first category set, where C(f) denote the set of points of

ordinary continuity for f. This follows from the fact that functions in £ must belong to
the first Baire class [3]. In general, however, AS(f) \ C(f) need not be of first category, as

is exhibited by the characteristic function of the rationals.

In [2] the set AS(f) \ L(f) was shown to be first category, but not necessarily

o—porous. However, the proof given for Theorem 2 in [2] shows that the following is true.

Theorem 2. If {:[0,1] -+ R is bounded, then AS(f) \ L(f) is o—porous.

On the other hand we have

Theorem 3. The typical fupction { in b has the property that the set

L(f) is uncountably dense in every interval.

In [1] it was shown that the typical function f in b.Z has the property that the set
[0,1] \ AC(f) is everywhere dense; that is, the typical bounded derivative has a dense set of

approximate discontinuities. We observe the following strengthening of this fact:
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Theorem 4. The typical function f in b.¥ has the property that the set

AC(f) is non—g—porous in every interval.
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