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 SOME REMARKS ON CATEGORY PROJECTIONS OF PLANAR SETS

 The authors of* £lļ provide that the measure projection

 2
 of the subset A* B of R is non-empty and open whenever A

 and B are measurable sets with positive finite Lebesgue

 measure /the assumption that A and B have finite measure

 may be omi ted/«

 In Proposition 1 the same conclusion is proved for second

 category A having the property of Baire and second

 category B. This fact is an improvement of Theorem 2.6

 of Íl3 /see also [2], Th. 2/.

 In [5ļ Sierpiński constructed a second .category set
 2

 SCR which meet every line at most in 2 points.

 In Proposition 2 we improve the construction of S and give

 an example of a linear set A of second category for which

 category projections of A»A are empty. This fact is a

 stronger version of the Theorem of £3] •
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 We use the notation introduced in [2j/and [l] /,
 2

 Let ECR . By P (E) /R (E) / we denote the projection
 in in

 /the category projection/ of E in direction m«

 Recall that

 P (E) = Ice R: gr (yamx+c) n E jŁ 0 ' m i

 and

 Rm(E) a . ^ofcR: dom^gr(ysmx+c) n E J is of second

 category^.

 In this paper we assume that

 m / 0 .

 Notice that Rm(A*B) s ļc&R: (mA+cļ^B is of second

 category}«

 LEMMA 1. If AC R is a second category set then there

 exists an open /and non-empty/ set GCR such that A is

 of second category at every point xeG and the set A ^ G

 is of first category.

 Proof . Let B be the set of all xe R such that A

 is of first category at x and let G s int(R^B)«

 The set G has the desired properties.
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 LEMMA 2. /a/ If A a and B â /the symmetric

 differences/ are of first category then R (A*B) = R (A^B,) .
 m xn * «

 /b/ If a set A has the property of Baire, i.e. A s G AK,

 where G is an open set and K is of first oategory then

 R U*B) a R (G*B) .
 in xn

 /c/ If G,H are open sets and BCH is of second category

 at every point zeH then P (G*H) = P (,G*B) s R (G*B).
 m ni m

 Proof . The parts /a/ and /b/ are obvious.

 /c/ The inclusion R (GxB) C P (Gaß) C P (G*!!) are clear«
 m in in

 Let o 6 P (G*!!) « Then y=mx+c for some x € G and y e H. Since
 m

 the set (mG+c)rtH is open and non-empty, the set (mG+c)AB

 is of second category and therefore Pb(G*H)CPb(g*B).

 If oCP^Ghb) then (mG+c)AB is non-empty. Since B is of

 second oategory at every point of 5, the set (mG+cļ fi B

 is of second category. Hence P- (G*B^C R (Gaß) .
 m m

 PROPOSITION 1 . If either of second category sets A and B

 has in addition the property of Baire, then the set

 R (A*B) is open and non-empty,
 n

 Proof . A s stime that A has the property of Baire

 and G is the non-empty open set of Lemma 2.b.
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 Let H be an open set such that: Q is of second category

 at every point x (H, s Bah and B is of first

 category.

 By Lemma 2.c we have R (.G * B.) s P (,G*II) . Since
 at i m

 P (G*h) s H - riG /see e.g. L1J/> follows that the set
 ni

 P (G*!!) is open and non-empty. It follows from Lemma 2. a
 m

 that R (A*B) ' s R (G*B.) = P(G»H)-. m ' m 1 m

 The case when A does not have the property of Baire and

 B has this property is analogous.

 PROPOSITION 2. There exists a second category set A such

 that the setA*A meets- every non-horizontal and non-vertics

 line, except of the line y=x, at most in 2 points.

 Proof . Let G . , oL < co be a well-ordering of all
 Qs C

 residual G^ subsets of the line.

 Choose Xq6 Gq, x^SG^. Suppose we have chosen x^ for all

 |b<eL . Put |b< o«- ' .
 Let denotes the family of all non- horizontal and

 non-vertioal lines, different from the line y=x , which

 meet the set A * A , at least in 2 points.
 ce. cC ,
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 Put S ļx: 1 pĄ 3 y£Aoc [C*»yUP v (y,xļ&p v

 (x,x) ^ p3ì ,

 and = {x: 3y,sft,TrcA [(x,y) , (z,x) and (t,w) are

 collineari 1.

 Observe that the sets B and C ™ have cardinality leas than oC ™

 continuum*

 At level oí. choose x_, e G«, N ( B OC . C.) C^> . OC CK OC C^>

 By letting A =1*^ : oi.<uici, it ia relatively straight-

 forward to show that A ha a the deaired properties.

 COROLLARY 1* There exists a second category set AcR

 with Rm(A*A) S 0 for m and Rm(A*A) = {o^ for nal.

 COROLLARY 2« There exists a second category, Lebe ogu e

 measurable set CCR with Rffl(C*C) = 0 for m ^ļo,lļ

 and R (C*C) = |_o]ļ for m= 1 .

 Pro of « Let BCR be a first category set of full

 measure /see e.g. , Corollary 1,7/.

 Let A be a second category set for which the conclusion

 of Corollary 1 holds* Then the set C = A uB has the

 desired properties,
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