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SOME REMARKS ON CATEGORY PROJECTIONS OF PLANAR SETS

The authors of (1] provide that the measure projection
of the subset A*B of R2 is non-empty and open whenever A
and B are measurable sets with positive finite Lebesgue
measure /the‘assumption that A and B have finite measure
may be omited/,
In Proposition 1 the same conclusiomn is proved for second
category A having the property of Baire and second
‘category B, This fact is an'improvement of Theorem 2.6
of {1] /see also [2], Th.‘2/.

In [5] Sierpiﬁski coustructed a second category set
Sc R2 which meet every line at most in 2 points,
In Proposition 2 we improve the construction of S and give
an example of a linear set A of second categary for which
category projections of A»A are empty. This fact is a

stronger version of the Theorem of [3].
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We use the notation introduced in [2]/and [1]/.
Let EC Rz. By Pm(E) /me(E)/ we denote the projection
/the category projection/ of E in direction m.
Recall that

Pm(E) = {ecR: gr (y=mx+c) "E £ & 3

Rm(E) = .{_cGR: dom{gr(y:mx«u-c) f\E] is of second
catesory}.
In this paper w e as sume t hat
m£g .
Notice that R (A»B) = {c€R: (mA+c)nB is of second

cateeorylo

LEMMA 1, If ACR is a second category set then there
exists an open /and non-empty/ set GC R such that A is
of second category at every point x€ G and the set ANG
is of first category.

Proof . Let B be the set of all xc R such that A
is of first category at x and let G = int(R~B).

The set G has the desired properties,
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LEMMA 2, /a/ If A a A, and B & B, /the symmetric
differences/ are of first category then Rm‘AxB) = Rm(A‘tB1).
/b/ If a set A has the property of Baire, i.e. A = G & K,
where G is an open set and K is of first category then

R _(A*B) = Rm(GxB) .

/c/ If G,H are open sets and BC H is of second category
at every point xe H then Pm(cxu) = Pm(GxB) = Rm(c;xB).
Proof ., The parts./a/ and /b/ are obvious,

/e/ The inclusion R@(GxB)C.Pm(Gxﬂ)C.Pm(G‘H) are clear,
Let c € Pm(G'H) . Then y=mx+c for some x€ G and y € H, Since
the set (mG+c)"H is open and non-empty, the set (mG+c)NB
is of second catégory and therefore Pm(GxH)CLPm(GxB).

If cc Pm(GnB) then (mG+c)NB is non-empty. Since B is of
second category at every point of B, the set (mG+c)f\B

is of second category. Hence Ph(G‘B}C:Rm(G:B).

PROPOSITION 1, If either of second category sgts A and B
has in addition the property of Baire, then the set
R_(AxB) is open and non-empty.

Proof ., Assume that A has the property of Baire

and G is the non-empty open set of Lemma 2,b,
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Let H be an open set such that: B is of second category
at every point x ¢ H, B; = BnH and B‘\B1 is of first
category.

By Lemma 2.,c we have Rm(G’th = Pm(th). Since

Pm(Grﬂ) = H - mG /see e.g. [1]1/, it follows that the set
Pm(G‘HD is open and non-empty., It follows from Lemma 2.a
that R _(AxB) = R_(GxB,) = P_(G=H).

The case when A does not have the propérty of Baire.and

B has this property is analogous,

PROPOSITION 2, There exists a second category set A such
that the set AxA meets~ev?ry non-horizontal and non-vertics
line, except of the line y=x, at most in 2 points.,
Proof . Let G& ,-d~<coc be a well-ordering of all
residual G& subsets of the line,

e G « Suppose we have chosen x for all

Choose x &

e G

0°® %o *4 1

p<ot . Put A, ={x,: peaty .
Let GL denotes the family of all non-horizontal and

non-vertical lines, different from the line y=x, which

meet the set Ad:‘Ad. at least in 2 points,
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Put B, ={x: 3 peS, 3 yea, Uix,mep v (y,x)ep v
(x,x) & p}3,

and C, = {x: dy,z,t,w €A l(x,,(z,x) and (t,w) ‘are
collinear]}.

Observe that the sets Bd' and CoL have cardinality less than

continuum,

At level <. choose xeke G > (B&\J C -

By letting A ={x°‘ '8 <uc3, it is relatively straight-

forward to show that A has the desired properties,

COROLLARY 1., There exists a second category set ACR

with R_(A%4a) = § for m ¢${0,1} and R (a%A) = {0} for m=1.

vCOROLLARY 2, | There exists a second category, Lebesgue
measurable set CCR with R (CxC) = ¢ for m ¢lo, 1%

and R_(CxC) = {o} for m=1.

Proof, A Let BCR be a first category set of full
measure /see e.g. [’-J , Corollary 1,7/.

Let A be a second category set for which the conclusion
of Corollary 1 holds, Then the set C = A vB has the

desired properties,
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