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 General ized Differentiation and Summabilitv

 For X real let A (x) := a cos nx + b sin nx and let
 n n n

 OO

 (1) T(x) := + J Vx)
 n = 1

 be a trigonometric series. Suppose that at every x & [0,2a),

 T(x) = 0. Then all aQ and bn are zero. "This is the fundamental
 theorem in the subject of uniqueness of trigonometric series. It

 was announced by Riemann in 1854 and the last detail of his proof

 was supplied in a letter from H.A. Schwarz to Cantor who published

 it in 1870. [4] , [6] , [7] The crucial step is this theorem.

 Theorem R. If F is continuous and

 ow„' .- li® F(x-h) - 2F(x) + F ( x+h)
 ow„' RF(X) .- h-0

 is zero everywhere, then F is a line.

 Theorem R is immediate from a lemma.

 Lemma R. If F is continuous and RF > 0 everywhere then F is convex.

 (See [7], vol. I, p. 23, Theorem 10.7.)

 Theorem R has only one known proof, namely via Lemma R. To extend

 *The research presented here was supported in part by a grant from
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 Theorem R to higher dimensional settings it could be useful to have

 another proof . [1] , [2] , [3] The search for a new proof might be aided

 by first proving analogs of theorem R for other generalized second

 -2 3
 derivatives of the form lim h X a.f(x+b.h), where

 h-»0 i = l 1 1
 2

 X a. = X a.b. = 0 and X a.b. = 2. These are quickly seen to
 ili li

 classify into three types: type I has b^ < 0 = bg < b^, type II has

 all of the b^ of the same sign, and type III has b^ < 0 < < b^ or

 bļ < bg < 0 < bg. Interesting new phenomena arise only from type

 III. The case of b^ = -1, bg = 1» and bg = 2 is typical of this
 type. This motivates the definition

 A+F .. lim (2/3)F(x+2h) - F(x+h) + ( 1/3 ) F( x-h)
 h-0ł ?

 Since the continuous non-convex

 * 0 X < 0

 U<X> = ' -[x1o«2<3/2)] x>0 '
 enjoys A*u >0 for all x, the analog of Lemma R is false here. (See

 [2], pp. 19-20. If one allows h-»0 as well, then the situation of

 continuous non-convex f with Af £ 0 everywhere does not arise.)

 For this reason the truth of the following conjecture would very

 likely increase our knowledge in the area of uniqueness of

 trigonometric series.

 Conjecture A. If F is continuous and A+F is zero everywhere, then
 2

 F is linear.

 In an attempt to prove this, I was led to a related

 2
 On August 10, 1986 I was informed that M. Laczkovich and P.

 Humke have found a proof for this conjecture.
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 summability result. Let F(x) be a continuous function with Fourier

 series (1). Differentiate this series twice termwise, thereby

 2
 forming the distributional second derivatives F" := 2 -n A (x) An

 n

 elementary computation shows

 • nhl2
 F(x+h) - 2F( x) + F(x-h) = r _n2An(x) .
 h I T.

 _ j ... ... __ . . .. F(x+h) - 2F(x) + F(x-h) and , , _ By definition j ... ... __ RF(x) . . := lim .. a

 h-0 h*

 definition the series F" is summable R to s if and only if

 r f r f nhl wi2. 1 r f r f . nhl 1
 V 2 sin T"

 s = lim > -n A (x) . . Thus theorem R can be restated by
 h-,0 ¿ n ņ

 saying that a continuous function whose distributional second

 derivative is summable R everywhere to 0 is linear. Similarly the

 derivative A* corresponds to a method of summability. Define a

 series Za to be summable A* to s if
 n

 00

 lim I a y(6nh) = s where
 n

 h-»0 D="~

 r(t) := (2/3) e2t - c* + (l/3)e"t

 (Note that the series (1) must be expanded in complex exponential .

 form before applying the multiplier r. The infinite sum is defined

 as the limit of the symmetric partial sums. ) As. with the Riemann

 situation, we have A+F(x) exists if and only if the twice formally
 differentiated Fourier series of F is summable A+.

 There is a theorem of Kuttner [5] that summability R implies Abel

 summability and a theorem of Verblunsky ([7], vol.1, Theorem 7.4)

 368



 stating that if a trigonometric series is Abel summable to 0

 everywhere and has coefficients o(n), then all coefficients are 0.

 (Recall that Xc is Abel summable to s if lim X c r11 = s.) I had
 n r-*l~ n

 hoped to show Conjecture A by first showing summab i 1 i ty A+ implies

 Abel summability, then controlling the coefficients, and finally

 applying Verblunsky's theorem. The following result extinguished

 that hope.

 Theorem . Summability A+ and Abel summability are not comparable.

 Proof . First we show that summability A+does not imply Abel

 summability. The function u(x) above, restricted to (-it, it) and then

 extended periodically, thus has u", its distributional second

 derivative, summable A+ to 0 at 0. (See [2], p. 19.) However u" is

 not Abel summable at 0. To show this we must prove that

 lim X -n^A (0)rn = lim X n^(-a ) r11
 r-»l n r-»l n

 does not exist. Letting a log2(3/2) » .58 we have

 "'n * {If •
 0

 Throughout the following calculation we will repeatedly discard

 purely imaginary terms.

 Substitute t : = nx and then integrate by parts, differentiating

 t and integrating e , to get

 1 _ n-,T

 -an = „e 1 _ ""J .
 0
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 I17T a» o* 4» -(,W

 Writing J = J - J and using J ta ¿tdt = r(a)e ^ ([7], vol.1,
 0 0 nrc 0

 p. 69) yields

 1 Ä

 -an = 9le I
 nw

 Next integrate by parts three more times, always differentiating the

 power of t and integrating the e ^ factor. We obtain

 -r(«+l)sin £x .1-a a g _ .-4
 ~an =

 71

 where the constants cq are uniformly bounded. Hence

 .2, ,0 -'•(a+Dsln 5a 1.a a „ 2 _n X n (-a ,0 )r = X n r + a X (-1) r + X c n r
 n u 6""CX n

 u

 -2
 As r -» 1 , the third term tends to the convergent senes X cnn ,
 «• _ , i
 X (-l)n rn = _ which tends to -g , but lim_ X n i r = +« .
 n= 1 r-»l

 Conversely, let v(x) be the periodic extension of (sgn x ) 4 | x ļ

 restricted to [-• ir,w). A simple calculation shows that A v(0) does

 not exist, so that v" is not summable A+ at 0. However, since v is

 odd, v" is a pure sine series, so that Aq(0) = 0 for all n. Hence
 v" is summable Abel to 0 at 0.

 370



 REFERENCES

 1. Ásh, J. M., Ed, Studies in Harmonie Analysis, MAA Studies in
 Math. , vol . 13 .

 2. Ash, J. M., Very generalized Riemann derivatives, generalized
 Riemann derivatives and associated summability methods,
 Real Analysis Exchange 11(1985-86) , 10-29.

 3. Ash, J.M. and Weiland, G., Convergence, uniqueness, and
 summability of multiple trigonometric series, Trans.
 Amer. Math. Soc. 163(1972), 401-436.

 4. Cantor, 6., Gesammelte Abhandlungen, Georg Olms, Hildesheim,
 1962, 80-83. Beweis, das eine ftir jeden reellen Wert
 von X durch eine trigonometrische Reihe gegebene
 Funktion /(x) sich nur auf eine einzige Weise in dieser
 Form darstellen lūst, Crelles J.F. Math., 72(1870), 139-
 142.

 5. Kuttner, B., The relation between Riemann and Cesaro
 Summability, Proc. London Math. Soc. 38(1935) 273-283.

 6. Riemann, B., Uber die Darstellbarkeit einer Function durch
 eine trigonometrische Reihe, Ges. Werke, 2. Aufl.,
 Leipzig, 1892, pps. 227-71. Also Dover, New York, 1953.

 7. Zygmund, A., Trigonometrie Series, Vol. I and II, Cambridge
 Univ. Press, Cambridge, 1959.

 Received A puiL 11, 1986

 371


	Contents
	p. 366
	p. 367
	p. 368
	p. 369
	p. 370
	p. 371

	Issue Table of Contents
	Real Analysis Exchange, Vol. 12, No. 1 (1986-87) pp. 1-393
	Front Matter
	CONFERENCE ANNOUNCEMENTS [pp. 4-4]
	PROCEEDINGS OF THE TENTH SYMPOSIUM
	THE TENTH SUMMER REAL ANALYSIS SYMPOSIUM JULY 27 - 30, 1986, UNIVERSITY OF BRITISH COLUMBIA [pp. 5-9]
	SOME ASPECTS OF DYNAMICAL BEHAVIOR OF MAPS OF AN INTERVAL [pp. 10-33]
	Recent Developments in Fourier Analysis and Generalized Bounded Variation [pp. 34-41]
	ON THE FUNDAMENTAL THEOREM OF CALCULUS [pp. 42-42]
	EXTREME POINT MULTIFUNCTIONS AND A GENERALIZED RADON-NIKODYM THEOREM [pp. 43-54]
	INTEGRATION IN FUNCTION SPACES [pp. 55-58]
	Generalized Integrals in the Theory of Trigonometric, Haar, and Walsh Series [pp. 59-62]
	ITERATES FOR A RESIDUAL CLASS OF FUNCTIONS [pp. 63-66]
	CHARACTERISTIC FUNCTIONS THAT ARE PRODUCTS OF DERIVATIVES [pp. 67-68]
	CLASSICAL PROBLEMS IN ANALYSIS AND NEW INTEGRALS [pp. 69-84]
	CONCERNING EXTENDABLE CONNECTIVITY FUNCTIONS, A CONTINUATION [pp. 85-93]
	Limits under the integral sign [pp. 94-96]
	Chaotic Behavior and Equicontinuity of Iterates of an Interval Map [pp. 97-99]
	Generalized Riemann Complete Integrals [pp. 100-102]
	Integral inequalities for solutions of some partial differential equations [pp. 103-106]
	Generalized Riemann Derivatives [pp. 107-112]
	CONVERGENCE THEOREMS IN INTEGRATION THEORY [pp. 113-117]
	DERIVATION BASES AND THE HAUSDORFF MEASURE [pp. 118-120]
	Monotonicity and the Approximate Symmetric Derivative [pp. 121-123]
	ON CONVEXITY [pp. 124-125]
	BANACH ALGEBRAS OF FUNCTIONS HAVING GENERALIZED BOUNDED VARIATION [pp. 126-134]
	Generalizations of bounded variation for 1 ≤ p < ∞ and k ≥ 1 [pp. 135-141]
	Functional analysis and generalized integrals [pp. 142-142]

	Letter to those interested in σ-porous sets [pp. 143-143]
	TOPICAL SURVEY
	A CONCEPT OF DIFFERENTIAL BASED ON VARIATIONAL EQUIVALENCE UNDER GENERALIZED RIEMANN INTEGRATION [pp. 144-175]

	RESEARCH ARTICLES
	Perfect level sets in many directions [pp. 176-179]
	A General Approach Leading To Typical Results [pp. 180-204]
	THE SINGULARITY OF EXTREMAL MEASURES [pp. 205-215]
	Borel measurability of extreme path derivatives [pp. 216-246]
	THE LATTICE GENERATED BY DIFFERENTIABLE FUNCTIONS [pp. 247-251]
	ON A RESULT OF S. KUREPA [pp. 252-264]
	D# Derivation Basis and the Lebesgue-Stieltjes Integral [pp. 265-281]
	LENGTHS OF RECTIFIABLE CURVES IN 2-SPACE [pp. 282-293]
	SOME REMARKS ON DIFFERENTIAL EQUIVALENCE [pp. 294-312]
	POROSITY, I-DENSITY TOPOLOGY AND ABSTRACT DENSITY TOPOLOGIES [pp. 313-326]
	LEBESGUE POINTS OF FRACTIONAL INTEGRALS [pp. 327-336]
	L-POINTS OF TYPICAL FUNCTIONS IN THE ZAHORSKI CLASSES [pp. 337-348]
	Construction of a finite Borel measure with σ-porous sets as null sets [pp. 349-353]

	INROADS
	DERIVATIVES OF TYPE 1 [pp. 354-360]
	ON A THEOREM OF SHIZUO KAKUTANI [pp. 361-365]
	Generalized Differentiation and Summability [pp. 366-371]
	THE RESTRICTIONS OF A CONNECTIVITY FUNCTION ARE NICE BUT NOT THAT NICE [pp. 372-376]
	ON THE GENERAL THEORY OF POINT SETS, II [pp. 377-386]
	SOME REMARKS ON CATEGORY PROJECTIONS OF PLANAR SETS [pp. 387-392]

	QUERIES [pp. 393-393]
	Back Matter



