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 ON A THEOREM OF SHIZUO KAKUTANI

 In a paper from 1942 ([1]) Shizuo Kakutani proved the following

 statement: "let f(P) be a real- valued continuous function defined on a

 two-sphere S2. Then there exists a triple of points Pl( P2, P3 e S2

 perpendicular to one another, such that . f(Pi) = f(P2) " f(P3)". In the same

 paper he asks whether the property is still valid when replacing the

 two-sphere S2 by a (n-l)-sphere Sn_1 and the 3 points Pi, P2, P3 by

 n points P!,...,Pn (n * 4). This problem is still open.

 In this paper we prove a plane version of Kakutani' s theorem; namely, we

 replace S 2 by C and the three perpendicular points by the vertices of an

 equilateral triangle: if f is a continuous mapping of C into IR, there

 exists a triple of points zt, za, z3 e C such that |zt - z3 1 = |z3 - z3 1 =

 |z3 - Zi' >0 and t(zt) - f(z2) = f(z3).

 The main result we use in proving the nontrivial case of this statement

 is the following theorem: if Q c C is a bounded, simply connected domain,

 then 3Q contains the vertices of an equilateral triangle. This statement is

 known if 3Q is a Jordan arc, but an example we give at the end of the proof

 of the main theorem shows that this weaker form is not sufficient.

 We start by proving the result in the strong form.

 THEOREM 1: If Q c C is a bounded, simply connected domain, then dň

 contains the vertices of an equilateral triangle.

 PROOF: We need three lemmas.

 LEMMA 1: If Q c C is a bounded, simply connected domain, there exist

 some points xlt x2 e ¿Q and x3 e Q such that |xj - x2 1 = |x2 - x3| =

 |x3 - Xi I >0.
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 PROOF: Let x0 € fl and let D = {z e C : |z - x0| < r} be an open

 disc such that D c 0 and 3D ft 30 t 0. (Such a disc exists, since 30

 is closed.) Choose xt e 9 D n an and consider the rotations fc, fê' : C C,

 fê(z) = xl + (z - xl)(cos n/3 + i sin n/3) and R'(z) = Xļ + (z - xx)

 (cos 57t/3 + i sin 5tt/3). Denote <R(D) by Dx, K'(D) by D2, <R(DX) and D3

 and R'( D2) by D4.

 If Dx n 30 t 0 or D2 ft 30 ý 0, the lemma obviously holds.

 Otherwise, i.e. if Dx n 30 = D2 ft 30 = 0, 0 connected forces Dx, D2 c Q,

 and it will be enough to prove that D3 n 30 t 0 or D4 n 30 ý. 0.

 This statement holds since D u Dx u D2 u D3 u D4 covers D* =

 {z « C : 0 < I z - xx | < r} and 30 is infinite and connected, so the lemma is

 proved.

 LEMMA 2: Let Q c C be bounded, let Xi e 30, and let fê be any of

 the rotations z ** xx + (z - xx)(cos n/3 + i sin w/3) and z ^ +

 (z - xx)(cos 5tt/3 + i sin 5n/3). Then there exist some points x4, x5 such

 that X* 6" 30, X5 = R(x4) and x5 € CO (sign "C" meaning taking of the

 complement with respect to C).

 PROOF: Choose x4 to be a point of 0 such that | xx - x4 1 =

 sup{|z - xt I : z e 0}. Since the supremum is attained on 30 only, we must

 have x4 e 30 and- xs = R(x4) € CO. Q.E.D.

 LEMMA 3: If Qx, 02 c C are bounded, simply connected domains such

 that Qx n 02 t 0, Ql n Int(C02) 1 0 and 02 0 Int(C0x) i- 0, then

 Card(30x n 3fl2) i 2.

 PROOF: Since obviously 30 x ft 302 ý 0, we must have

 Card(301 n 302) * 1.

 Suppose Card(30x ft 302) = 1 and denote 30x ft 302 by p. Also denote

 by K a connected component of C(0X u 02 u {p}) such that K ft 30x / 0
 and K n 302 ^ 0 (It is easily seen that such a component exists.) and choose
 a e Qi ft 02 and b e E.
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 We claim first that Qi n 3Qa does not separate a and b (i.e. a and

 b lie in the same connected component of C{Qi n 3Q2)).

 To see this, denote CQj n 3Q2 by L; since K n 3Qa t 0 and

 K n (Qt n 3Q2) = 0 (for n 302) u (ÏÏ2 n 3ňt) = (Q, n an2) u (fl2 n 9Qt) u
 (30i n 3Q2) c (Û! u q2 u {p}) c cii), we have K n L t 0, and since L u Q2

 is connected (for 1J2 c (Q2 u L) c 02 and Q2 is connected), K u û2 u L is

 also connected. Since a, b € (K u ß2 u L) c C(Ql n 302), it follows that
 Qł n 3Q2 doesn't separate a and b indeed.

 Now since an analogous statement is valid for Q2 n 3QX and since

 Q i n 3Q2 and Qa n 3Q1 are closed and (Qj n d Q 2 ) n (Qa n 30i) = ip) is

 connected, it follows, by Janiszewski' s first theorem (See [2], p. 284.) that

 (Qt n 9Q3) u (Q, n 3Qt) doesn't separate a and b. But since

 3(ßt n Qa) C (Qj n 3Qa) u (Q2 n 31^), this forces 3(01 n Q2) not to separate
 a and b. Contradiction.

 So Card(3Qi n 3Qa) % 1, and the lemma is proved.

 Back to the proof of the theorem, let Q c C be a bounded, simply

 connected domain, let xt, x2, x3 be the three points given by lemma 1, and

 take zt to be xt. Denote by R the rotation of C around xt which

 transforms x2 into x3 and set Q' = <R(Q). Let also x4, xs be the points

 given by lemma 2 applied to Q.

 If xs € 3Q, we may take z2 = x4 and z3 = x5.

 If x5 i 30, by lemmas 1 and 2 we have Q n Q' t 0, fl n Int(C Q') ^ 0

 and Q' n Int(CQ) t 0, so by lemma 3 we may choose z2 c (38 n 3Q')'{Zi}. If

 we set now z3 = R~l(z2)-, the proof is- complete.

 We may now state the main theorem.

 th-kOREM 2: Let f be a continuous mapping of C into IR. Then there

 exists a triple of points zt, z3, z3 e C such that |zt - z3 1 = |z2 - z3 1 =

 |z3 - Zx| >0 and f(zi) = f(z2) = f(z3).

 PROOF: If f is constant, the theorem follows obviously, so let f. be

 nonconstant. Since <C is compact and connected, f(C) will be also compact

 and connected, so we may choose a € Int(f(C)'{f(®)}). Let f~'(«) =

 (z e C : f(z) = a} by X and suppose Int X = 0. (If Int X i- 0, the
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 theorem clearly holds.) Also denote CX by Y.

 We obviously have X s 3 Y, and Y has at least two connected

 components, precisely one of them being unbounded. Let K be a bounded

 component of Y, let L be the unbounded component of CK, and denote

 C L by 0.

 Since 3ß c 3K c 3Y = X, to complete the proof it will be enough to show

 that ß is simply connected.

 Since Cß = L is connected, we have to show only that Q is connected.

 Suppose ß disconnected. We may find then two nonempty disjoint sets

 and ß2, closed in Q, such that Qt u q3 = ß.

 We claim that K n ß, f 0.

 Suppose K n Qj = 0. Then we have L u II, c CK; since L is connected

 and Q ! is simultaneously open and closed in ß = CL, L u Q Ł will also be

 connected; so L n Q lies in a connected component of CK, and this

 component must be precisely L (since L n (L u Qx)-j* 0), contradiction!

 So we must have K n ß t ¿ 0.

 For the same reasons we also have K n ßa -ļ. 0, and since obviously

 K c Oj u ß2, we have K = (K n Q1) u (K o Qa), and (K n Q|), {K n ßa) are

 disjoint and closed in K. This is absurd since K is connected. Hence ß

 is connected indeed.

 By theorem 1, our statement is proved.

 Let us make some remarks.

 First, let us see that the weak form of theorem 1 is not sufficient for

 proving the main theorem.

 Construct f as follows: consider the sets

 Xi = {z = X + i y « C : X € (0,1], y = sin ,

 Xa={z=x+iy€C: x = 1, ye [-2, sin 1)} ,

 X3={z=x+iyeC:x€ [0,1), y = -2} and

 X4={z=x+iy€C:x=0, ye [-2,1]} .
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 Denote Xi u X2 u X3 u X4 by X', and denote by Q' the set

 {z = x+ iyeC: xc (0,1), y € (-2, sin ~)}» define a function g : C ■* R,

 g(z) =0 if z « X', g(z) = sup{|z - z' I : z' e X'} if z € Q' and g(z) =

 -sup{|z - z' I : z' e X'} if z e C ' (X' u U'). Now set f(z) = exp(g(z)) if

 z € C and f (») = 0.

 This is clearly a continuous function, and if we choose « = 1, we have

 X' = f~ł(l)ł Q = O', X' = 3Q, and 30 is not a Jordan arc. This justifies our

 strengthening of the theorem.

 Remark also that what we have actually proved is that several triangles,

 with required properties exist in the nontrivial case one for each range

 value, except for endpoints and f (®).

 Finally, we may state also an analogous of the generalized Kakutani

 theorem. Namely, we may ask whether, if Rn_1 is the one- point

 compactification of Rn_1 (n * 4) and f is a real- valued continuous mapping

 of Rn_1, we may find a regular simplex with vertices Pu...,Pn € R11"1 such

 that f(Pi) = - f(Pn)? Or, equivalently, given a bounded, simply connected
 domain Q c Rn_1 , does it follow that 3Q contains the vertices of a regular

 (n-1) - dimensional simplex?
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