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 POROSITY, A-DENSITY TOPOLOGY AND ABSTRACT DENSITY TOPOLOGIES

 Introduction.

 The present article contains proofs of some results presented iri my

 lecture on Scuola di Analisi Reale, Ravello 1985.

 W. Wilczyński [13] defined the ¿-density topology on R which is in a

 sense a category analogue of the density topology on R. The properties of

 the A-density topology and its generalization to Rn were investigated in

 several articles (cf. [14]).

 The A-density topology was defined by W. Wilczyński as a topology

 determined by a special "lower density in the category sense". Topologies

 which sure determined by an arbitrary "lower density in the category sense"

 (abstract category density topologies) are investigated in [6] simultaneously

 with the usual abstract density topologies (defined on measure spaces, cf.

 [12]) from an abstract point of view. In the first part of the article we state

 some basic results on abstract density topologies from [6] and describe a

 general, simple construction of abstract category density topologies. For

 example, to the a.e.-topology and r-topology (defined by R. J. O'Malley in [7])

 there corresponds by this construction abstract category density topologies

 a* and r*.

 The original definition of the i-density topology uses the algebraic

 structure of R but it is possible to give a definition using topological

 notions and the notion of porosity only. This enables us to define in the

 second part of the article a generalization of the A-density topology in an

 arbitrary metric space (p*-topology). We prove several theorems concerning
 the p*-topology. In particular, we answer a question from [1] which
 concerns the A-density topology.

 Since there exist several variants of the notion of porosity, we obtain

 definitions of new abstract category density topologies which are very similar

 to the Jk-density topology. The definitions of these topologies and a
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 discussion of some questions which arise naturally in the presented general

 setting are contained in the third part.

 1. Abstract category density topologies«

 Let E be a <r-algebra of subsets of a set X and let 71 c E be a
 <r-ideal. In the following we shall suppose that for any A c X there exists a

 "measurable cover" Hą such that A c Hą, Hą e E and Hą ' P e ïï
 whenever A c P e E. We know only two interesting examples of such triples

 (X,E,7l):

 I. (Measure case). (X,E,aO is a measure space with a complete, <r-finite
 measure and 71 is the system of all M-null sets.

 II. (Category case). X is a topological space, E is the system of all
 subsets of X which have the Baire property and 71 is the system of all

 first category sets. It is easy to prove that in this case we can put

 Ha = A U {x 6 X ; A n Ux is a second category set for any

 neighbourhood . Ux of x} .

 In the sequel we shall write A ** B if (A ' B) u (B ' A) e 71. The interior,
 closure and boundary of a set M with respect to a topology t are denoted
 by intTM, CfTM and 3TM.

 Now we shall state three results from [6].

 Theorem A. Let L : E -» E have the following properties:

 (i) L(A) - A,

 (ii) A ~ B »> L(A) = L(B),

 (iii) L(0) = 0, L(X) = X,

 (iv) L(A"B) = L(A) n L(B).

 Then {A € E; A c L(A)} = (L(B) ' N ; B e E, N € 71}, and this system forms a
 topology i*l on X.

 Any operator L : E -> E with the properties (i) - (iv) is called a lower
 density on (X,E,7l) and rL is called the topology induced by the lower
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 density L. A topology r on X is said to be an abstract density topology

 on (X,£,7l) if it is induced by a lower density on (X,£,71). In the "Category

 case" an abstract density topology on (X,Z,71) is called an (abstract) category

 density topology on the topological space X. The following theorems give

 useful characterizations of abstract density topologies.

 Theorem B. A toplogy r on X is an abstract density topology on

 (X,E,Tl) iff the following conditions hold:

 (a) A e 71 <=> A is T-nowhere dense and r-closed,

 (b) A e E <=> A has the r-Baire property.

 Theorem C. A topology r on X is an abstract density topology on

 (X,£,7l) iff the following conditions hold:

 (a) A e 71 »> A is r-closed,

 (b) A e E => A ' intTA € 71,

 (c) G * 0 and G is r-open => G € £'7l.

 The simplest and the most important example of an abstract density

 topology in the "Measure case" is the ordinary density topology on the real

 line.

 Let (P ,p) be a topological space. Using the well-known Kuratowski

 theorem which asserts that a set N c P is of the first category whenever it

 is of the first category at all its points, it is easy to prove that the system

 {G'N ; G is p-open and N is a p-first category set}

 forms a topology (See, for example [8], [4] and [6].) which will.be labelled p*.

 Theorem C easily implies that p* is a category density topology on (P,p)
 iff (P,p) is a Baire space (i.e., any nonempty open subset of P is a second

 category set). In this case p* is obviously the coarsest category density
 topology on (P,p) which is finer than p. If (R,e) is the Euclidean line,

 the topology e* is the simplest category density topology on (R,e). A more
 interesting example of a category density topology on (R,e) is the A-density

 topology.

 We shall ' need the following simple theorem which was proved in [4] in

 the case when (P,p) is a Tl -space which is p*-dense in itself and in [6] in
 the full generality. We shall essentially reproduce the proof from [6], p. 27.
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 Theorem P. Let (P ,p) be a Baire space and let f be a real function on

 P. Then f is p*-continuous if and only if it is p-continuous.

 Proof. At first we shall show that for any M c P there exists a p-open

 set Gm such that iat# M c Gm c In fact, int^#M = H'N, where H
 is a p-open set and N c H is a p-first category set. Since (P,p) is a

 Baire space, we easily see that H c a #M and therefore we can put Gm = H.

 Now suppose that f is p*-continuous. Then for any a € R we have
 09

 {x ; f(x) > a} = U Gmd where Mn = {x ; f(x) > a+n~1}
 n=l

 and therefore {x ; f(x) > a} is p-open. Similarly we obtain that

 {x : f (x) < a} is p-open and thus f is p-continuous.

 In the sequel it will be useful to use the following terminology intro-

 duced by A.R. Todd [11].

 Definition. Let tx and r2 be topologies on a set X. We shall say

 that rx and ra are S-related if for any set A c X, intTļ A * iff

 intT A * 0.
 2

 We shall need the following simple lemma. (See [11] and [6].)

 Lemma 1. Let rl and r2 be S-related topologies on a set X. Then
 for these topologies the notions of dense sets, nowhere dense sets, first
 category sets and sets with the Baire property coincide. Moreover, (X.Tj) is
 a Baire space iff (X,t2) is Baire space.

 An immediate consequence of Lemma 1 and Theorem B is the following fact.

 Proposition 1. Let and t2 be S- related topologies on X. Then a

 topology T on X is a category density topology on (X,r¿) iff it is a
 category density topology on <X,r2).
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 This proposition and Lemma 1 imply the following theorem which

 describes a simple general construction of category density topologies.

 Theorem 1. Let (P,p) be a Baire topological space and let « be a

 topology on P which is S-related to p. Then the topology «* is a
 category density topology on (P ,p) and

 «* = {G ' N ; G is «-open, N is a p-first category set}.

 Let a and r be the a.e.-topology and r-topology on R, which were

 defined by R. J. 0'Mallęy in [7]. Recall that G c R is a-open iff it is open

 in the density topology and G'int G is a Lebesgue null set. The r-topology

 has a basis of r-open sets which consists of all sets which are open in the

 density topology and are simultaneously G<j and F o-. Since both a and r

 are S-related to the Euclidean topology on R (See [7] or [6].), we obtain as

 a consequence of Theorem 1 the following corollary.

 Proposition 2. The topologies a* and r* are category density
 topologies on R and G c R is a* -open (r*-open, respectively) iff it is of
 the form G = H'N where H is a-open (r-open, respectively) and N is a

 first category set.

 2. Porosity topologies.

 In this part (P,/>) will be an arbitrary metrici space. Topological notions

 concerning p will be written without index (prefix) p. For example, the

 boundary of a set M c P is denoted by 3M. The open ball with center

 X € P and radius r > 0 is denoted by U(x,r). Let M c P, x € P, R > 0.

 Then we denote the supremum of the set of all r > 0 for which there exists

 y e P such that U^y,r) c U(x,R) ' M by r(x,R,M). If

 lim sup rCx.RjMJR-1 > 0,

 we say that M is porous at x. We shall need the following obvious fact.
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 Ļemma_2. If x is an isolated point oř P, then M is porous at x iff
 X i M. If - x is not an isolated point of P, then M is porous at x iff

 there exist c > 0 and sequences of balls U(x,Rn), U(yn,rn) such that

 Rn v 0» pn/Rn > c» x i U(yn,rn) and U(yn,rn) c U(x,Rn)'M.

 It is easy to see that M is porous at x iff Cf M is. If x is not an

 isolated point of P and M is porous at x, then clearly x is a point of
 accumulation of P'M.

 TWiwition- We say that E c P is superporous at xcP if E u F is

 porous at x whenever F is porous at x. A set G c P is said to be
 p-open (porosity open) if P'G is superporous at any point of G.

 It is easy to see that E is superporous at x iff Ci E is superporous
 at x. The system of all sets which are superporous at x obviously forms
 an ideal. Therefore the system of all p-open sets forms a topology p, which
 will also be called the p-topology or the porosity topology. Obviously p is
 finer than the p-topology. It is easy to see that a point x c P is
 p- isolated iff it is p-isolated.

 Proposition 3. Let V = P and x e V. Then the following conditions are

 equivalent:

 (i) V is a p-neighborhood of x,

 (ii) int V u {x} is a p-neighborhood of x,
 (iii) P'V is superporous at x.

 Proof. To prove (i) ■> (iii) suppose that V is a p-neighborhood of x
 and V c V is a p-open neighborhood of x. By the definition of the
 p-topology P'V is superporous at x and therefore also P'V is
 superporous at x. To prove (iii) (ii) suppose that P'V is superporous
 at x. Then also CT(P'V) = P'int V is superporous at x. Consequently
 T := P'(int V u {x}) is superporous at x. Since T is clearly superporous
 at all points of int V, we obtain that int V u {x} is a p-open neighborhood
 of x. The implication (ii) => (i) is obvious. t

 ÇgroDarz. The porosity topology p is S-related to the p- topology.
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 Proposition 4. A set G c P is p-open iff there is an open set H and

 Z c 3 H such that G = H u Z and P'H is superporous at every point of Z.

 Proof. If G c P is p-open, we put H = intp G and Z = G'H. Let
 z e Z. Then z is not p-isolated and consequently by Lemma 2 {z> is

 superporous at z. By Proposition 3, H u {z} is a p-neighborhood of z

 and consequently P'(H u {z}) is superporous at z. Therefore P'H =

 (P'(H u {z})) u {2} is superporous at z as well. Clearly z is a point of

 accumulation of H and therefore z e 3 H. The opposite implication is

 obvious.

 Definition. A subset of P is said to be superporous if it is superporous

 at all its points.

 Proposition 3 implies that A c P is superporous iff A is p-discrete and

 contains no isolated points of P.

 Proposition 4 immediately implies the following fact.

 Proposition 5. If A c P is p-open, then A'int A is superporous.

 Definition. The topology p* will be called the p*-topology or the
 *-rporosity topology.

 By the corollary of Proposition 3 and by Theorem 1 we immediately obtain

 the following important fact.

 Theorem 2. If (P,p) is a Baire space, then the p*-topology is a category
 density topology on P, and G c P is p*-open iff G = H'N, where H is
 p-open and N is a first category set.

 The following immediate consequence of Proposition 4 describes the

 structure of p*-open sets.

 Proposition 6. A set W c P is p*-open iff there exist an open set H,
 Z c 3H and a first category set N c H such that W = (H'N) u Z and P'H

 319



 is superporous at any point of Z. In particular, any p*-open set has the
 Baire property.

 The following simple fact follows easily from Theorem C, Theorem 2,

 Proposition 6 and Lemma 2.

 Proposition 7. The following conditions are equivalent:

 (i) P is a Baire space,

 (ii) any p*-isolated point is isolated,

 (iii) p* is a category density topology on (P,p).

 The following characterization of p-interior points is useful for

 applications.

 Proposition 8« A set V c P is a p- neighborhood of a point x e V iff

 the following condition (C) is satisfied.

 (C) For any u > 0 there exist d > 0 and v > 0 such that whenever
 U(y,r) c H(x,R) are balls for which x i U(y,r), R < d and r/R > u, there
 exists a ball U(z,a) c U(y,r) n V such that a/r > v.

 Proof. We can suppose that x is not an isolated point of P, the

 opposite case being trivial. Suppose that C is satisfied. By Proposition 3 it
 is sufficient to prove that P'V is superporous at x. Let a set P c P

 which is porous at x be given. By Lemma 2 there exist c > 0 and
 sequences of balls U(yn,rn), U(x,Rn) such that Rn V 0, U(yn,rn) c
 U(x,Rn)'F, x i U(yn,rn) and rn/Rn >. c. Find d > 0 and v > 0 which
 correspond to u - c by (C). Let Rno ^ Then for any n * n0 there
 exists a ball U(zņ,an) c U(yn,rn) n V such that an/rn > v. Since U(zn,an)
 c U(x,Rn), an/Rn > c*v and U(zn,an) n ((P'A) u F) = we obtain that
 (P'V) u F is porous at x.

 To prove the opposite implication, suppose that P'V is superporous at x
 and (C) does not hold. Then there exist u > 0 and sequences of balls
 U(ynrn)» U(x,Rn) such that U(yn,rn) <= U(x,Rn), Rn < 1/n, rn/Ttn > u,
 x J U(yn»rn) and

 (1) there is no ball U(zn,an) c U(yn,rn) n V for which an/rn > 1/n.
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 Put A : = P ' U U(yn,rn/2). Since A is porous at x, we have that
 n=l

 A u (P'V) is also porous at x. Consequently by Lemma 2 there exists c > 0

 and sequences of balls U(tn,sn) c U(x,Sn) such that Sn V 0, x i U(tn,sn),
 00

 sn/Sn > c and U(tn,sn) c P'(A u (P'V)) = V n u U(yn,rn/2). Find n0 > 2
 n=l

 n0

 such that l/n0 < c/2. Since p(x, U U(yn,rn/2)) > 0, there exist k and
 n=l

 n > n0 for which t^ e U(yn,rn/2). Since p(x,t]() * rn/2, we have

 Sk > rm/2 and consequently sfc > c*rn/2. If we put zn = t]< and an =

 min(rn/2,sk), we have U(zn,an) c U(yn,rn) n v and an/rn * min(l/2,c/2) >

 l/n0 > 1/n which contradicts (1).

 Note. Using Proposition 8 and the characterization of ¿-dispersion points

 given by E. Lazarów [5] (See [14], Theorem 44.) it is not difficult to prove

 that if (P,p) is the real line IR, then the p*-topology coincides with the

 A-density topology. Nevertheless, our "porosity definition" was given under

 the influence of some proofs from [2] and [3] independent of [5] and [14].

 Another equivalent definition of the density topology will be given in a
 subsequent article.

 One of the most interesting facts about the A-density topology is the

 theorem "([2], cf. [14]) which asserts that any real function which is

 continuous with respect to the J-density topology is a Baire one function. We

 shall prove ą slightly more general theorem for the p* -topology, using a
 general theorem from [6]. We shall use the notion of the "essential radius

 condition" from [6] which in the case P = IR almost coincides with Thomson's

 "intersection condition" (See [9] or [10].) for local systems.

 Definition. A topology r on a metric space (P ,p) is said to satisfy the

 essential radius condition if for each x e P and each r-neighborhood U of

 x there is an "essential radius" r(x,U) > 0 such that

 p(x,y) ^ min(r(x,Ux), r(y,Uy)) => Ux n uy * <t>
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 for every r-neighborhoods Ux,Uy of x,y, respectively.

 We shall use the next theorem which follows immediately from results of

 [6] (pp. 64,66).

 Theorem E. Let (P ,p) be a metric space, t be a topology on P which

 satisfies the essential radius condition (w.r.t. p) and f: P •* IR be a

 function which is r-continuous at any point of a set C c P. Then f|ę is a

 Baire one function (on the metric space (C ,p)).

 Note. Thomson's Lemma 2.8. from [9] (cf. [10], p. 74) implies Theorem E in

 the special case C = P = IR.

 Theorem 3. If (P,p) is a Baire space, then the p*-topology satisfies the
 essential radius condition.

 Proof. If X e P and V* is a p*-neighborhood of x, then we shall
 determine an "essential radius" r(x,V*) in the following way. Choose a

 p-neighborhood V of x such that V'V* is a first category set and by
 the condition (C) from Proposition 8, corresponding to V, x and u = 1/3

 choose the corresponding d = d^x^) > 0 and v = Vi(x,V) > 0. Further

 with u = Vi(x,V) choose the corresponding d = d2(x,V) and v = v2(x,V)

 and put r(x,V*) = (1/3) minid^x.V), d2(x,V)). Now suppose that V*x is a
 p*-neighborhood of x, V*y is a p*-neighborhood of y and p(x,y) *
 min(r(x,V*x), r(y,Vy)). We can suppose without loss of generality . that
 Vi(x,Vx) * Vi (y, Vy). Consider the balls U (y,p(x,y)) c U(x,2p.(x,y)). Since
 p(x,y)/2p(x,y) > 1/3, x 4 U(y,p(x,y)) and 2p(x,y) < d!(x,Vx), we obtain that
 there exists a ball U(z,p) c U(y, p(x,y)) n Vx such that p/p(x,y) > Vļ(x,Vx) *

 vx(y,Vy). If ye U(z,p), then we obtain from Proposition 3 that there exists
 an open set 0 * H c Vx n Vy. If y i U(z,p), then observe that U(z,p) c
 U(y,p(x,y)), p/p(x,y) > v^Vy) and p(x,y) < da(y,Vy). Consequently there
 exists a ball U(t,q) <= U(z,p) n Vy with q/p > v2(y,Vy). In this case we
 also obtain an open set 0 * H = U(t,q) c Vx n Vy. Since P is a Baire
 space, we have V*x n V*y H * 0 • and the proof is complete.
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 As a consequence of Theorem 3 and Theorem E we obtain the following

 result.

 Theorem 4. Let (P ,p) be a Baire space and let f: P -» R be a function

 which is p*-continuous at any point of a set C c P. Then f ļ q is a Baire
 one function (on the metric space (C ,/>)).

 In the rest of this part we shall investigate relationships between

 p*-continuity and continuity of real functions. The following result follows
 immediately from Theorem D.

 Proposition 9. Let P be a Baire space and let f be a real function on

 P. Then f is p*-continuous on P iff it is p-continuous on P.

 Theorem 5« Let P be a Baire space and let f be a p* -continuous
 function. Then the set D(f) of all points of discontinuity of f is a

 countable union of closed superporous sets.

 09

 Proof. Let a basis of open sets in R. Obviously
 (O

 D(f) = U (f~ł(Bn)'int f-^Bn)). By Theorem 4 f is a Baire one function
 n=l

 and therefore f~1(Bn)'int f'ÍBn) is an F^-set for any n. By

 Proposition 9 f~1(Bn) is p-open and consequently f~1(Bn)'int f'CBjj)

 is superporous for any n by Proposition 5. Now it suffices to observe

 that any subset of a superporous set is superporous.

 The following theorem gives an answer to query c) of [1], p. 79. The

 idea of the construction is the same as that of the proof of Theorem 5 from

 [1].

 Theorem 6. Let D c R. Then there exists a p*-continuous function f
 such that D = D(f) iff D is a countable union of closed superporous sets.

 40

 Proof. Let D = U An where all An are closed superporous sets. We
 n=l

 can suppose that any An is either a perfect set or a singleton. Suppose
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 that n is fixed, An is a perfect set and ((a^> are bounded

 intervals contiguous to An, Denote by (cļļ, dļļ) the interval concentric
 with (a^, b^) for which b^ - a^ = 2k (d^ - e**). Now choose a function fn

 n n n n n n

 with the following properties:

 (a) 0 ¿ fn * 3~n and fn is continuous on R'An,
 09

 (b) fn(x) = 0 í"01* X e R ' U (cļi,dļ< n n ), k=l n n

 (c) fn((an + bJS )/2) = 3~n for ^ k-
 CO

 It is easy to prove that An u u (c^.d^) is superporous at any point of
 k=l n n

 An. This implies that

 (d) fn is p-continuous.

 Obviously

 (e) ose (fn.x) = 3~n for any point x e An.

 If An is a singleton, then it is not difficult to construct a function fn
 »

 which has the properties (a), (d), (e). Now it suffices to put f = Z fn.
 n=l

 3. Additional remarks.

 If we replace in the definition of the porosity topology and the

 ♦-porosity topology the notion of porosity by the notion of (g)-porosity, we
 obtain definitions of new topologies: (g)-porosity topology and *-(g)-porosity
 topology. We say ([15]) that a set M c (P,p) is (g)-porous at x if
 lim sup g(r(x,R,M))-R"ł > 0. Similarly we can define the strong porosity

 R-K)+

 topology and the *-strong porosity topology which correspond to the notion of
 strong porosity. We say (cf. [16]) that a set M c P is strongly porous at
 if lim sup ríx.R.MÍR-1 » 1/2. Strong porosity was considered in [15] under

 R-XD+

 the name (x, l/2)-porosity. Of course, it is possible to define, other
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 topologies which correspond to other porosity notions (e.g. <H>-porosity from

 [15]). All such defined "^-topologies" have similar properties; in
 particular, they are category density topologies.

 An interesting question is in which sense the ordinary density topology

 on IR is a "canonical" abstract density topology on IR. Of course, it is

 possible to answer that it is canonical because it has the simplest and the

 most symmetrical definition and has interesting applications. It seems to me

 that there may exist a "more mathematical" answer which shows that the

 ordinary density topology is canonical since it and only it has come simple

 properties. I conjectured that the ordinary density topology on IR is the

 coarsest topology among sill (measure) abstract density topologies on IR which
 are translation invariant and finer than the Euclidean topology. D. Preiss in

 his lecture in Ravello (1985) proved the so-called Hearts density theorem

 which implies that my conjecture was false. In fact, the Hearts density

 theorem implies that whenever r is a translation invariant abstract density

 topology on IR finer than the Euclidean topology, there exists a topology r

 which has the same properties and is strictly coarser than r. It is still

 possible that the above conjecture is true if we replace "translation invariant"

 by "invariant with respect to any affine bijection".

 A similar question arises with respect to the A-density topology. It

 corresponds in the following sense to the ordinary density topology on IR.

 The original Wilczyński definition of the ł-density topology is a definition

 which depends on an ideal of sets A. It i is the system of all first

 category sets, then the corresponding topology is the A-density topology. If

 i is the system of all Lebesgue null sets, then the corresponding topology is

 the ordinary density topology on IR. It would be interesting to find some

 properties of the A-density topology which show that it is a "canonical"

 category density topology on IR or that it corresponds in some sense to the
 ordinary density topology on IR.
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