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D Derivation Basis and the

Lebesgue-Stieltjes Integral

This paper answers a question posed by Thamson [7, p.377]

#
on .the relation between the D derivation basis and the

LebesgueAStieltjes integral. The question is stated as
follows: "The basis D# can be used to characterize the
Lebesgue inﬁegral. The corresponding Stieltjes integral
Dtjfﬁﬂdgﬁd seems not to have been investigated, apart
from several remarks in McShane." The remark in McShane,
while vague,>asserts that if the D1 Stieltjes integral exists
for continuous funétions f with respect to a function g, then
g must be of bounded variation [ 2, p.40 ]. It will be
shown that the D#-ffﬁddg(x) is the Lebesgue-Stieltjes
integral for functions g of bounded variation.

The following definitions and notation will be needed.
They are taken from Thomson [7, pp.87, 92, 101, 108, 116,

117, 125, 137, 157, 165 ].

Definition l1.1. The 'sharp derivation basis. TFor a

positive function § on R,

Bg = {(I,x): I is an interval in R, x € R, and
I c (x-6(x), x+6(x))} and
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# # . . .
D = {Béz 8 1s a positive function on R}.

Definition 1.2. The E° derivation basis. For a positive

function § on R,

Bg = {(I,x): I is an interval in R, x € R and
x € I ¢ (x-6(x), x+6(x))} and
D° = {Bg: & is a positive function on R}.

Definition 1.3. The D derivation basis. For a positive

function & on R,
55 = {(I,x): I is an'interval in R, x € R, x is a left or right hand
endpoint of I and I ¢ (x-6(x), x+6(x))} and

D= {Bs: 51s a positive function on R}.

Definition l.4. A partition ©m of an interval [ a,b] is a set

o= {(Ii,xi): Ii is an interval in R, xie R, i=1,...,n}
such that Ii’ Ij are non-overlapping intervals for distinct

{ and j and the union of {Ii}’;=l - 1s [a,b].

Definition 1.5. Let m be.a partition of [a,b]. Let g be a
monotone increasing function where if Ii= [ai,bi], then

g(Ii) = g(bi).-,g(a 9. Then for an arbitrary set E ¢ [a,b],

—-— n . .
m(w,E) =201 {g(Ii). (Ii,xi) € m, xié E}.

Definition 1.6. For the D# derivation basis, the D

derivation basis, and the D° derivation basis, let
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# .
Bs [{] = {(I,x) €Bg 1 x €X}
By [X) = {(I,x) €83 : x €X}
Bs X] = {(I,x) ¢ Bs © X € X} and
4 # BN IER
D" (X] = (g5 [X]: Bg €D}
D° [X] = {pg (X]: Bg € D°}

D X] = (85 (X]: B, € D}

Definition.l.7, For an arbitrary set E ¢ [a,b] and a
monotone increasing function g,
# #
V(g, Bg (E]) = sup (m(m,E), m < B}
# . # # #
V(g,D" [E]) = inf {V(g,B4(E]): Bg € D'}
and when the variation is viewed as a measure, we write this

measure gpt[E] and g #[E] = v(g,D* [E]).

Definition 1.8. For an arbitrary set E c [a,b] and a
monotone increasing function g,
V(g,Bg[E]) = swp {m(m,E), mc B,}

v(g,DIE]) = inf (V(g,By[ED): g, ¢ D)
and write gD[E] = V(g,D[E]).

Definition 1.9. For an arbitrary set E c [a,b] and a
monotone increasing function g,

V(g,B5(E]) = sup {m(m,E): mc B2}

V(g,D°[E]) = inf {V(g,Bg[E]: Bg € D°}

and write gpo (E] = V(g,D° (ED).

When g(x) = x, write gD°[E] as mD°[E]'
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Definition 1.10. For a non-negative point function f and a
monotone increasing function g, let fg be the interval-

point function f(x)g(I). Let

#
V(£g,84) = sup {2,£(x;)g(L;): m < By}
vigg,0") = inf (v(£g,8)): gy ¢ ')

aand write gD#Cf) = V(fg,D#}-

It can be noted here that if ‘f is non-negative, the

#
D 1integral with respect to g can be viewed as the

variation gD#(f). This will be shown later.

Definition 1.11. Local Character. A derivation basis B is

said to have local character if for each Bxé B, x € R,

’

there is a B € B such that B[{x}] ¢ Bx[{x}].

Definition 1.12. g-local Character. A derivation basis B

is said to have g-local character if, for every sequence of
disjoint sets {Xn} in R aand pne B there is a g8 ¢ B

such that B[Xn] c Bn[X'n].

Definition 1.13. A derivation basis B is filtering down if

when ﬂl, BZG B, then there exists a 536 B such that

asc alnBz.

Definition 1.14. Ignores a point. A derivation basis B 1is

said to ignore a point x if there is an element B €B

for which there is no pair (I,x) € B for any I.
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Definicion 1.15. Let B be a derivation basis. Let

be d collection of intervals in R.. A subset B* of JAxR
is said to be B-fine if for every B € B and every x € R
either B[{x}] = & or else B*nﬁ[{x}] # &

The collecc;on of all B-fine elements of oIxR is denoted as

*
B and called the dual of B.

Definition 1.16. An interval-point function H(x,I) is

B-integrable on the iaterval [a,b] if there exists a

number ¢ such that for any ¢ -0 there exists a g ¢ B

such that IZ"h(x,I) - cI < € for any n-CB of the interval [a,b],

Note aliso the following observations that will be

needed later.

B
.Observation 1.1. Let D, be the dual of D°  then B: GD:

*
if and only 1if Bo is a collection of pairs (1,x) and for

x
each x and ¢ >0 there is an (I,x) € Bo and

x € I ¢ (x-g,x+e)..

- #
Observation. 1.2. The D derivation basis and the D

derivation basis are fil:ering down and have o- local
character.

#
Proof. Filtering down clearly holds for both D and D °.

To. see that both have ©- local character, let {Xh}

be a sequence of disjoint subsets of R and let{Bg } ¢ D#
n
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or {B% c D°.
6n }
Define 6(x) = én(x) for x ¢ )S,l, 8§(x) = 1. otherwise.

# g ..
Then Bé[&]cﬁan and similarly Bg[)g,l]qagn for each n.

#
Observation 1.3. Note that the D derivation basis has local

# #
character. This is because for each X€R and Bs € D,
P

1f 6(x) = 6,(x) then B.c UxERaéx[{X}]'

#
Observation 1l.4. Since D derivation basis and D’ derivation

basis are filtering down and ignore no point, D#CD: and
*
D°cDe (7, p.160]. Thus, gD*[B] SgD#[E] and
#

gD:[E] = gDO[E]-

Observation 1.5. If f is a non-negative point function

which is D# integrable with respect to g, then f 1is
D.° integrable with respect to g.
Proof. Let ¢ >0 be given. Then, there exists G:R-'-R+
such that for all partitions nm C Bg

o
|D"-sfdg - an(xi)g(Ii)l < €.

# .

In particular, for all partitions "CBG with X5 € Ii

#
|D"-rfdg -z £0x)g(I)] < .

#
Therefore, f is D° integrable and D°-sfdg = D -sfdg.

The D integral, D-ffdx [ 7] is known to be the Perron
#
integral as the D integral, D#-ffd.x [7] is known to be the

Lebesgue integral. Both derivation bases give rise to the
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Lebesgue measure. However, not all derivation bases give
rise to an outer measure. For example, the derivation
basis that gives rise to the Riemann integral is not
subadditive as an “outer content."(-[7]. When a derivation
basis does give rise to a measure, the integral may not be
the same as noted above.

Theorem 6.2 [ 7, p.158 ] of Thomson asserts that for
a derivation basis B which is filtering down and has
o- local character then V(g,B[X]) gives rise to a true
outer measure. This 1s an outer measure that is defined on
all subsets of [a,b] and must be (1) monotone on sets,

(2) countably sub-additive, and (3) equal to O on the empty
set. ( cf. Rovden (s, p.531). By Observation 1.2, the
D# derivation basis and the D° derivation basis give rise to
true outer measures on [a,b].

For each monotone function g, the D# derivation basis
and the D° derivation basis also generate an outer measure
that satisfies the Caratheodory criterion [5, p.79 ]
which states that if A, B ¢ [a,b] and dist(A,B) >0 then
the outer measure adds on A and B (i.e. m*U&B) =
m*(A) +m*(B)). To see that the Carathéodory criterion is
satisfied, 1let §(x). = (1/3)dist(A,B) for all x € [a,b].

Then the intervals in a partition of [a,b] which belong
to B:MJ do not meet those which belong to Bg[BL
Therefore V(g,h[AUB]) = V(g,BLIA]) + V(g,B} [B])

" .
and gD#[AUB] = gD#[A] + gD#[B]. By replacing BS with [36
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in the above, it can be shown that D° satisfies the
Caratheodory criterion. Therefore the gD# muigDo
measurable sets include the Borel sets.

The standard Lebesgue-Stieltjes outer measure
associated with the monotone increasing function g is defined
by m;[E] = inf(z]_ [g(d;) - gla;)]: Ec U (a;,b))

Now the equality of the D# measure with the Lebesgue-

Stieltjes measure will be established.

Theorem l.1. Let I = [a,b] and let E be any subset of I.

Suppose that g is continuous from the left at a and coantinuous

from the right at b, then gD#[E] =m;[E].
*
Proof. First we show that gD#[E] 5mg[E],
Let £ >0 be given. Then, there exist an open set G with
component intervals {(éi,bi) };=l such that E‘C G
and 25 [g0;)-g(a;)] <-m;[E] . e
Let &(x)=1 if x € G- and let 5(x)=dist(x,G%) if x ¢G.
Then, 1f X € Eﬂ(ai,bi) for i=1,2,...
(x-8(x),x+8(x)) < (ai,bi) .
Then, for any partition mof I, mc ﬁg, if (Ij’xj) is in nfE]
there is.some :i?-‘-l,Z,,.. such that }IJ.C (xj-a(xj),xj+5(xj)) < (a;,by)
which implies that m(v,E) =2 ,[g(b;)-g(a;)].
Therefore V(g,Bg[E]) = z;,l[.g(bi)-g(ai).]-

This implies that \_/;(g,D#[E]).S

+
™

25, le(b;)-g(a;)] < my [E]

\ *
Hence gD# [E] = mg[E].
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Finally, we show that m;[E] S.gD#[E].

Let £>0 be given. Let 5:R-R+ be such that

V(g, By (E]) < gyt (E] + .

Then, Uer(x-é(x)/Z,)ﬁ-cS(x)/Z) is an open set.

Therefore, since g has at most countably many dviscon:inuicies,
there exists half open intervals {In};;:l, In= [an,bn), Inﬂl'm==b, n#m,

where the endpoints of In are not discontinuities of g,

and U p(x-6(x)/2,x+6(x)/2) = U ;I .
Since Zg'(In) < =, there exists M >0 such that

Now Ui T € U (x-6(c),x+6(x)).

Because g is continuous at bn the intervals Il_'1 can be
, .

chosen such that I} [an,cn], Ch< bn and

T 8(1) < oo g(Il) + e

n’

Therefore, L}rfslIr'l C Uy g (x-8(x),x+8(x)).

. 1 4
Since U:Plln is compact, there exists {xl,...,xp}c E

{
such that "}1\18111:1 c U?.=1(xi-5(xi)’xi+5(xi))'

For the given &(x), let 1 be a partition in 3;
such that w[E] = {(y_,IDE_,

where {yl,..'.,ys} c {xl,...,xpl}"

and. LéfalII; CUi;lI'I: ) 4 which is possible since

Ir'l c ‘.(xi-a('xi),xiw(xi)) for some i=1,...,p.

- { . "
Then, zn;lg(ln) < z¢1=1g(Ir;) + 2¢ szf__lg(lr)v + 2¢
S &

* )
which implies that mg[E] szn=lg(1n)+g< Zr=lg

(I'r')-l-Se <
#
V(g,Bg[E]) + 3e < gp#[E] + 4e.
*
Hence, mg[E] < gD#[E],

*
Th s, E] = # E].
u mg[ ] €p (E] 273



We now show that for continuous, monotone increasing
functions g, the Lebesgue-Stieltjes measure is also equal to

the measure generated by the dual of D °,

Theorem l1.2. For a monotone increasing function g and for

*
each set E, gD*[E] = mg[E] if and only if g is continuous.
= ° —_—— —_ —_
Proof. Assume g is continuous on [ a,b ], By a theorem in

Saks [5, p.100 ], when g is -continuous mg[B] = |g(E]].

Thomson shows [ 7, p.162] cthat lg[E]l?mD*[g[E]]'.

where [g[E]| 13 the Lebesgue measure of the set g[E]
and mD.‘.‘.[g[E]] 1s the measure of g[E] with respect to the .
Q

dual of the D, derivation basis.

So it remains to show that mD:[g[E]] = gD:[E]'

. %
For ﬁ* € Do, it follows from Observationm 1.1 and the

continuity of g that

{(x, [u,v]): (gx), [glu),g(v)] ¢ B*} is an element of L,

and that .
x *
(@), [gw),g() N (x,[u,v]) €8} is an element.of Do.
’ ' R * .
We will denote them by § l(B ) and g(p ) respectively.

* %
Let &3>0 be given and B € Do such that

*) V5 I8E] < mpFglE]] + e.
Therefore by the definition of V(l,s*[g[E]]),
*
(£ (g0y)-g@p]: @), (83,80 € 8, gGxy) € gE}
< v,8 gIEID).
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Hence,
-1, * -1, *
(o) sw(zlgby)-glap)]: (x;,la;,b;1) € g726), x.¢ £} = Vig,g L) ED)
< V(L8 [8(E]D).

Since the supremum is greater than or equal to gD:[E],
gp(El =mp*(g(E]] + ¢ by (*) and (**)

and hence gD:[B] SmD:[g[E]].

We now prove the reverse inequality.

*
Let a*e D: such that V(g,8 (E]) < gD:[E] + g

%*
By definitioa of B, for each x and ¢ >0, there exists an I

such that |I| < ¢ with x ¢ I and (I,x) ¢ g*. Therefore

there is going to be a g[BI] € D:' such that for each &0,
there-'exis't:s (I,x) € B* such that g[I] < &

by the continuity of g.

Since g[ﬁI] = g may not include all .(g(g),g[l]’)

such that (I,x) e'g*, there will be fewer finite sums, so
Va8 '(e(E]]) = V(g8 [E]) < gp*(E] + e

Hence my*[g[E]] = g *(E] + e

Therefore mD:["g[E]] = gD:[E].

Thas  mp*[g[E]] = gp*(E].

Therefore, when g is continuous, gD:[E] =mg[E].

Assume g is monotone on [a,b] and not continuous.

Without loss of generality, assume g is discontinuous from
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the left at Xo. Let & < [g(Xo)-g(xo-)].
Let E be a set with X,€ E. Let {In};_1 be a sequence
of open intervals such that

Ec U;;lIn and z;=lg(1n) < mg[E] + €.
*

Let B be the dual such that if x ¢ In and x # Xo,

(I,x) € B* if and only if T c I/ and xo ¢ 1,

and for Xo, let (I,x0) € B* if and only if

I Lis contained in the, In to which x, belongs and x,

is a left hand endpoint of I.

Ler ((x,9;) 10 c 8 (E].

Then 20_;g(J;) *+ [g(xe)-g(xe-)] < 2-_1g(I ).

Therefore V(g,B*[E]) + [g(xe)-g(xe-)] = z;=lg(1n)'

Hence gD:[E] + [g(xe)-g(x0-)] smg[E] + €.

*
5o gp, (E] < mg[E] by the choice of e.

Since the dual derivation basis D: does not have the
partitioning property, D: does not give rise to an
integral. However, the D# derivation basis and the
D° derivation basis ‘do.

By Observation 1.5, if f is D# integrable, it is
D° integrable. It is known [1 ] that if f is D° integrable,
then f is Perron-Stieltjes integrable. Therefore, if f is
D# integrable, it is measurable'wich reépecc to the
Lebesgue-Stieltjes measure.

Also, by Corollary 6.6 of McShane [2, . p.l1l6],

if £ is D #integrable, it is absolutely integrable.
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Therefore, it suffices to show equivalence of the
D# Stieltjes integral with the Lebesgue-Stieltjes integral
fo? non-negative functions f.

The following lemmas are needed to establish that
whenever a non-negative function f is Lebesgue-Stieltjes
integrable with respect to a monotone g, it is D# integrable

with respect to g and the integrals agree.

Lemma l.l1. Let E 33 any Lebesgue-Stieltjes measurable set.

Then the characteristic function of E, XE(X)’ is

D# integrable with respect to g and

#
D - dg(x) = E].
Pxg(x)dg(x) = m [E]

Proof. ©Let the interval-point function h(x,I) be defined
as 'XE(x)gII). Then zan(xi)g(Ii) = m(n,E].
Let £>0 be given. Then, there exists a closed set F
such that Fc E and mg[E] < mg[F] + €.
Let 6:R-R'  be such thac

(x-8(x),x+6(x)) < [a,b\F if x € [a,b]\F

. : 3 . ..
and V(g,ﬂ;[E]) < gD#[E] +¢. Letnc ﬁi be a partition of [a,b].
o n

Then, n[F] _{(xi,Ii?}igl, where Fc U]I..
So, mg{E] < mg[F]+s SRZU[P]XF(x)g(I)+é = Z"[E]XE(x)g(I)+e =

m[w,E]+e = V(g,Bs[E])+a < gD#[E] + 2¢ = mg[E] + 2¢.
Therefore IZ"XE(x)gCI)-mg[E]l < e for all g c Bg

# ) # '
Hence XE is D" integrable and D -_/‘)(E(x)dg(x) =mg[E]'

Lemma 1.2. ©Let s(x) be any Lebesgue-Stieltjes-simple
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function with respect to g. That is, s(x) is measurable

with .respect to mg and takes on a finite number of values.

Then s(x) is D# integrable.

roof. =g
P Since s(x) zn=lCnXEn(x) where XEn
is the characteristic function of a Lebesgue-Stieltjes
# .
measurable set and the D Stieltjes integral is finitely

additive on functions [ 2], s(xj is D# integrable.

Theorem 1.3. If f=0 is Lebesgue-Stieltjes integrable
#

with respect to g, then £ 1is D integrable with respect to g.

Proof. Since f is Lebesgue-Stieltjes integrable with

respect to g, L-S/fdg < =.

Also,'ghere exists a sequence of simple functionms {sn}
such that’ sn(x) < sn+1(x) for all n

and sn(x) - f(X) as n - =

By Theorem 7.6 of McShane [2, p.20] and the well-known
monotone convergence theorem for Lebesgue-Stieltjes
integrals [ 5], f is D #inCegrable

and D'-rfdg = L-Srfdg.

By Lemma 1.2, Theorem 7.6 of McShame [ 2, p.20 ],
and the fact that if f is D# integrable with respect to g,
jt is measurable with respect to the Lebesgue-Stieltjes
measure m £ {s therefore the limit of simple functions

’

and hence Lebesgue-Stieltjes integrable.
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#

Theorem l.4. If f >0 and D" integrable, and [a,b ]

is any interval where g(a)'= g(a-) and g(b) = g(b+),

then D'-ffdg = g #(f) on [a,bl.

Proof. Let ¢ >0 be given. Let [a,b] be any interval

where g(a) = g(a-) and g(b) = g(b+).

Then, gp#[a,b] = mg[a,b] = g(b)-g(a).

Then, there exists a § such that

1
o' redg - 1 £0x)g(T)] < e

for all partitiomns =m C Bgl of [a,b].
There exists a §, such that V(fg,Bgz) < V(fg,D#) + g,
Let 6(x) = min{6;(x),6,(x)}.
Then, V(fg,Bg) < V(fg,D#) + €.
Therefore, there exists a partition nm of h”b]‘hlﬁg
such that -eV(fg,D') = -e+V(fg,B8) < £ £(x,)g(l,) <

V(g,Bg) < V(£g,0h) + c.
Hence ID#-ffdg - V(fg,D#)l <

D' rfdg-2,£0x)g(1;) I+ |2, £0xy (1) -V(eg, D) < 2.
Thus, for any non-negative point function f on an interval
[a,b] where g(a) = g(a-) and g(b) = g(b+),

#
D' -sfdg = gD#(f).

Because a function of bounded variation can be
expressed as the difference of two monotone increasing
functions, in‘order to have equality of the integrals for
functions g of bounded Qariation it suffices to show

equality of the.integrals for monotone functions g.
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This is what was just done.

The Lebesgue-Stieltjes measure of an interval [a,b]
with respect to monotone increasing g is g(b+)-g(a-) and
thus the measure and the integral are affected by points
outside of [a,b]. On che other hand, the D# Sctielctjes
integral on [a,b ] is not affected by points outside
of [a,b]. However,

L-5,/°¢dg - £(a) [g(a)-g(a-)] - £(b) [g(b+)-g(b)]

whéere the right hand side is a modification of the Lebesgue-
stieltjes integral indicated by Saks [ 6, p.208].

This integral is additive on intervals and is egual to the

D #integral on [a,b ].

Similar proofs to the ;bove can be used to show that
the weak Kurzweil base of Definit}on 2.2.1 and the weak
Kempisty g-base of Definition 2.2.4 in K.M. Ostaszewski's
Ph.D. Dissertation [ 4] give rise to Stieltjes integrals
that are the Lebesgue-Stieltjes integral in the plane [3].

n
These definitions and proofs can be generalized to R .

This material is part of my dissertation [3] which

was prepared under the direc:ioﬁ of Professor J. Foran.
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