Real Analysis Exchange Vol. 12 (1986-87)

T. Natkaniec, Department of Mathematics, Pedagogical University of Bydgoszcz, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland.

THE LATTICE GENERATED BY DIFFERENTIABLE FUNCTIONS

The purpose of the present paper is to describe the lattice generated by the family of all differentiable functions. It answers a question posed by Z. Grande in [1].

Let us establish some of the terminology to be used. \mathbb{R} denotes the real line. For every function $f : \mathbb{R} \to \mathbb{R}$ N(f) denotes the set of all points at which f is not differentiable.

The symbol \mathcal{J} stands for the family of all differentiable functions. The symbol \mathcal{R} denotes the family of all continuous function $f : \mathbb{R} \to \mathbb{R}$ with the following properties:

(1) the set N(f) is a finite union of discrete sets,

(2) for every $x \in \mathbb{R}$ the right-hand derivative $f_+(x)$ and the left-hand derivative $f'_-(x)$ exist at x.

Observe that $\mathcal{J} \subset \mathbb{R}$.

A family Ω of real functions is a lattice iff $\max(f,g) \in \Omega$ and $\min(f,g) \in \Omega$ for $f,g \in \Omega$. If B is a family of real functions, then $\mathcal{L}(B)$ denotes the lattice generated by B, i.e., the smallest lattice of functions containing B.

The following question was posed in [1].

"<u>Problem 7</u>. What is the smallest lattice of functions containing all differentiable functions? Is it the family of all continuous functions differentiable at every point except perhaps at the points of a set which is a finite union of discrete sets?"

In this paper we shall prove that the lattice $\mathcal{L}(\mathcal{D})$ generated by the family of all differentiable functions is equal to the family \mathcal{R} .

<u>Theorem 1</u>. The family \mathcal{R} is a lattice of functions.

<u>**Proof.**</u> Let $f,g \in \mathbb{R}$. We shall prove that $h = \max(f,g)$ belongs to \mathbb{R} . First, we shall verify that the set $M = N(h) \setminus (N(f) \cup N(g))$ is discrete and consequently, N(h) is a finite union of discrete sets.

Notice that h(x) = f(x) = g(x) for every $x \in M$. Let $x \in M$. Suppose that there exists a sequence $\{x_n\}_{n \in \mathbb{N}}$ with $x_n \in M$ (n = 1, 2, ...,) and $\lim_{n \to \infty} x_n = x$. Then f(x) = g(x) and $f(x_n) = g(x_n)$ for n = 1, 2, Since $n \to \infty$ the functions f and g are differentiable,

$$f'(x) = \lim_{n \to \infty} \frac{f(x_n) - f(x)}{x_n - x} = \lim_{n \to \infty} \frac{g(x_n) - g(x)}{x_n - x} = g'(x)$$

Thus the function h is differentiable at x and h'(x) = f'(x) = g'(x), contrary to $x \in M$. Hence for every $x \in M$ there exists a neighbourhood U of x such that $U \cap M = \{x\}$. Therefore the set M is discrete.

Let $x \in N(h)$. We prove that $h'_{-}(x)$ and $h'_{+}(x)$ exist. If f(x) > g(x)(f(x) < g(x)), then there exists a neighborhood U of x with $h|_{U} = f|_{U} >$ $g|_{U}$ ($f|_{U} < g|_{U} = h|_{U}$). Hence $h'_{-}(x)$ and $h'_{+}(x)$ exist, $h'_{-}(x) = f'_{-}(x)$ ($h'_{-}(x) = g'_{-}(x)$) and $h'_{+}(x) = f'_{+}(x)$ ($h'_{+}(x) = g'_{+}(x)$).

Assume that f(x) = g(x). There are two cases.

1. If $f'_{-}(x) = g'_{-}(x)$, then $h'_{-}(x) = f'_{-}(x)$. 2. If $f'_{-}(x) > g'_{-}(x)$, then

$$\lim_{z\to x^-} \frac{f(z) - f(x)}{z - x} > \lim_{z\to x^-} \frac{g(z) - g(x)}{z - x}.$$

Since f(x) = g(x), we have

$$\lim_{z\to x^-} \frac{f(z) - g(z)}{z - x} > 0.$$

Since z-x < 0, there is an a < x such that $f(z) - g(z) \neq 0$ for every $z \in (a,x]$. Then h|(a,x] = g|(a,x] and h'(x) = g'(x). If f'(x) < g'(x), the proof is analogous.

Similarly, we can prove that $h'_+(x)$ exists. (Notice additionally that $h'_-(x) = \min(f'_-(x), g'_-(x))$ and $h'_+(x) = \max(f'_+(x), g'_+(x))$.)

Thus, $\max(f,g) \in \mathbb{R}$ and similarly we can prove that $\min(f,g) \in \mathbb{R}$.

For $A \in \mathbb{R}$ let der(A) denote the set of all accumulation points of A which belong to A. Also, let der^o(A) = A and der^{k+1}(A) = der(der^k(A)).

<u>Lemma 1</u>. (See [2], Lemma 2, pages 17-20.) For every $C \subseteq \mathbb{R}$ and for every n = 1, 2, ... the following statements are equivalent:

- (i) C is a union of n discrete sets.
- (ii) derⁿ(C) = ϕ .

<u>**Proof.</u>** If C is discrete, then $der(C) = \phi$. Assume that $der^{n}(C) = \phi$ whenever C is a union of n discrete sets.</u>

Let C be a union of n+1 discrete sets A_1, A_2, \dots, A_{n+1} . Observe that

$$der^{n+1}(C) \leftarrow U [A_{i} \cap der^{n}(U A_{j})],$$

i=1 j=1, j=1

Hence derⁿ⁺¹(C) = ϕ , and by induction we obtain that the implication (i) => (ii) holds for every $n \in N$.

The implication (ii) => (i) is obvious since

discrete.

Let us define the family \Re_n of all functions $f \in \mathbb{R}$ such that $der^n(N(f)) = \phi$, for n = 0, 1, ... Notice that $\Re = \bigcup_{n \in \mathbb{N}} \Re_n$.

Lemma 2. If $f \in \mathbb{R}_n$, then there exists functions $g_1, g_2, h_1, h_2 \in \mathbb{R}_{n-1}$ such that

$$f = min(max(g_1, g_2), max(h_1, h_2)).$$

<u>Proof</u>. Let $f \in \Re_n$ and $C = N(f) \setminus der(N(f))$. Observe that the set C is discrete (and countable), $C \cap cl der(N(f)) = \phi$ and der(N(f)) is a union of n-l discrete sets.

Let $s : C \rightarrow N$ be a one-to-one function with the following properties: - if $f'_{-}(c) < f'_{+}(c)$, then s(c) is even,

and

- if $f'_{-}(c) > f'_{+}(c)$, then s(c) is odd.

Let M = s(C) and $c_m = s^{-1}(m)$.

Let $\{(a_m, b_m)\}_{m \in M}$ be a sequence of pairwise disjoint intervals with a \notin N(f), $b_m \notin N(f)$ and $(a_m, b_m) \cap N(f) = \{c_m\}$ for $m \in M$.

Let $p_{m,i}$: $[a_m, b_m] \rightarrow \mathbb{R}$ be differentiable functions with the following properties (i = 1,2, m ϵ M):

- (1) $p_{\underline{m}}, i(\underline{a}_{\underline{m}}) = f(\underline{a}_{\underline{m}})$ and $p_{\underline{m}}, i(\underline{b}_{\underline{m}}) = f(\underline{b}_{\underline{m}})$,
- (2) $(p_{m,i})'_{+}(a_{m}) = f'(a_{m})$ and $(p_{m,i})'_{-}(b_{m}) = f'(b_{m})$,
- (3) $p_{\mathbf{m},1}|[a_{\mathbf{m}},c_{\mathbf{m}}] = f|_{[a_{\mathbf{m}},c_{\mathbf{m}}]}$ and $p_{\mathbf{m},2}|_{[c_{\mathbf{m}},b_{\mathbf{m}}]} = f|_{[c_{\mathbf{m}},b_{\mathbf{m}}]}$.
- (4) $(p_{m,1})'_{+}(c_{m}) = f'_{-}(c_{m})$ and $(p_{m,2})'_{-}(c_{m}) = f'_{+}(c_{m})$,
- (5) $p_{\mathbf{m},i}(x) \neq f(x)$ for $x \in [a_{\mathbf{m}}, b_{\mathbf{m}}]$, $i = 1, 2, m \in M, m = 2k$, and $p_{\mathbf{m},i}(x) \geq f(x)$ for $x \in [a_{\mathbf{m}}, b_{\mathbf{m}}]$, $i = 1, 2, m \in M, m = 2k+1$,
- (6) $|p_{m,i}(x) f(x)| \leq \min((x-a_m)^2, (x-b_m)^2)$ for $x \in [a_m, b_m]$.

Let us define the functions $g_i, h_i(i = 1, 2)$ such that $N(g_i) \subset der(N(f))$, $N(h_i) \subset der(N(f))$ and $g_i, h_i \in \mathcal{R}_{n-1}$ as follows:

$$g_{i}(x) = \begin{cases} f(x) & \text{for } x \notin \bigcup_{m \in M} [a_{m}, b_{m}], \\ p_{m,i}(x) & \text{for } x \in [a, b_{m}], m \in M \text{ and } m = 2k, \\ \\ p_{m,i}(x) & \text{for } x \in [a_{m}, b_{m}], m \in M \text{ and } m = 2k+1. \end{cases}$$

$$h_{i}(x) = \begin{cases} f(x) & \text{for } x \notin U_{m \in M} [a_{m}, b_{m}], \\ p_{m,i}(x) & \text{for } x \in [a_{m}, b_{m}], m \in M \text{ and } m = 2k, \\ p_{m,2}(x) & \text{for } x \in [a_{m}, b_{m}], m \in M \text{ and } m = 2k+1. \end{cases}$$

Let us put $k_1 = \max(g_1, g_2)$, $k_2 = \max(h_1, h_2)$ and observe that $f = \min(k_2, k_2)$.

Theorem 2. We have the equality $\mathcal{L}(\mathcal{D}) = \mathbb{R}$.

<u>Proof</u>. Since $\mathcal{O} \subseteq \mathbb{R}$ and the family \mathbb{R} is a lattice, we have $\mathcal{L}_{\mathcal{O}}, \subseteq \mathbb{R}$. By Lemma 2 it follows that $\mathbb{R}_n \subseteq \mathcal{L}(\mathcal{O})$ for each $n \in \mathbb{N}$. Hence $\mathbb{R} \subseteq \mathcal{L}(\mathcal{O})$ and the equality $\mathcal{L}(\mathcal{O}) = \mathbb{R}$ is proved.

<u>Acknowledgements</u>. The author would like to thank the referees for their valuable remarks which enabled him to improve this paper.

<u>Remark.</u> Prof. Z. Grande has remarked that in his proof of Theorem 7 [1] the statement

(5) $|h_n(x)| \leq \max((x-a_n + r_n)^2, (x-a_n - r_n)^2)$

must be added.

References

- 1. Z. Grande, Some problems in differentiation theory, Real Analysis Exchange, Vol. 10, No. 2 (1984-85), pp. 334-343.
- 2. T. Natkaniec, Sets of points of continuity and semicontinuity of real functions (in Polish), Ph.D. Dissertation, Łodz, (1984).

Received February 24, 1986