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 THE LATTICE GENERATED BY DIFFERENTIATE FUNCTIONS

 The purpose of the present paper is to describe the lattice generated by

 the family of all differentiate functions. It answers a question posed by Z.

 Grande in [1].

 Let us establish some of the terminology to be used. R denotes the real

 line. For every function f :R ->-R N{f) denotes the set of all points at

 which f is not differentiate.

 The symbol 0 stands for the family of all differentiate functions. The

 symbol ft denotes the family of all continuous function f :R F with the

 following properties:

 (1) the set N(f) is a finite union of discrete sets,

 (2) for every x e R the right-hand derivative f+(x) and the left-hand

 derivative f!(x) exist at x.
 Observe that O c ft.

 A family a of real functions is a lattice iff max(f,g) e a and

 min(f,g) € a for f,g c OL If B is a family of real functions, then ¿(B)

 denotes the lattice generated by B, i.e., the smallest lattice of functions

 containing B.

 The following question was posed in [1].

 "Problem 7. What is the smallest lattice of functions containing all

 differentiate functions? Is it the family of all continuous functions

 differentiate at every point except perhaps at the points of a set which is a

 finite -union of discrete sets?"

 In this paper we shall prove that the lattice £( 0 ) generated by the

 family of all differentiate functions is equal to the family ft.

 Theorem 1. The family ft is a lattice of functions.

 Proof. Let f,g e ft. We shall prove that h = max(f,g) belongs to ft.

 First, we shall verify that the set M = N(h) ' (N(f) u N(g)) is discrete and
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 consequently, N(h) is a finite union of discrete sets.

 Notice that h(x).= f(x) = g(x) for every x e M. Let x € M. Suppose

 that there exists a sequence ixn)n€N with xn e M (n = 1,2,...,) and
 lia xn = x. Then f(x) = g(x) and f(xn) = g(xn) for n = 1,2,... . Since
 n-*»

 the functions f and g are differentiable,

 f(*n) - f(x) «(*n) - í(x) ,
 f (x) = lun

 n-x» ir** n

 Thus the function h is differentiable at x and h'(x) = f'(x) = g' M,

 contrary to x € M. Hence for every x € M there exists a neighbourhood U

 of x such that U n m = {x}. Therefore the set M is discrete.

 Let x € N(h). We prove that hi(x) and h+(x) exist. If f{x) > g(x)
 (f(x) < g(x)), then there exists a neighborhood U of x with h|u = flu >

 g|U (flu < fflu = k|u)> Hence hi(x) and h+(x) exist, hi(x) = fl(x)
 (hl(x) = gL(x) ) and h+(x) = fļ(x) (hļ(x) = g+(x)).

 Assume that f(x) = g(x). There are two cases.

 1. If fl(x) = gl(x), then hl(x) = fl(x).
 2. If fl(x) > gl(x), then

 lljn > li, K(') - «<*> .
 - z-x _ z-x

 Z-*X - 2">x

 Since f(x) = g(x), we have

 f(z) - g(z) > 0
 Z-x- 2 - x

 Since z-x < 0, there is an a < x such that f(z) - g(z) * 0 for every

 z « (a,x]. Then h|(a,x] = g|(a,x] and hi(x) = gi(x). If fl(x) < g!(x), the
 proof is analogous.

 Similarly, we can prove that h+(x) exists. (Notice additionally that

 hl(x) = min(fi(x), gl(x)) and hļ(x) = max(fļ(x), gļ(x)).)
 Thus, max(f,g) e R and similarly we can prove that min(f,g) € R.

 For A c F let der(A) denote the set of all accumulation points of A

 which belong to A. Also, let der°(A) = A and der^+1(A) = der(der^(A)).
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 Lemma 1. (See [2], Lemma 2, pages 17-20.) For every C c R and for

 every n = 1,2,... the following statements are equivalent:

 (i) C is a union of n discrete sets.

 (ii) dern(C) = ♦.

 Proof. If C is discrete, then deř(C) = ♦. Assume that dern(C) = ♦

 whenever C is a union of n discrete sets.

 Let C be a union of n+1 discrete sets Au A2,..MAn+1. Observe that

 n+1 n+1

 dern+1(C) c U [Aļ n dern( U Aj)].
 i=l j=l,j*i

 Hence dern+l(C) = ♦, and by induction we obtain that the implication (i) =>

 (ii) holds for every n € N.

 The implication (ii) => (i) is obvious since

 n-1

 C = U (der^(C) ' der'c+1(C)) and the sets der^(C) ' der^+1(C) are
 k=0

 discrete.

 Let us define the family Rn of all functions f € R such that

 dern(N(f)) = ♦, for n = 0,1,... . Notice that 02 = Rn.

 Igņ. 2. If f € fcn, then there exists functions ¿i,¿a>hi,ha « Rn-!
 such that

 f = Binímaxígoga), max(h,,ha)).

 Proof. Let f e and C = N(f) ' der(N(f)). Observe that the set C

 is discrete (and countable), -C n cl der(N(f)) = ♦ and der(N('f)) is a union
 of n-1 discrete sets.

 Let s- : C •» N be a one-to-one function with the following properties:

 - if f-(c) < f+(c), then s(c) is even,

 and

 - if fl(c) > f+(c), then s(c) is odd.

 Let M = s(C) and cffl = s-1 (m) .
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 Let be a sequence of pairwise disjoint intervals with a i

 N(f ) , bn, i N(f ) and (a^bj,,) n N(f) = {cm} for m c M.

 Let Pn, i : [am>bjn] -> R be differentiable functions with the following
 properties (i = 1,2, m € M):

 (1) Pm, i(®Bi) = ^(%i) and Pn, i(^m) = f(bm)>

 (2) (Pm,i)+ (%i) = *'(a«) and (Pu, i)- (*>■) = f'(bm)»

 (3) PB,»|[a,,ca] = t'[amtCm] and Pm, a I [Cm,bļaj = fl[Cm,bŒ]-

 (4) (Pn, i)+ (cjļj) = f- (cju) and (Pm, a)- (cm) - f+ (cjn)>

 (5) Pm,i(x) é f(x) íor x € [ajn.bjnJ, i = 1,2, m e M, m = 2k,

 and Pą, i(x) * f(x) for x € [a^.b^], i = 1,2, m « M, m = 2k+l,

 (6) IPm, i(x) ~ f(x)l é min( (x-an,) 2 , (x-bŒ)2) for x c [a^b,,,].

 Let us define the functions gļ,hļ(i = 1,2) such that N(g¿) c der(N(f)),

 N(hi) c der(N(f) ) and gļ.hi € tën-i as follows:

 ' f (x) for x i UffleM [ajn.bļ,,],

 gi(x) = Pm,i(x) for x e [a^], m € M and m = 2k,

 . Pmtl(x) for x « [an.bn,], m € M and m = 2k+l.

 f (x) for x i UmeM [Ąnjbn,],

 hi(x) = Pm,i(x) for x € [a^bm], m e M and m = 2k,

 . pjn>2(x) for x € [ag^bg], m € M and m = 2k+l.

 Let us put ki = max(gj,ga), k2 = max(h1,h2) and observe that f =
 min(k2,k2).
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 Theorem 2. We have the equality £(û) = R. .

 Proof. Since 0 c R and the family fi iś a lattice, we have £<£> c R.

 By Towimn 2 it follows that ®n c £(JJ) for each n e N. Hence R c £(JJ)

 and the equality ¿(JJ) = fc is proved.

 AcknowledgeMenta . The author would like to thank the referees for their

 valuable remarks which enabled him to improve this paper.

 Remark. Prof. Z. Grande has remarked that in his proof of Theorem 7 [1]

 the statement

 (5) |hn(x) I é max((x-an + rn)a, (x-an - rn)a)

 must be added.
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