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 Borei measurability of extreme path derivatives

 The derivative F' of any di fferentiable function F is a function

 of Bai re class one, since F' is the pointwise limit of a sequence
 1 CO

 of continuous functions {n(F(n+^)-F(x))>naļ . A problem that dates
 back to the beginning of this century is that of finding the Bai re

 classification of various types of extreme derivatives. Sierpiński [11]

 showed that the Di ní derivatives of a function of Bai re class a are

 in Bai re class a + 3. Banach [2] proved that the Di ni derivatives

 of the bounded functions of Bai re class a are in Bai re class a + 2.

 We have also by Kempisty [5] and Hajek [4] the successive results

 that the extreme bilateral derivatives (for arbitrary functions) are

 in Baire class 3 and in Baire class two. Misik [7] was able to gen-

 eralize Banach 's result for arbitrary functions of Baire class a.

 He showed that the upper (lower) Di ni derivatives of a Borei function

 of Baire class a are upper (lower) semi-Borel functions of Baire class

 o + 1. He also [8], [9] proved that for any ordinal number a the

 upper (lower) unilateral approximate derivatives of Bore! functions

 of -the class a are lower (upper) semi-Borel functions of the class

 a + 2.

 Bruckner, O' Mall ey and Thomson [3] introduced the concept of

 path derivative as a unifying approach to the study of a number of

 generalized derivatives. They showed that for a system of paths
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 E = {Ex:x€R} satisfying the external intersection condition any

 E-derivati/e is in Bai re class one. We begin this paper with the

 definition of a continuous system of paths, then we show that the

 extreme path derivative of a continuous function relative to such

 systems of paths is a function in Bai re class two. Also we show that

 under some added condition the extreme path derivatives of a function

 in Baire class one is in Baire class four. This result does not

 hold in general for an arbitrary Bore! measurable function. I.n fact

 we give an example of a continuous system of paths E and a function

 F in Baire class two such that is not Bore! measurable. It will

 also be shown that the extreme path derivatives of a Bore! measurable

 function with respect to a continuous system of paths is Lebesgue

 measurable. We conclude the paper by briefly discussing the Borei

 measurabil i ty of path derivatives and. proving that the path derivative

 of a function of Baire class a is in Baire class a + 2 when the system

 of path is continuous.

 The continuous functions are said to be of type Bq (Baire class 0)

 Functions which' are limits of convergent sequences of continuous functions

 are of type B-j (Baire class 1). Let íí be the first non-denumerable

 ordinal number. For any a < Œ if the functions of types Bg have been

 'defined for every ß < a, then the functions of type Ba (Baire class a)

 are limits of convergent sequences of functions of types S < a. By

 transfinite indyction this defines the Baire functions of all classes

 o < fl.
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 Let A and B be compact subsets of R (the real line). Then

 dH(A,B) = inf{e: A(e)^B and 8(e)ûA},
 where

 A(e) = U (x-e.x+c).
 x€A

 In the set of compact subsets of R, d^ is a metric called Hausdorff
 metric .

 If $ is a function from a given topological space X into the

 space of all non-void subsets erf a given topological space y, then a

 selection for $ is any function F from X into y such that F(x)€4>(x) for

 all x€X. A selection is called Borei measurable or measurable depend-

 ing on whether F is Borei measurable or measurable.

 A set E is a path at x for x€R if E c R, x€E , and x is a limit
 A A """ A

 point of E . A system of paths E, is a collection {E : x€R}, where
 A A

 each Ex is a path at x. If lim ^ exis1:s an£i ">s finite, then it
 y*-x

 yi£x

 is called the E-derivative of F at x and is denoted by Fģ ( x ) . The

 extreme E-deri vati ves are similarly defined. When we are dealing with

 a specific system of paths tailored to a continuous function, we may

 alter E * {E : x€[0,l]} to E, s (T : x€[0,l]}, where ï denotes the
 A I A A

 closure of E . Throughout this paper A denotes the complement of A, N

 the set of positive integers, and Q the set of rational numbers.

 Definition 1 : Let E » ^x:x * [Ū.1]) be a system of paths, with each

 Ex being compact. If the function E: x -*■ Ex is a continuous function,

 we say E is a continuous system of paths. (E with the Hausdorff metric

 forms a metric space.)

 Definition- 2: Let E = (Ex: x € [0,1]} be a system of paths:
 (i) E is said to be bilateral at x if x is a bilateral point of
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 accumulation of Ex.

 (ii) E is said to be unilateral at x if x is a unilateral point

 of accumulation of Ex<

 Later in the paper we will obtain a generalization of the following

 theorem due to Sierpiński.

 Theorem 3 (Sierpiński): If F is continuous on [a,b], then each of

 the Di ni derivative is in Bai re class 2.

 Proof: Me prove the theorem for D+F, a similar proof holds for

 D~F, D+F, and D_F.

 For each positive integer n let

 F " (x) * sup {WX) t_x : x + 7¿T n+1 - < * - < x + TT' n • " tíCa.b] sup t_x : n+1 - - TT' n

 Since F is continuous., each function Fn is also continuous. It is

 easy to verify that D+F(x) » lim sup But an upper limit of a
 n-«°

 sequence of continuous functions is in Bai re class 2.

 Exampl e 4 ( [3] , Theorem 3.1 page 100): There is a continuous function

 F such that, given any function f on R, a system of paths' E »

 {Ex: x € R} can be found so that Fģ ■ f.

 Example 4 implies that the extreme path derivatives of a continuous

 function could behave badly. So in order to have a nice extreme path

 deri vative' we should have some restrictions on the system of paths

 as well as the function.
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 Main theorem 5: let E = {Ex: x€[0,l ]} be a continuous system of paths,

 F(x) a continuous function defined on [0,1].

 (a) If F is E-di fferentiabl e, then F£(x) is a function in Baire class
 one.

 (b) ?£ and Fļ are functions of Baire class two.

 In order to prove theorem 5, one would like to imitate Sierpiński 's

 proof. We have two immediate problems. The first problem is that

 i f we défi ne

 F„(X) • SUP ¡ííiHíil : [x ♦ -ip X ♦ 1]} ,

 then Ex fl [x + x + -^] might be empty. In that case what should

 we défi ne for Fn(x) ?.

 The second problem is that E and E might behave differently when
 x y

 x and y are very close. In fact Example 4 illustrates that even for a

 continuous function F it is possible to find a system of paths such

 that F£ is not measurable. Thus, in order to achieve our aim, we will

 attempt to choose a sequence of positive real numbers {an;*_ļ , an+ļ < an

 and lim a„ =0 such that E P [x +' a , x + a ] /* 0 for all x. The n x n+1 , n
 n-*»

 following lemma shows that this is possible when the system of paths

 E = íEx: x € [0,1]} is continuous. The foundations of the proof of
 Theorem 5 are based on Lemmas 8 and 9.

 Lemma 6: If E = {Ex: x î [0,1]} is a continuous system of paths. Then

 there exists a sequence ^ ia„}" , such that a > 0 for all n, {a„} ^ n n=i , n n

 decreases to zero, and

 (•Ex n [x+an+ļ , x+an_i ]) U (Ex n [x-ap_1 , x-an+ļ]) ? 0 for all x S [0,1].
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 Proof: Let a^ = 1 .

 Défi ne

 a2 ¿ = *5 inf sup{|y|: y 6 ((E x -X) n [0,a,)) lxi U ((E -X) n[-av0])}. ¿ x€[0,l] x lxi

 Obviously 0 < < aļ- Let an be defined. Inductively define

 an+l n 1 = H inf sup {|yļ: y £ [((E x -x) n [0,al)U((E n x -x) n C-a.,0])]}. n n 1 x6[0 , 1] x n x n
 Then 0 •< a, < a

 - rvi n

 We claim an > 0 for all n. If not, there exists a natural
 number n so that a s 0, but a, lN > 0. o nQ a, (n-|) lN
 a = is inf sup{|yj:y€[(E 1 x -x) n [0,a, ,)]]U[(E 1 x -x) fl [-a, , i; v 0]} . no x€[0 ,1] 1 x Cno 1 x tno i;

 Since zero is an accumulation point of (Ex-x),

 C(Ex-x) n [0 ,a^n .1^]]U[(Ex-x) nC-a(n * 0. The number

 rx s sup { |yj : y e C(Ex"x) n Lū>ā(n -i) 33UC ( E^-x) fl [-a^ .1)(0]]]

 is positive for everv x 6 [0,1] and inf {r } = 0. Thus there
 x6[0,l] . X

 is a sequence {x_}*_. so that lim r = 0. Since the sequence
 n n- i _ X

 _ rv*® n

 {x } 9 - is bounded, without loss of aeneralitv we can assume' that n n- i

 xn converges to x . From the continuity of E follows that Ex tends
 n

 t0 Ex
 0
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 This i mp lies lim r = r =0. But Ex is the path leading to xn xo o

 X and hence r cannot be zero. So a. > 0 for all n. Also
 ox n

 o

 an < ** an-l < ** * ** an-2 "* < ai =
 "hus lim a < lim (H)n = 0 implying a decreases to

 o*x p-**

 zero. It is clear that (Ex D [x + an+^, x+an_,]ü(Ex H [x- = n_- .

 x-an+ļ]) * 2 for all x 6 [0,1]. The sequence Uni*=ļ_ nas all the
 desired properties.

 Lemma 7: Let {g_(x)}T_i, (h_(x)}"_, be sequences of lower.
 - n n- i n n- i

 upper semi Borei functions of the class or, respectively. If

 a) f(x) = lim gn(x) = Tim Mx),
 n-**> n-x»

 then f € Ba+ļ .

 d) f(x) = lim sup g_(x),
 « n
 n-Hx

 then f € B a+2 ,0. a+2 ,0.

 Proof: (a) Suppose f(x) = lim Mx) = sup inf h (x).
 n n ■ m> n

 The set
 os

 {x: f(x) < t] = H {x: inf h (x) < t}
 n=l m>n

 03 00

 = H H {x: inf h (x) < t + r}
 n=l k=l m>n K
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 OD OD OD

 s D fi U {x: h (x) < t + -r} , and the set
 n=l k=l m=n •

 {x: f(x) > t} = { x: lim g (x) > t} = {x: inf sup g_(x) > t]
 n-*» n m>n

 09

 = n {x: sup g (x) > t]
 n=l m>n m

 00 OD

 »n n {x: sup g (x) > t - r-}
 n=l k=l m>n m K

 OB OD OD

 » n n U {x: g (x) > t - h.
 n=l k=l m=n m K

 Since gm(x) and hm(x) are lower, upper semi-Borei function of tne

 class o, respectively, the sets {x: hm(x) < t + 1/k} , and

 (x:gm(x) > t - 1/k] are of the additive Borei class or for all t and

 k. Hence the sets {x: f(x) < t} and {x: f(x) 5 t} are of multipli-

 cative class Cf+l for all t 6 R. Thus f 6 ßQ+1-

 b) If f(x) = lim sup g"n(x) , then we have

 {x: f(x) < tf = ix: f(x) > t} = U {x: f(x) > t + h
 r=l

 OD 00 OD OB

 = U n n U {x: g m (x) > t - ļ K * h. r r=l n=l k=l m=n m K r
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 Hence the sets {x:f(x) < t} and {x: f(x) > t} are of the multi-

 plicative Borei class çr+2. Thus f 6 BQ+2'

 Lemma 8: Let E = {Ex: x 6 [0,1]} be a continuous system of
 paths, F(x) a continuous function defined on [0,1], and be

 the corresponding sequence as in lemma 6. Then the function

 Fn(x) = sup{[F(y)-F(x.)]/(y-x): y 6 In(x)}, where

 I„(x) » (Ex n [x+a^.x+a^]) U (Ex n [x-a^.x-a^]) is an
 upper semi continuous function.

 Proof: On the contrary suppose that Fn(x) is not an upper semi
 continuous function. Then there is a point xä and a positive e so

 0 0

 that for all Ô = 1/m a point y J could be found such that |y 1 -x l < J m 1 m o i

 1/m, and F íy_) > Fix) + e . where
 n m n o o

 Fn(ym) = sup{[F(y)-F(yļn)]/(y-yļn): y 6 In(ym)}. Since F(x)

 is a continuous function, without loss of generality we can assume

 each Ex is a closed 'set.

 F(y)-F(y_)
 For each m the function

 y ^m

 and therefore attains its maximum on the closed set I (y ) .
 n m

 So there is a z 6 I_(y_) such that F (y ) = [F(z )-F(y )]/ m n m n m m m

 (zm"ym)- The sequence {z is a bounded sequence, so it has a
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 subsequence {zm such that lim z = z„. We have
 "I. K-JL , m. 0 k k->® , k

 F(') ' F(yni > F(z 2 ) - F(x 2_ )
 Tim F (y ) = lim

 k-»« k k -*• ^m^ o xo

 ' ( 'n^1 implying either z^ e E n [y^ - an.r
 y m + an-i3 " 1 Or z 6 Eu . n [ym ' a„.i, " 1 ym - aB.,]. n 1 Since
 m "k " 1 k *«k . n ' a„.i, " 1 ym "k n 1
 ym "* xo and zm "" zo' by the continuity 0-ř system of paths £,
 k k

 the sequence of sets E„ fi [y„ + a„., , ym + a„ ,] tends to
 ' ' a„., "^1 , ym ™k

 Ex„ O n tx0 ♦ anłl, x0 - Vl], and E " n [y K - a^, y K - O fflķ K K

 an+i^ 'ends t0 Ex n ^x0 " an+l' xo " an-l^ If infinite1y many

 of z^'s are in E |> [y^ * Vl, y^ » an.a] for k-1,2,3,... , ■

 then :„6EI n [x - a^, x0 ♦ an.13 and Ti. Fn(y ) =
 O k'*00 K

 F(20)-F(X.) .
 - T-
 0 0 K

 F„(x„) + £ < F „(xi which is impossible,
 n o o - n o •

 Similarly if infinitely many of zm are in E H [y - an_-, ,
 k ym^ k

 ym - an+1],then Fn(xQ) + cQ < Fn(xQ) which is impossible. So the
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 function F (x) is an upper semi continuous function.

 Lemma 9: - Let I = {Ex: x 6 [0,1] be a continuous system of
 00

 paths, F(x) a continuous function defined on [0,1], and {an}n=ļ

 the corresponding sequence as in lemma 6. Then the function

 Fj,(x) • sup ySE, ň [(X łVl, x »a^Mx -.„.j,

 x - an+^)]} is a lower semi continuous function.
 F(t )-F(x )

 Proof: Let xq 6 [0,1], and Fn(x ) = - £ - r~;
 - o o

 two possibilities for t :

 1) t0 e E n C(x0 * a[Vf1' x0 - an-ļ) U (x0 - an-i> x0 - änn)]
 0

 2) % € (xo + Vr *o * an-l' x0 - Vr xo * Vi>-
 If ^(Xq) " Ū let G(x) = F(x) + ex where c t 0, then F ( x ) =

 Sn(x q) + c "implying Gn(xQ) f 0.

 Thus without loss of generality we can assume that Fn(x ) t 0.
 Case 1 :

 Suppose t0 € n C(x0 + an+1, xQ + a„_i )U(xQ - an_,, xo - a„+1)].

 Let 0 < £ < ļ|F(t0) - F(x0)|.
 Since F(x) is a continuous function defined on [0,1], for e. >'0

 there is a positive y so that |F(xQ)-F(y)| < e when |y-xQ| < y.

 Let Vl = § min {e.V. -ļr1. |VWl|- | VVVl |'l V V Vi |'

 K0"x0+an-]J } . Since E:x-*EX is a continuous function,
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 there is positive 6 less than Yļ so that

 dH(Ex ,E ) < Yt when ļy-xQ ļ < 6. For all y so that ļ y-xQ ļ < ô
 O

 there is a s^ 6 so that jsy"t0ļ < īļ. Therefore j F(s )-F(tQ) j <
 c, and I F(y)-F(x ) ļ < s. We have the following inequalities:

 (1) F(x0) - £ < F(y) < F(x0) * t

 (2) F(t0) - e < F(sy) < F(t0) ♦ £

 (3) x0-y1 < x0-6 < y < x0 - 6 < x0 ♦ Yl

 (1) t0 * Yj < < t0 ♦ Yl.

 From (1) and (2) follows

 (5) F(t0) - F(x0) - 2s < F(sy) - F(y) < F(tQ) - F(xQ) * 2e .

 From (3) and (4) follows

 (6) (t0-x0) - 2^ < sy - y < (t0-x0) » 2y,.

 From the inequalities (5) and (6) it follows that

 if Sy-y > 0,then

 F(s )-F(y) F(t )-F(x )-2e

 {7) sy * y ' <VV * zv1 '
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 if sy - y < 0, and F ( tQ ) - F ( xQ ) > 0, then

 F(sj-F(y) F(t )-F(x- ) + 2e

 <8> -tr'ivv'i.! • and
 if sy-y < 0, and F(t0)-F(xQ) < 0, then

 F(s )-F(y) F(t )-F(x ) * 2e

 <9> -tpi- > (t0- ,oJ •
 Hence in all three cases, since

 Fj,(y)»»up tE£y Í1 Uy-Vr y'Vi'^'Vi^Vi^

 F(t0)-F(x ) ± 2c
 we have FR(y) > - - x ) ¿-y ' Therefore

 F(t )-F(x )
 H.lnf F„(y)> t „ 0 -F,!»,).
 y*xÄ - oo -

 o

 Cąs ę_2: Suppose t(j € (x0+a„+1 .»„-»n-l -VVl 5 ' In this ""
 there is a sequence t, t £, n [( VVr Van-i)U

 0

 (Van-l' Wl)]- so that H" ' * V
 m-*»

 |F(t0)-F(xo)|
 Let o < e <

 Since F(x) is a continuous function defined on [0,1], for e > 0

 there is a positive y so that |F(x )-F(y)| < e when
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 |y-*o I < Y" Choose ^ 6 ÍVm=l so that 1^0 I < v/2, and let ^

 = Hmin U, W-'IVWll- IVWlHVWll'
 I tó*xo*an+ll ' ' Since £:x -> E is a continuous function,

 there is a positive 6 less than min(Yļ»y) so that

 dH(Ex 'V J < Y1 when ly"xo ! < 6 • 0 J

 For all y so that Jy~xQ ļ < 6 there is a

 sy e Ey n [(»•'n.in-l1 » 'V'l' W'
 SO

 |F(sy)-F(t¿) I < e. Since |t¿-tQ | < y/2, we have b(t¿)-F(t0) I < t.

 Therefore | F(sy)-F(tQ) ļ < 2e, j sy-tQ | < 2y, and ļ F(y)-F(xQ) ) < e.
 We have the following inequalities

 (10) F(t0)-F(x0) - 3e < F(sy)-ř(y) < F(tQ) - F(xQ) * 3e ,

 (11) (Vxo} ' 3ï < Vy < (to"xo} + 3ï-

 From the inequalities (10) and (11) similarly as in case 1 follows that:

 F(sv) - F(y) F(t ) - F(xJ ± 3e
 vy > t8B-xBA •

 Fit ) - F(x )

 liminf Fn(y) j 2- • Fn(x0) .
 y ■+ x„ - o o - o

 So Fn(x) is a lower semi continuous function.
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 Proof of Theorem 5:

 ?n(x) , Fn(x) are upper, lower semi continuous functions

 respectively. Since

 Ex n [f*łVl',,in-l)U(x"Vl'*"W1 n C(xłV2,Xłan)U(x"an-

 X"V2)]
 in not empty, points lost by F (x) are

 picked up by F^Cx). Let

 gn(x) = min (Fn(x), frtw. "Fn-l<x».

 hn(x) = max (Fn(x), Wx)' Fn-l(x)) -

 Then 9n(x), ^n(x) are upper, lower semi continuous functions respec-

 tively and 9n(x) <."Fn(x) £ ^n(x)' By theorem 11 on page 155 of [10]

 for each natural number n there is a continuous function Pp(x) so that

 9n(x) < P (X) £ hn(x)* Since TMx) = lim sup F (x) » lim sup F ( x ) ,
 n-»® - n-«°

 F¿(x) = lim sup h (x) = lim sup 9n(x) = Tim sup Pn(x) .
 n ® n -► ® n

 So F£(x) is a function in Baire class 2. If F is E-differentiable ,

 then Fp(x) = lim F (x) = lim F (x) = lim P-(x). Thus Fl( 1 x) is a func- n-K» - n-*» n-»® 1

 ti on in Baire class 1 .

 Remark : We could have also used lemma 7 to prove theorem 5 since

 7i(x) = lim sup 9n(x) = lim sup h (x).
 n-*» n-*«
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 Corollary 10: The congruent derivative (if it exists every-

 where) and the extreme congruent derivative of a continuous func-

 tion are in Baire class one and Baire class two respecti vely .

 Theorem 11: Let E a {E : x € [0,1]} be a bilateral system of paths,
 A

 00

 {a n) naB-ļ be a positive sequence with the following properties:

 (i) (a n> decreases to zero;

 (11) lim a 1 ;
 ri-» n

 (iii) the sets Ex fl [x+an+-j , x+an] and Ex fi [x-an, x-an+ļ3 are both

 nonempty for all x € [0,1].

 Also suppose that F is a real function so that for each natural number n.

 $n(x'an+ran) * sup{F(y)-F(x) : y € Ex fi [x+an+ļ , x+an]} and

 ^'n(x.an+Tan) s i nf{F(y )-F(x) : y € Ex fl [x-an,x-an+ļ ]} are

 functions of Baire class a. Then is a function of Baire class

 a+2.

 Proof: Define <}>(x,a,b) s sup : y í E„ H [x+a,x+b]}.
 _ JT X A

 F(y)-F(x) >. ^n(x,an+ļ ,an), and -an < y - x < -an+1 when
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 y £ Ex il [x-an,x-Vl]. So

 (11 „ M, < '.'M.,'.) £ îferV wh8n +n(x, Vi.,n) >
 n

 and

 (11.?)

 Therefore

 «jJn(x,a ,,a )
 (11.3) * (x'"an'"W ¿

 n

 <ļ,n(x'an^l'an)
 (11 .4) * ("■•'»■•Vi' í  IFI

 On the other hand when y 6 Ex n [x-an,x-an+ļ] we have

 (u-s) F^:'(x? i « (*.- vw-

 So

 (11.6) F(y)-F(x) > (y-x) ♦(.x,-an,-an+1) > -an <>(*."ań''an+i) when

 4>(x,-an,-an+1) > 0 and

 (11.7) F(y)-F(x) > (y-x> ♦(x,-an,-an+1) > -a^ ^»"V^n+l^ when

 ♦«"••'■.•"Vi' Í °"
 Therefore

 01 *8) "(-¡ ^1' n) 1 ^x'"an'"an+l) when <ł>(x'"an'"an-t-l) - 0 »
 n

 232



 and

 01 '9) - *(x,*Wl) when ®(x'"V"Vl! <

 So by combining (11.3), (11.4), (11.8), (11.9) and the fact

 that 4>n(x,an+^,an) and <1,(x>"an."an+]i) have opposite signs, we have

 niJ0) 'Vi - ^"''VVi1^ -â„
 when <<>(x."an>"an+ļ) < Ū. ancl

 m-m ^■a")<ł(x,-an,-anłl)<*"f,x;a"--'a") n n 1 n n n 1 n+1

 when <ł>(x."an»"an+1) i

 an "n<x-Vl'an)
 Since lim sup

 n-H» n+1 n-»« n+1 °n

 *n(x-Vran>
 = lim sup.

 n-x» n

 we have

 (11.12) lim sup <t>(x,-a_,-a_., ) = lim sup

 n-K» n n i ^ an

 Similarly when y £. Ex fi [x+an+ļ,x+an]
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 (11 .„) íügjísl * < When ♦B(x,aBłl..n) > O and * n+1

 (1KU) uhen , (x>. .„) < o. So
 J n

 (11-15) ♦<*. Vl'an>' < When *n(x'' Vl'V > °-
 mi

 and

 <ļ,n(x'an+l'an)
 (11 .16) ♦(*.Vl'an)

 n

 On the other hand

 F<£F<X> < <J)(x,an+1,an). Hence F(y)-F(x) < (y-x) <*,(x»an+1,an) <

 an * ^x'Vl'an) when 0(x'Vl'an) - °' and

 F(y)-F(x) < (y-x) < an+1 *(x. Vl-»^

 when ^(x'an+i»an) K 0- So we have

 O1 -17) *n( n) < <f(x,an+1,an) when «»*Cx, ,an) > 0
 n

 and

 <!»n(x,a , ,a )
 (11 -18)

 n+1
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 By combining (11.15), (11.16), (11.17), (11.18) and the

 fact that <i,n(x'an+ļ>an) ar,d have same s19ns we
 have

 n n 1 n " n+1

 when 4>(x'an+ļ»an) t Ū and

 n +i n

 when <l»(x,an+1,an) <0. Since

 an ♦„<x'Vr,n>
 lim sup

 n-«» n+1 n-*» n+l °n

 V-Vl'V
 = lim sup

 n-*® n

 we have

 (11 .21 ) lim sup <Kx,an., »a„) s lim sup

 n+* n-«» n

 Therefore lim sup <Kx,an+ļ,an) and lim sup 0(x,-an,-an+1 "" ) are
 rr-*» ""

 functions of Bai re class cr+2, and

 F;(x) = max (lim s*up ^(x,a ) , lim sup *(x,-a ,-a .,)).So F¿(x)
 n-K» n-*x>
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 is a function of Bai re class a+2.

 The following lemma shows that when E is a continuous system

 of paths and F 6 the functions 1)n(x'an+i'an) and l^x'an+l,an^

 are in B2.

 Lemma 12: Let F be a function of Bai re class one defined on

 [0,1], E = {Ex: X 6 [0,1]} be a bilateral continuous system of

 paths and {afļ}^_1 be the sequence of lemma 6. Then for each
 natural number n the functions

 4»(x,an+i.an) Ä sup{F(t): t 6 Ex n [x+an+1»x+an]}

 and *ļ»Cx,an,an_Kl) = inf{F(t): t 6 Ex D [x-an,x-an+1]} are func-
 tions of Bai re class two.

 Proof : Let r 6 R . Then

 {x: ♦(x»an+1.an) < r} = {x: for t 6 Ex ft [x+an+1,x+an] ,

 F(t) < r} = {x: Ex O Cx+an+1 »x+an3 c {t; FX t ) < r} } and

 (x: U»<x,an,afrł.1) > r} = {x: for t £ Ex n [x-a^x-a^] ,

 F(t) > r} - {x: Ex n [x-an,x-an+1] c {t: F(t) > r}}.

 Since F 6 B^, the sets {t: F(t) < r} and {t: F(t) > r} are
 OD

 sets of type G-. Let {t: F(t) < r} = Q 0 and {t: F(t) > r} =
 0 n=l n

 OB

 fi» G. k where for each n the sets 0 and G are open. We, show k=l k n n
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 that for every open set 0 , the set {x: E fř [x+a , ,x+a ] c0J n , x o x n n

 is open. Let c {x: (Ex n Cx+an+1.*+an]) c 0n) . Then for

 each k there is a tk 6 E n Czk+an-KL'zk+an^ and lk g °n • Let

 lim z. = z and lim t. = t .
 k-MD K 0 k-M K 0

 Since E = {Ex: x 6 [0,1]} is a continuous system of paths and

 0„ is open, we have t 6 E, fl [2 ,+a.,, +a.] and t ř 0 . Hence n oz o n+l on on
 o

 2 £ {x: (E„ fl [x+a„., ,x+al) c 0Ì implies that the set o x n+i' n n

 {x- (Ex fl [x+a^.x+a^)) c 0n) is an open set. Similarly the

 set {x: (Ex fl [x-a^x-a^]) c Gk) is an open set. So
 OD

 lx: 0(x,Vl,an) < r) = ix: (Ex n [x^.x-. ]) e fl o.)
 m=l

 09

 ân^ C 15 3 ^5 Also = n (x: (E n [X». ,
 m=l

 09

 (x: *(x,an,Vl) > rļ « (x: (Ex n [x-a^x-a^]) C ^ Gk)

 09

 = A {x: (Ex H [x-an,x-an+,]) c G^} is a Gg set. Therefore the
 k=l

 functions Ģ(x>ān+i«an) ancl ^x»an,an+l^ are funct'1 ons of Baire
 class two.
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 Corollary 13: Let E = {Ex: x e [0,1]} be a bilateral continuous
 system of paths and F a function of Bai re class one defined on [0,1].

 If (an)n_i is a positive sequence such thàt it decreases to zero,
 an+l

 lim - = 1 and for all x, E H[x + a , x + al t 13,
 a x n-M n

 n n

 Exfl[x - afl, x - an+ļ] f 0. Then T^(x) is a function. of Baire class four.

 Proof: By Lemma 12 the functions 4> p( x , a n+-ļ , a n ) =

 ®(x,an+i,an)-F(x) and 4»n(x,an+1,an) = 4>(x,an+1,an)-F(x) are func-

 tions of Baire class two. Thus by Theorem 11 Fģ(x) is a function
 of Baire class four.

 Even for a continuous system of paths, the extreme path der-

 ivatives- of a function in Baire class two are not necessarily

 Bore! functions. M. Laczkovich in [6] showed that there exists a

 function in Baire class two and a closed set P having zero as a

 point of accumulation so that the congruent extreme derivative of

 F(x) is not a Bore! measurable function.

 Lemma 14: There is a Bore! set A, and a perfect set P such

 that {x: x + P c A} is not Bore! .

 Proof: Let F = {0. a^a^...: a. s 0 or 1} and
 P = {0. bļbjbj-..: b^ = 2 or 4j .

 If x^+y^ = x^, and elements of F, y^ and are elements
 of P» then and y-' = y 2'

 238



 So there exists a G. set G c FxP such that the set
 ö

 C = {x:3y with (x,y) 6 G] is not a Borei set. Let

 A = {x+y: X 6, F, y € P}'{(x+y): (x,y) € G} . The set

 {x+y: X 6 F, y 6 P} is a closed set and the set {x+y: (x,y) 6 G} = B

 is a Gg set since <f>(x,y) » x + y is a one-one and con-

 tinuous function on FxP, hence 4> is a homeomorphism and B « (1>(G)'

 So A is an set. The set
 0

 {x: x+P c A} fi F = {x £ F: V y 6 P,"x + y î A}

 5 ¡X 6 F: V y e P, (x,y) 0 G} s F'C

 which is not a Borei set. Hence {x: x+P c A} is not a Borei set.

 Example 15: There is a function F 6 B2 a perfect set P with
 0 6 P so that the congruent extreme derivative of F with respect to

 P, i.e. Fp(x) is not a Borei function.

 Proof: Let F s {0. a^a^. . . : a^ = 0 or 1} , P = { 0. b^b2b2- . . : b.
 s 2 or 4 }, A be an. analytic subset of F which is not a Bore! set, .

 be a sequence in P so that lim y n = 0, and (yn+ļ,yn) fi P
 ï JET for a-Il natural number n. For each n 6 N choose a set

 U c F x [y v ,y v 1 which is a G. set and n v n+l v n ò

 OS

 A = {x: (x,y) 6 UJ. Let U = U U . Since all
 n n=l n
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 the sets U are disjoint., U is a G* set. Let B = ((x+y): x € F, y-€ P
 n ö

 and (x,y) £ U} . Then the set B is an set. So the function F(x) =

 -Xg(x) is a function of Baire class two. If x € F'A, then for each
 h f P we have (x,h) ¿ U. Thus x + h € B, and (x,0) f. U, so x € B and

 Fi(x) = lim sup F<x^?-F(x) n = li» sup --ķl n = 0. h-0 n h^O n
 h€P h6P

 If x 6 A, then there exists a sequence {zn}®sl c P so that

 (x,zn) 6 U for all n 6 N, and lim zn = 0. Therefore x + zn E B for
 all n 6 N. In this case

 F.(X) = sup > li» > tim ^
 h-»0 n-Ko n n-x«> n
 h€P

 So Fp(x) = •*..

 / 0 if x 6 F'A

 Hence we have Fp(x) = j which is not a Borei measurable
 (+» if x 6 A

 function.

 As we show in the following theorem the extreme path

 derivatives of a Borei function with respect to a
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 continuous system of paths are always a measurable function.

 Theorem 16: If E = {Ex: x 6 [0,1]} is a continuous system of
 paths and F(x) is a Bore! measurable function defined on [0,1], Then

 F£(x) is a Lebesgue measurable function.

 Proof: Let {an}^ be the sequence äs in Lemma 6 and r € R.

 Define Fn(x) = sup {[F(y)-F(x)]/(y-x): y £ Ex n (Cx+an+1,x+arļ]U

 [x-an,x-an+1])}. For simplicity let In(x) = Ex n ([x+a^.x+a^U

 [x-ap,x-an+1])}. The set {x: Fn(x) > r} = {x: sup {[F(y)-F(x)]/

 (y-x): y £ In(x)} > r} = {*: 3 yQ 6 Ifl(x) so that [F(yQ)-F(x)]/

 (y0~x) > r} = P^(A) where

 A * t(x,y): > r) n ( U Ux¡xl(x))).
 y x xeCO.l] "

 2
 The set B = U ({x} x I (x) ) is a closed set in R since if

 xeco.l]

 2 in * e B' and Jj" 2m = zo = 6 W =

 E„ il ([x+a„., u n+1' ,x +a„]U[x nJ u -a.x-a,,., n' n+1"1 ]) and lim ym Jm = y •'o , x u m n+1' m nJ u m n' m n+1"1
 itì

 lim xm = xQ. Since E = {Ex: x 6 [0,1]} is a continuous system of
 ffr*00

 paths yQ £ In(x0)t zQ - (xQ,y0) 6 B. Since F is a Bore!
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 measurable function, the set {(x,y): fr(y)'fr(x? > r} iS a Borei
 y-x

 measurable set. Thus the set A is a Borei measurable set. There-

 fore {x: Fn ( X ) > r} is an analytic set, and hence is a measurable set.

 Therefore Fn(x) is a measurable function and TMx) = lim sup Fn(x)

 must be a measurable function.

 We now briefly discuss the Borei measurabil i ty (measurabil i ty)

 of path derivatives. Let E s (Ex: x € [0,1]} be a system of paths,

 and {an> be a positive decreasing sequence such that Ex fl

 [[x-an,x-an+ļ ] U [x+an+i ,x+an]] t 0 for all x. When F is a Borei

 measurable function, finding a Borei measurable selection for the

 family of sets {Ex fl [[x-an,x-an+ļ ] U [x+an+ļ ,x+an]] : x € [0,1]}

 guarantees the Borei measurabil i ty of F£.

 The following lemma shows that we are able to find an upper

 semi continuous selection when the system of paths is continuous.
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 Lemma 1 7 : Let E = {Ex: x 6 [0,1]} be a continuous system of
 paths and let be the sequence as in lemma 6.

 Then for every natural number n the family {Ex (1 ((x"l"an+1>x*an-1)u

 (x"an-i,x~an+i)) • x S [0,1]} has an upper semi continuous selec-
 tion.

 Proof: Let Pn(x) = sup{Ex fl ((x+afļ+1,x+an.1)U(x-an.1,x-an+1))} ,

 we show that Pn(x) is an U.S.C, function. There are two possibil-
 ities :

 (1) Pn(x) « Ex n (ix«n+1, .x-«„+l>> i

 (2) Pn(x) S ix+a1)_ļ , x-an+1}.

 If case 1 happens, let 0 < e é < imini |x+an_j-Pn(x) | , I pn(x) " x -

 Vil- lpn(x) ■ x ł Vil' lPn(x) " * *Vll>-

 Since E is a continuous system of paths, there exists a

 positive y < c so that du(E,,Ew) < e, when |z-x |< y. Since E„ is
 n Z X X

 a closed subset of the real line, PR(x) 6 Ex and for all 2 so that

 jz-x j < y, there exist a t2 6 E2 H (Pn(x)- £, Pn(x) + e) c

 Ez n ((złVl'2łVl)U<z_an-l'z'Vl})- ■ é < i yz>-
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 Hence for all z so that | z-x I < v we have Pp(x) £ + £ ' ^en

 Pn(x) < lim inf P z ) . So Pp(x) is an upper semi continuous func-

 tion. Suppose Pn(x) € {x+an_ļ ,x-ap+ļ } , we treat the case P (x) =

 x+än.r lf Pr(x> ■ xłVv

 there is a sequence c Ex ^ ^x+an+l,x+an-l^ so that qm
 = x+a_ , . For c > 0 choose n so large such that x+a„ , - q„ ^n < n-1 , . o n-1 , ^n

 O

 min (s, ^(an"an+]_))- Then f°r 0<c'<min (e, is(x-^an_^-qn )), there
 0

 is a positive y < e' such that dH^z'^x^ * e' when- ^ 2"x <

 Since qn E Ex, for all z such that |z-x |< y there exists

 a tz e Ez (1 (q^ - Í' ,q^ - e') c Ez n
 « Pn(2) > tj > qn • e' > q„ - t > x ♦ . ļ = Pn(x).

 O o

 Henee lim inf Pn(z) > Pn(x) •

 So P (x) is an upper semi continuous function.

 Theorem 18: Let E = {E : x 6 [0,1]} be a. continuous system of

 paths, F bea function of Bore! class a (measurable function) and suppose

 F£(x) exist everywhere. Then Fģ(x) is a function of semi Bore!

 cr+l, hence it is a function of Borei class a+2 (measurable function).

 Proof: Pn(x) = sup {Ex n x+an-l)U(x"an-l'x"an-i-l)^ is
 an upper semi continuous function and Pp(x) 6 Ex for all n.
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 fi F(v)-Fíx1 XUM F(P n (x))-F(x)
 F.(X) = lim fi F(v)-Fíx1 XUM y = lim n } ; y+x y n-Ko rr } ;

 Since Pn(x) - X > an+ļ or Pn(x) - x < - an+i' Pn^ " x ^ 0 and

 F(Pn(x))-F(x)
 the function - p > '

 p Knix;-x

 (•measurable) and therefore F£ 6 Btf+2-
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