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 C.J.F. Upton

 1. Definitions and Notations.

 All functions to be considered will be defined on a finite interval [a,b] and may take

 real or complex values.

 We denote by p any real number such that 1 < p < and by k any positive integer.

 If a š xq < Xļ <....< xn š b, the sequence (x¡), i = 1 ,2,...,n, will be called a subdivision

 of [a,b].

 The first divided difference [F(Xļ ) - F(xq)]/(x-| - xg) is denoted by Q-| (F; xq, x-1 ) and

 the k-th order divided difference over the points xq, x-j

 Qk(p; x0' X1

 Then Qk(F; xq, x-j x^) may be written as

 f F(x,)
 u#n*V

 i * i

 see [5].

 For h > 0, the first forward difference F(x+h) - F(x) is denoted by AftF(x) and, for

 all k ^ 2, AhkF(x) is defined inductively by F(x)). It admits the identity

 Ah^F(x) = kl h^Qj^F; x, x+h,..., x+kh) .

 For any given variatipn V, the set of functions for which this variation is finite wMI be
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 denoted by BV.

 Unless otherwise stated, all of the variations to be considered will be formed by

 obtaining approximating sums on a typical subdivision of [a,b] and then finding the

 supremum over all possible subdivisions.

 2. Variations of First order

 Let

 Vp(F ) = Vp(F: a,b) = sup (2¡ |F(xi+1 )-F(x¡)|P)1/P .

 For p = 1 , this variation is classical. It was considered for p = 2 by N- Wiener [18]

 and for all' p > 1 by LC.Young and E.R.Love [3,4,1 9, 20]. It is a particular case of

 O-variation (L.C.Young [20]; see also J. Musielak and W.Orlicz [6]). When p = 1 it is a

 particular case of A-variation (D. Waterman [1 6]). When p = 1 it is also identical with the

 Riesz-variation given by

 Rp(F) = Rp(F; a,b) = sup (Sr |F(xi+1 )-F(x¡)|P/(x¡+1 -x¡)P-i )1 /P.

 and for which F is BRp if and only if F exists almost everywhere and belongs to LP[a,b]

 (F.Riesz [8]).

 3. VariatiQpi? Qf $ęę<?n<J Qr<jęr

 Let m be any strictly increasing function and let

 F(xw>)"F(x¡+i) F(x¡+i)-F(xi) p' p 1/p
 SV p (F) = SV p (F; a,b) = sup ( v Y | - r p = p = sup v "T m(xw>) r " m<xi+i> m(xi+i) , . * m(x¡)

 This variation is called the p-th slope variation with respect to m. It has been

 considered for p = 1 by F. N. Huggins [2], J.R.Webb [17] and A.M.Russell [10], and for

 p £ 1 by V. Postelica [7]. The last has shown that F is BSVp if and only if F = J f dm, a

 Lebesgue-Stieltjes integral, where f is BVp and is equal almost everywhere to-the
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 derivative of F with respect to m.

 Let m(x) m X. Then SVp(F) may be written in terms of divided differences as

 v*2,p<F) - V*2,p(F;a,b) = sup (Xj |Q-|(F; x¡+1 , x¡+2) - Q-| (F; x¡, x¡+l)|P)1'P.

 This variation was considered for p = 1 by F.Riesz [9], and for p > 1 by A.M.Russell and

 C.J. F.Upton [13]. The latter authors showed, independently of Postelica, that F is

 BV*2)p if and only if F = J' f, where f is BVp and f = F almost everywhere. They also

 showed that

 V*2iP(F) S Vp(f) S 2(P-1VPV*2iP(F), (1)
 with best possible constants, and that, if a < b < c and F(b) exists (a technical

 requirement), then there is no inequality which always exists between and V*2,p(F; a,c)

 and - V*2,p(F; a,b) + V*2,p(F; b,c)! ( It was subsequently shown in [14] that

 V*2,p(F; a.c) S 2(P-1 VP {V-2,p(F; a,b) + V2|P(F; b,o)}, (2)

 and that the constant 2ÍP*^ VP is best possible.)

 If the definition of V*2tp(F; a,b) is varied by using in each term of an approximating

 sum the set of points { x¡ , x'¡ , x¡+-j , x'¡+1}, where x¡ < x'¡ < Xj+1 < x'¡+1 , instead of

 using the set { x¡, x¡+-| , x¡+2-}, then a new definition of second order variation is

 obtained (see [14]), namely

 v2,p(p) = v2,p(p; a-b) = sup di lQ(p; xi+i - x'i+i) • Qi (p; x¡. x,¡)ip)1/p-

 As before, F is BN^p if and only if F = J f, where f is BVp and f = F almost

 everywhere. .But the inequality (1) can now be replaced by the equality

 v2,p(p) = Vp(f), (3)
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 and the inequality (2) can be replaced by

 V2,p(F; a,c) £ V2>p(F; a,b) + V2 p(F; b,c).

 Furthermore, the two variations are related by the inequalities

 v*2iP(F) s v2iP(F) s alřWrj.piF), (4)
 with best possible constants. They are therefore equal when p = 1.

 4. Variations of k-th order and p-th power.

 The above variations V*2tp( • ) and V2)P( . ) can be generalized as follows. Let

 xn <b and , for i = 1 ,2,...,n and j = 0,1 ....... k-1, let x¡j besuchthat

 xi - xi,0 < xi,l <

 S = sup (S¡ |Qk-i(F:xi+l,o

 where the supremum is taken over all possible sets (x¡p. If the set (x¡j) is restricted by

 the inequality x¡ ^.i < x¡+-| o s xi+1 for i = 1>2,....,n-1, then the two (k-1 )-th order

 divided differences in a typical term of S are formed on two strictly non-overlapping sets

 of points and S is said to define the variation V^F). If, however, the set (xy) is

 restricted b.y the equation Xj j = Xj+-ļ j.-ļ for i = 0,1,..., n-1 and j = 1, 2,..., k-1, then the

 two (k-1)-th order divided differences in a typical term of S are formed on two sets of

 points which overlap almost completely, and S is said to define the variation V*ķp(F).

 The variation V*ķ p(F) was considered for p = 1 by A.M.Russell [1 1,12]. (See also

 G. Brown [1].)

 As in the case when k = 2, if F is BV^p (or BV*^), then F is a

 (k-1 )-th integral of a function f, where f is BVp and f = F(k"1 ) almost everywhere. Also
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 (k-1)!Vkip(F) = Vp(f), (5)

 and Vkp(F) s k(P-1>/PVk|P(F), (6)
 where the constant k(P"^ ^P is again best possible. The equation (5) is the analogue of

 (3), and (6) is the analogue of the second inequality in (4). But the analogue of the

 first inequalty in (4) is not known.

 5. Variations with subintervals of equal length.

 It is convenient to consider variations in which some of the subintervals which are

 used are of equal length. These variations can be defined slightly differently. Let h > 0

 and let

 Vk,Pih(F) = sup G- |h'k+1 Ahk"1 [F(xi+1 )-F(xj)]lP)1/P,

 where xn+(k-1)hš b and x¡+(k-1)h < Xj+1 for i = 1,2,..., n-1, so that the expressions

 in a typical term are formed on two non-overlapping sets of points. Here the supremum

 is taken over all possible subdivisions (x¡) of [a, b] and over all possible values of h.

 Again, let

 v*k,p,h(F> = S"P Gj |h-k+1Ahk-1[F(x¡+h)-F(x¡)]|P)1/P.

 where, now, x¡ + h = x¡+-| for all i, so that the expressions in a typical term are formed on

 two sets of points which overlap almost completely. The supremum is taken as

 previously. For all functions in BV^p the following relations can be shown.

 Vk.p.hiF) * (k-1)!VkiP(F),

 V*k.p,h<F> S (k"1)!V*k,p(F),

 and Vk.p.hlF) * VkiPih(F).
 Furthermore,
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 Vk.p.híF) =Vp(f),

 where f is BVp and f = F(k-1 ) almost everywhere.

 Proofs. Most of the proofs are analagous to those given in [14] and [1 5] for the

 case in which p s 1 and k s 2. They make use, where necessary, of results obtained ir.

 [11] when p * 1 and k> 3.
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