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BANACH ALGEBRAS OF FUNCTIONS HAVING

GENERALIZED BOUNDED VARIATION

Throughout f will be a real valued function defined on a closed
interval [a, b]. Extensive use will be made of partitions or subdivisioms
Xgs Xy» e+e, X of [a, b] for which a < X, < X, < voa x < b. Such
subdivisions will be referred to as mw-subdivisionms.

In 1881, Camille Jordan introduced his well known concept of bounded

variation. The total variation of f on [a, b] is defined as

n
V. (f; a, b) =sup | [£(x) - £(x, )|
1 o bl - s,

If Vl(f; a, b) < =, £ is-said to be of bounded variation on ([a, b], written

f € BV[a, b] or £ € BVl[a, b].

~ Many extensions and generalizations of Jordan's variation have been
given subsequently. The particular generalization to be discussed here arises

from the following result:
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In 1911, F. Riesz (2] showed that a real valued function
f: [a, b] * R is an integral of a function of bounded variation if and odly

1f
) '.f(xih) - fGeg ) - 'f(xi)l

T X4 el T %

i+2

n-2 lf(x
) :
1+2

(1)

i=0 l

is bounded for all possible m-subdivisions of [a, b]. Functions having
property (1) are said to have bounded slope variation. We rename this

variation bounded second variation, and extended the notion to bounded kth

kth th

variation. In order to define bounded variation the definition of k

divided difference is required.

kth divided difference The kth divided difference is defined to be

k f(x17
Qk(f; xo) ooy xk) = i’zo k )
I (x =-x)
j=0 1 ]
j#

where X, X, ..., X are arbitrary points in [a, b].

We will subsequently have need to refer to k-convex functions in order

to characterize functions of bounded kth variation.

k-convex functions A function f is k-convex on [a, b] if and only if

M ’ eece >
QlEs %o Xps eees %) 20
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for all choices of io, X1, eeey X in (a, b].

th

There are numerous properties of k= divided differences, many of

which are well known. We will mention some here that have been particularly

useful in the subsequent work. Further properties can be found in [1l].

Properties of kth divided differences

(a)

(b)

()

(d)

(e)

Q(fs Xgs ooy xk) = 0 for all choices of Xgs Xp» eees X iff £ is a

polynomial of degree (k - 1) at most.

If £ is a polynomial of degree k, then Q(f; Xy sees %) is equal to

the leading coefficient. for all choices of Xgy Xyy eees Xyo

Qk(f; Xgs X5 cee xk) is independent of the order in which the points

xo’ xl, L3I 2EY Xk appeal’.‘o

If %95 Xy, «ee, % are any k + 1 distinct points of (a, b], then

(xo - % J)Q (f; X Kp eeey Xy)
= Qk—l(f; Xys eees xk-l) - Qk_l(f; Kyy eeey xk).

Let X5, Xy, «e., X be any k + 1 points of [a, b] such that

xQ < X oo X X Suppose that r extra points of subdivision are
added to existing subintervals. Then relabelling the points of
subdivision as yg5, ¥y, eee, Fpips Where xg = y5 <y < vee Ky = X,
there exist positive coefficients a., Gy e, a, independent of £,
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such that

o e 0 x = a f. LN BN ) = L]
, , k) § iQk( Yo , yi+k), and § o 1

Q (f; x
k 1=0 1=0

0

Bounded kth variation The total kth variation of f on [a, b] is defined by

n=k
V f E V f; b) = - M * 00 .
(B 2V (£ a, b) sup 120 G T X0l B =y ey x )]

If Vk(f; a, b) < », we say that f has bounded kP variation on [a, b] and

write f € BVk[a, b]. In view of Property (d) of RCh divided differences, we

can write

n-k
V f; b = M ) - M s oo .
k52 P nP 120 Qe (5 % oo R = Qe (B s vens x|

This form of the total kth variation is more useful, and indeed is the form

used for most calculations.

The class of functions BVk[a, b] has the following properties. The

sequence {BVk[a, b]} is contracting, that is BVk+1[a, b] BVk[a, b], and

N v la, b] = c'la, b],
k=1

the class of infinitely differentiable functions on [a, b]. Proofs of these

results and further properties can be found in [3].

The following characterization of BVi[a, b] has been obtained:

BV, [a, b] = {¢: £ = £, - f,, where £, f, are 1-, 2-, ... ,
129



k-convex functions having right and left (k - 1)th derivatives at a, b

respectively}.

It is the structure of BVk[a, b] that we are particularly concerned

with here. First of all, it is a Banach space under the norm “."k’ where

k-1 (s)
ufnk = SEO |f+(a)| + vk(f; a, b). (2)

Clearly, BVi(a, b] is a vector space, for if f and g belong to BVk[a, b], so

does f + g, and
+ < + .
vk(f g) Vk(f) Vk(g)
Second, H'ﬂk has the properties of a norm, and finally BVk[a, b] is complete

under (2). The completeness is technical, the details of which are given in

(4],

We now turn to the Banach algebra aspect of BVy[a, b], and towards

this end we introduce a subspace of BV, [a, b], namely
* k-1
BVk[a, b] = {£ ¢ BVk[a, bl]: f(a) = £i(a) = .00 = fi‘ )(a) = 0}.
*
BVk[a, b] 1is clearly a Banach space under the norm
I'I* where Ifﬂ* = oV (£), and where = Zk-l(b - a)k-l(k - 1!
K’ kT Bk % '

The significance of the constant qk will become apparent later.
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*
The immediate problem is to show that if f, g a'BVk[a, b], then so

does fg (pointwise multiplication), and to obtain a suitable inequality

relating V, (fg), Vk(f) and Vk(g). To do this it is convenient, in order to

reduce the complexity of calculations, to consider m_subdivisions of [a, b]

h
which have the form

a= xo < x < e £ x < b, where X TX T h, 1 =1, 2, .¢o, n

and 0 < b-x < h.
n

Along with nh subdivisions we consider the well known difference

operator Ak defined by

h

Al £(x) = £(x + h) - £(x),
h

and

A§ £(x) = Ai [A:-l £(x)].

There is obviously a close relationship between AE f(x) and k*® divided

differences. ~Indeed, for (k + 1) equally spaced points

LA £
Qk(f; xos.xl) seey xk) -'12!_—:{;_’
or
k
& (fxi)
-—:F;ﬁr—- = (k - 1)!(xi+k - xi)Qk(f; Ris aeey xi+k)'

kth variation.

Associated with the difference operator is another form of
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Bounded k- variation (Restricted form)

1f f ¢ Cla, b], define total k™® variation on [a, b] by

o e
Vk(f) H Vk(f; a, b) = sup L———E:T-|-
ﬂh h

h

1f Gk(f) { =, we say that f has bounded k" variation (restricted form), and

writg f e Bak[a, b]. - As might be expected, there is also a close
relationship between ng[a, b] and BVk[a, b]. Some results relevant to this

paper are now given.
Theorem 1 (1) Cla, bl n BV [a, b] = B‘7k[a, bl, k > 1.

(11) §k(f; a, b) = (k - 1)!Vk(f; a, b), k > 1.

The restriction to continuous functions 1s not nearly so severe as

might have been expected because if k > 2 and f € BVk[a, b], then it follows

from Theorem 4 of [3] that f must be continuous.

*
Theorem 2 Let p be an integer such that 1 < p < k. If f ¢ BVk[a, b], then

f € BV*[a, b], and
P
k-p
Vp(f) < P(P + 1) eeo e (k - 1)(b - 3) Vk(f)’

or

- k-p =
V() < (b -a)" "V ().
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With these results it is now possible to quote the required results to show

%
that ka[a,~b] is a commutative Banach. algebra.

* %
Theorem 3 If f,g ¢ BV, [a, b], then fg € BV, [a, D],

and

v, (fg) < o - )k - 1)1V, (£)V, (2). (3)

Finally, by putting

*
ufuk = akvk(f)’

where a = zk-l(b - a)k-l(k - 1)!, (3) becomes

k

* x  x
< Ifll ugnk, as required.

I
llfglk K

The details of the last two theorems appear in [5].
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