A.M. Russell, Department of Mathematics, University of Melbourne, Parkville, Victoria, Australia 3052

BANACH ALGEBRAS OF FUNCTIONS HAVING GENERALIZED BOUNDED VARIATION

Throughout f will be a real valued function defined on a closed interval [a, b]. Extensive use will be made of partitions or subdivisions x_0, x_1, \dots, x_n of [a, b] for which $a \le x_0 \le x_1 \le \dots \le x_n \le b$. Such subdivisions will be referred to as π -subdivisions.

In 1881, Camille Jordan introduced his well known concept of bounded variation. The total variation of f on [a, b] is defined as

$$\nabla_{1}(f; a, b) = \sup \sum_{\pi i=1}^{n} |f(x_{i}) - f(x_{i-1})|.$$

If $V_1(f; a, b) < \infty$, f is said to be of bounded variation on [a, b], written f ε BV[a, b] or f ε BV₁[a, b].

Many extensions and generalizations of Jordan's variation have been given subsequently. The particular generalization to be discussed here arises from the following result: In 1911, F. Riesz [2] showed that a real valued function

f: $[a, b] \rightarrow R$ is an integral of a function of bounded variation if and only if

$$\sum_{i=0}^{n-2} \frac{f(x_{i+2}) - f(x_{i+1})}{x_{i+2} - x_{i+1}} - \frac{f(x_{i+1}) - f(x_{i})}{x_{i+1} - x_{i}}$$
(1)

is bounded for all possible m-subdivisions of [a, b]. Functions having property (1) are said to have bounded slope variation. We rename this variation bounded second variation, and extended the notion to bounded kth variation. In order to define bounded kth variation the definition of kth divided difference is required.

kth divided difference The kth divided difference is defined to be

$$Q_{k}(f; x_{0}, ..., x_{k}) = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq i}}^{k} \frac{f(x_{i})}{k}, \dots, x_{k} = \sum_{\substack{i=0 \\ j \neq$$

where x_0, x_1, \ldots, x_k are arbitrary points in [a, b].

We will subsequently have need to refer to k-convex functions in order to characterize functions of bounded kth variation.

k-convex functions A function f is k-convex on [a, b] if and only if

 $Q_k(f; x_0, x_1, ..., x_k) > 0$

127

for all choices of x_0, x_1, \ldots, x_k in [a, b].

There are numerous properties of kth divided differences, many of which are well known. We will mention some here that have been particularly useful in the subsequent work. Further properties can be found in [1].

Properties of kth divided differences

- (a) $Q_k(f; x_0, \dots, x_k) = 0$ for all choices of x_0, x_1, \dots, x_k iff f is a polynomial of degree (k 1) at most.
- (b) If f is a polynomial of degree k, then $Q_k(f; x_0, \dots, x_k)$ is equal to the leading coefficient for all choices of x_0, x_1, \dots, x_k .
- (c) $Q_k(f; x_0, x_1, \dots, x_k)$ is independent of the order in which the points x_0, x_1, \dots, x_k appear.
- (d) If $x_0, x_1, ..., x_k$ are any k + 1 distinct points of [a, b], then $(x_0 - x_k)Q_k(f; x_0, x_1, ..., x_k)$

$$= Q_{k-1}(f; x_0, \ldots, x_{k-1}) - Q_{k-1}(f; x_1, \ldots, x_k).$$

(e) Let x_0, x_1, \ldots, x_k be any k + 1 points of [a, b] such that $x_0 < x_1 < \ldots < x_k$. Suppose that r extra points of subdivision are added to existing subintervals. Then relabelling the points of subdivision as $y_0, y_1, \ldots, y_{k+r}$, where $x_0 = y_0 < y_1 < \ldots < y_{k+r} = x_k$, there exist positive coefficients a_0, a_1, \ldots, a_r , independent of f, such that

$$Q_{k}(f; x_{0}, ..., x_{k}) = \sum_{i=0}^{r} \alpha_{i} Q_{k}(f; y_{i}, ..., y_{i+k}), \text{ and } \sum_{i=0}^{r} \alpha_{i} = 1.$$

Bounded kth variation The total kth variation of f on [a, b] is defined by

$$V_{k}(f) \equiv V_{k}(f; a, b) = \sup_{\pi} \sum_{i=0}^{n-k} (x_{i+k} - x_{i}) |Q_{k}(f; x_{i}, ..., x_{i+k})|.$$

If $V_k(f; a, b) < \infty$, we say that f has bounded k^{th} variation on [a, b] and write f $\varepsilon BV_k[a, b]$. In view of Property (d) of k^{th} divided differences, we can write

$$V_{k}(f; a, b) = \sup \sum_{i=0}^{n-k} |Q_{k-1}(f; x_{i}, \dots, x_{i+k-1}) - Q_{k-1}(f; x_{i+1}, \dots, x_{i+k})|.$$

This form of the total kth variation is more useful, and indeed is the form used for most calculations.

The class of functions $BV_k[a, b]$ has the following properties. The sequence $\{BV_k[a, b]\}$ is contracting, that is $BV_{k+1}[a, b] \subseteq BV_k[a, b]$, and

$$\bigcap_{k=1}^{\infty} BV_k[a, b] = C^{\infty}[a, b],$$

the class of infinitely differentiable functions on [a, b]. Proofs of these results and further properties can be found in [3].

The following characterization of $BV_k[a, b]$ has been obtained:

$$BV_k[a, b] = \{f: f = f_1 - f_2, where f_1, f_2 are 1-, 2-, \dots, 129\}$$

k-convex functions having right and left $(k - 1)^{th}$ derivatives at a, b respectively}.

It is the structure of $BV_k[a, b]$ that we are particularly concerned with here. First of all, it is a Banach space under the norm $\|\cdot\|_k$, where

$$\|f\|_{k} = \sum_{s=0}^{k-1} |f_{+}(a)| + V_{k}(f; a, b).$$
(2)

Clearly, $BV_k[a, b]$ is a vector space, for if f and g belong to $BV_k[a, b]$, so does f + g, and

$$V_k(f + g) \leq V_k(f) + V_k(g).$$

Second, $\|\cdot\|_k$ has the properties of a norm, and finally $BV_k[a, b]$ is complete under (2). The completeness is technical, the details of which are given in [4].

We now turn to the Banach algebra aspect of $BV_k[a, b]$, and towards this end we introduce a subspace of $BV_k[a, b]$, namely

$$BV_k^*[a, b] = \{f \in BV_k[a, b]: f(a) = f_+'(a) = \dots = f_+^{(k-1)}(a) = 0\}.$$

 $BV_{k}^{*}[a, b]$ is clearly a Banach space under the norm

$$\|\cdot\|_{k}^{*}$$
, where $\|f\|_{k}^{*} = \alpha_{k} \nabla_{k}(f)$, and where $\alpha_{k} = 2^{k-1}(b-a)^{k-1}(k-1)!$

The significance of the constant α_k will become apparent later.

The immediate problem is to show that if f, g $\in BV_k^*[a, b]$, then so does fg (pointwise multiplication), and to obtain a suitable inequality relating $V_k(fg)$, $V_k(f)$ and $V_k(g)$. To do this it is convenient, in order to reduce the complexity of calculations, to consider π_h subdivisions of [a, b] which have the form

$$a = x_{0} < x_{1} < \dots < x_{n} < b$$
, where $x_{i} - x_{i-1} = h$, $i = 1, 2, \dots, n$

and $0 \le b - x \le h$.

Along with π_h subdivisions we consider the well known difference operator Δ_h^k defined by

$$\Delta^{l} f(x) = f(x + h) - f(x),$$

$$\Delta^{k}_{h} f(x) = \Delta^{l}_{h} [\Delta^{k-1}_{h} f(x)].$$

and

There is obviously a close relationship between
$$\Delta_h^k$$
 f(x) and kth divided differences. Indeed, for (k + 1) equally spaced points

$$Q_k(f; x_0, x_1, \dots, x_k) = \frac{1}{k!} \frac{\Delta_k^h f(x)}{h^k}$$

or

$$\frac{\Delta_{h}^{k}(fx_{i})}{h^{k-1}} = (k-1)!(x_{i+k} - x_{i})Q_{k}(f; x_{i}, \dots, x_{i+k}).$$

Associated with the difference operator is another form of kth variation.

Bounded kth variation (Restricted form)

If $f \in C[a, b]$, define total kth variation on [a, b] by

$$\overline{v}_{k}(f) \equiv \overline{v}_{k}(f; a, b) = \sup_{\substack{\pi_{h} \\ n}} \left| \frac{\Delta_{k}^{h} f(x)}{h^{k-1}} \right|.$$

If $\overline{v}_{k}(f) < \infty$, we say that f has bounded kth variation (restricted form), and write $f \in \overline{BV}_k[a, b]$. As might be expected, there is also a close relationship between $BV_k[a, b]$ and $BV_k[a, b]$. Some results relevant to this paper are now given.

Theorem 1 (1)
$$C[a, b] \cap BV_k[a, b] = BV_k[a, b], k > 1.$$

(11)
$$\overline{V}_{\mu}(f; a, b) = (k - 1)! V_{\mu}(f; a, b), k \ge 1.$$

The restriction to continuous functions is not nearly so severe as might have been expected because if $k \ge 2$ and $f \in BV_{k}[a, b]$, then it follows from Theorem 4 of [3] that f must be continuous.

<u>Theorem 2</u> Let p be an integer such that $1 \le p \le k$. If $f \in BV_k^*[a, b]$, then $f \in BV_p^*[a, b]$, and

$$\nabla_{p}(f) \leq p(p + 1) \dots (k - 1)(b - a)^{k-p} \nabla_{k}(f)$$

or

$$\overline{v}_{p}(f) \leq (b-a)^{k-p} \overline{v}_{k}(f).$$

With these results it is now possible to quote the required results to show that $BV_k^*[a, b]$ is a commutative Banach algebra.

Theorem 3 If f,g
$$\in BV_k^*[a, b]$$
, then fg $\in BV_k^*[a, b]$,

and

$$V_{k}(fg) \leq 2^{k-1}(b-a)^{k-1}(k-1)!V_{k}(f)V_{k}(g).$$
 (3)

Finally, by putting

$$\|f\|_{k}^{*} = \alpha_{k} \nabla_{k}(f),$$

where $\alpha_k = 2^{k-1}(b - a)^{k-1}(k - 1)!$, (3) becomes

 $\|fg\|_{k}^{*} \leq \|f\|_{k}^{*}\|g\|_{k}^{*}$, as required.

The details of the last two theorems appear in [5].

References

- Milne-Thompson, L.M., The calculus of finite differences, Macmillan, London, 1933.
- Riesz, F., Sur certains systems singuliers d'equations integrals, Ann.
 Sci. École Norm Sup. Paris (3), 28 (1911), 33-68.
- Russell, A.M.; Functions of bounded kth variation, Proc. London Math. Soc.
 (3), 26 (1973), 547-563.
- Russell, A.M., A Banach space of functions of generalized variation, Bull. Austral. Math. Soc. Vol. 15 (1976), 431-438.
- Russell, A.M., A commutative Banach algebra of functions of generalized variation, Pacific Journal of Mathematics, Vol. 84, No. 2 (1979), 455-463.