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 In the following, the symmetric derivative of a real-valued function is written as

 (•(x)-lim
 h->0 2"

 The approximate symmetric derivative, fa3(x), is defined in the natural way by
 replacing the orcfinary limit with the approximate limit. The relationship between
 monotonidty and the orcfinary symmetric derivative is quite well understood. This
 relationship is fairly succinctly summed up by the following theorem.

 Theorem 1 . ([L1]) If f:ft-* R is such that f 3 * 0 everywhere and C(f) is the set on

 which f is continuous, then fļ^ is nondecreasing.

 Because every symmetrically differentiate function is differentiate almost
 everywhere ([U], [K]), Theorem 1 shows that the monotonidty behavior of the symmetric
 derivative is "almost" that of the ordinary derivative.

 In the case of the approximate symmetric derivative, the monotonidty question is

 still largely open. The most reasonable conjecture seems to be that if f :R-> R is
 measurable and f 33 * 0 everywhere, then f is monotone when restricted to

 A(f)={x: f is approximately continuous at x}.

 There is some circumstantial evidence to support this conjecture.

 Theorem 2. ([M]) If f is a measurable function sudi that f 03 ¿0 everywhere, then

 given an interval I, there exists a subinterval J of I such that f|^ is nondecreasing
 on J.

 The only other successful attack on the monotonidty question with the
 approximate symmetric derivative is the following theorem.

 Theorem 3. ([P]) Let f:R-> R be a.Darboux-Baře 1 function and for each ae R

 define A^f ) = {x :f(x)=a} and

 K={a : Aß( f ) contains at most countably many approximate maxima of f}.

 If f ® i 0 everywhere and K is dense in R, then f is nondecreasing.
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 Theorem 3 is a consequence of a new theorem which will appear in [L2].
 (Theorem 3 is actually stated in a somewhat stronger form in [P].) A weaker version of
 the new theorem is presented below. First, here is some notation.

 Let f be a real-valued function and ae R. Define

 Aa(f)*{x:f(x)>ct}, Ba(f) = {x:f(x)<a} and Ca( f ) = ĀJT) n BJĪ) .

 If A is a measurable set, then let D(A) be the set of upper density points of A. Denote
 by L(A) the set of points at which the lower density of A is greater than 1/2. The
 derived set of A is Witten as A'.

 Theorem 4. If f is a Darboux-Baire 1 function such that f®iO everywhere and there

 is a dense set D such that for each ae D either Ca( f ) = 0, or L(Aa( f )) u L(Ba( f )) is

 a second category subset of Ca( f ), then f is nondecreasing.

 We present here a proof for the simpler case when f is continuous, because this
 proof contains the essential ideas of the proof which which appears in [L2], but also
 has fewer complications than the general case.

 Rvof. Without loss of generality, we may assume that f 85 > 0 everywhere, for

 otherwise, we just consider the function g(x) = f(x) + ex for arbitrarily small e > 0.

 Suppose there are real numbers x and y with x < y such that f(x) > f(y). Choose

 ot£(f(y), f(x)). Since f is a Darboux function, it follows that Ca( f ) * 0, so at least one of

 L(Aa( f )) or L(Ba( f )) is second category in Ca( f ).

 We see from its definition that Ca( f ) is closed. Because f is continuous, Ca( f )

 is a subset of f ) so |Ca( f )| - 0. Therefore, Ca( f ) is nowhere dense. Let P be

 the derived set of Ca(f). Then P is a nowhere dense perfect set with zero measure.

 Suppose that (a, b) is a component of Ca( f )c. Then, one of the following
 statements must be true:

 (1) (a.bJnAaiO-aîor, (2) (a, b) n Ba( f ) - 0.

 Suppose that (1) is true and that beCa( f ). Since (b) >0, it follows that A0(f ) has

 density equal to 1 at b. On the other hand, since beCa( f ), it follows that b is a right

 limit point of Ba( f ). From this we are forced to -conclude that be P. Similarly, if (2) is
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 true and aeCa( f ), then Ba( f ) has density equal to 1 at a and aeP. Since one of

 these two must be lrue for any component (a, b) of Ca( f )c, we see that both D(Aa( f ))

 and D(Ba( f )) must be dense in P. But, both of these sets are then dense G5

 subsets of the Baire space, P, and as such they are residuai in P.
 An argument similar to that given above shows that if t is an isolated point of

 Ca( f ), then there must be a 5>0 such that (t-S, t) cBQ(f) and (t, t+S) c Aq( f ), so

 no isolated point of Ca( f ) can be in L(Aq( f )) u L(Ba( f )). This shows that at least

 one of L(Aq( f )) or L(Ba( f )) is a second category subset of P. This is a contradiction

 because L(Aq( f )) n D(Ba( f )) = « and L(Ba( f )) n D(Aa( f )) = a. Therefore, the
 theorem follows.
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