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 DERIVATION BASES AND THE HAUSDORFF MEASURE

 The purpose of this talk is to answer a question posed

 by Thomson [5, p. 164] on the relation, if any, between the

 Hausdorff measure and the D derivation basis. It is shown that

 the Hausdorff measure equals the measure generated by the

 D derivation basis (1) when the derivative of h at 0 exists

 and is finite, (2) when the set is countable or (3) when the

 sum Zh(|In|) over the contiguous intervals of a given closed
 set converges. However, it is shown that the symmetric

 derivation basis is finite on more sets of finite Hausdorff

 measure then the measure from the D derivation basis.

 When the lower right derivate of h at 0 is finite, the

 Hausdorff measure is a multiple of the Lebesgue measure.

 D*h(0) is the multiple. When the upper right derivate

 of h at 0 is finite, (h«ni)s(E), (h«m)D(E) and (h«in)D#(E)

 are a multiple of the Lebesgue measure and that multiple isDh(O).

 The remaining question as to the relation between the

 measures is when h has an infinite derivate at 0. It is

 answered as follows: For the D ^derivation basis, the

 answer is trivial. If E is any non-empty set in [a,b ]

 then (h«m)jj#(E) « ». As was mentioned above, when the
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 sum Zh(|In|) over the contiguous intervals of a given
 closed set converge, the Hausdorff measure [3 ] and the

 measure generated by the D derivation basis agree and are

 equal to zero. However, there is a set for which Zh(|In|) = »
 and the set has D derivation measure zero. Also a set E

 can be constructed with Hausdorff measure zero and (h«ra) (E) = «.
 S

 For sets of finite, nonzero Hausdorff measure, sufficient

 conditions for the symmetric derivation basis measure and

 D derivation basis measure to be infinite are d^(x) =

 lim. J tQt¿k(Eni)/h(|I|) where x is a left hand endpoint of I,
 then (h«m)ß(E) = » when /gd^ (x)d|j. (x) » ».
 Note that if E is the Cantor set and h(x) = xa where

 a ■ log2/log3, Besicovitch [ 1 ] proved that dp(x) ■ 0
 U

 a. e. m. on E. Therefore (h«m)^(E) » ». A set was
 constructed by Besicovitch [1 ] that has d (x) ■ 0 (d (x) is S s

 defined similarly). Since an analogous theorem holds for

 the symmetric derivation basis measure, there exists a set

 of finite, non-zero Hausdorff measure which has infinite

 measure with respect to the symmetric derivation basis. A

 sufficient condition for (h«m) to be finite is given by

 the following ° theorem: Let E »'U E where E and E„ ° n n n

 are measurable sets and the ER are pairwise disjoint. If
 -1 h

 dg(x) > dn > 0 for each x € Er and Cii < ••
 then (h»m)s(E) < ». (A similar theorem holds for (hoin)D.)
 If E is the Cantor set, then d (x) > l/h(12) for all x € E.

 S

 Therefore (h*m) (E) < ». Furthermore the (h*m) measure
 S ®

 of the Cantor set is strictly larger than the Hausdorff
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 measure .

 This talk is based on a paper which is derived from

 part of my dissertation under the direction of Prof. James

 Foran.
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