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 Definition. A tagged division of [a,b] will be called a restricted

 tagged division of [a,b] if it has the form

 a =xn = z, < X-. < z« < x„ < z0 < . . . < x -, < zm -i < X , < zm = xm = b U I I 2 2 3 . m-¿ -, m- I m-l m m

 where Xq = z-j is the tag of [xq,x.j], xm = zm is the tag of [xm_-j ,xm]
 and z. is the tag of both [x. i»z.] and [z.,x.] for j = 2,3, . . .',m-1 .
 J J J J J

 If a restricted tagged division of [a,b] has further the property that

 z.-x. , = x.-z., j » 2, 3,..., m-l, the division will be called a restricted
 J J I J J

 symmetric tagged division of [a,b].

 It is clear that given ô(x) > 0 defined on [a,b] there exists a

 restricted tagged division of [a,b] compatible with ô(x). That there

 exists -a restricted symmetric tagged division of [a,b] compatible with

 s(x) follows from [2].

 If f is a finite function defined on [a,b], let two interval func-

 tions be defined by = F^(f,u,v) = f(v)(v-u) and Fr = Fr(f,u,v) = f(u)(v-u).
 It will be convenient to denote a pair of interval functions by a single

 letter in script face. For example we shall write F(u,v) = {F^(u,v)',Fr(u,v)}

 or, more briefly, F = (F£>Fr)*

 Definition. The number I will be called the generalized Riemann complete

 (generalized symmetric Riemann complete) integral of f with respect to the

 pair of interval functions fi(u,v) « {h^(u,v) ,hr(u ,v) } on^ [a,b] if, corres-
 ponding to € > 0, there is a function õ(x) > 0 so that
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 |i-d?)2(ha+Fa)i < e

 for all restricted tagged divisions (restricted symmetric tagged divisions),

 V compatible with 5(x), where o = t or r, depeending on whether the

 tag of the interval is the right hand or left hand end point.

 The notation for these integrals is

 rb fb
 I = (SRC.fi) f(t)dt and I = (SSRCt/i) f(t)dt,

 •'a -'a

 respectively.

 It has been shown [1] that for proper choice of k ^ and h

 fb

 (GRt:,ki ) fn(t)dt = ■fn.1(b)-fri.1(a) ä

 and

 rb

 (GRC./u) C Df(t)dt = f(b)-f(a),
 Ja

 if f and CnDf are finite everywhere in [a ,b] . Similarly [1] under
 natural assumptions it is true that the generalized symmetric Riemann com-

 plete integral integrates everywhere finite de la Vallee Poussin and Si-
 deri vati ves.

 We obtain further the following result:

 Theorem. If f is finite and CnP-integrab1e on [a,b] then f is_
 generalized Riemann complete integrable with respect to (a suitable choice

 of a pair of interval functions) A = >. and the integrals are equal.
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