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ASSICAL PROBLEMS IN ANALYSIS AND NEW INTEGRALS
I. The classical aporoach

We shall motivate and describe recent attempts to define, through the
use of suitable limits of Riemann sums, integrals which can integrate the
divergence of mere differentiable vegtor fields. Their approach via
nonstandard analysis will be sketched in Part II.

If 2 € € is an open domain and f: 2 - € is C-differentiable, the
Cauchy theorem asserts that

(1) f(z)dz = 0
-3

for each 2-interval [ whose closure is contained in 2. Two types of proof
are generally offered in textbooks. The first type uses the Green formula
to transform the real and imaginary part of the left-hand side in (1) into
integrals on I whose integrands are equal to zero by the Cauchy-Riemann
formulas. Such an approach réquires more regularity on f than the
C-differentiability, for example f continuously C-differentiable. The
second type of- proof, which goes back to Goursat (1900) [3] proves (1)
under the mere C-differentiability assertion on f by a contradiction
afgument and ﬁhe technique of successive divisions of I. Such a proof is
similar to that of a lemma stated and proved i; Rz in 1895 by Cousin and
which has played an important role since the late fifties in the
definitions of Perron-type integrals through Riemann sums introduced by
Kurzweil [9] and Henstock [4]. To formulate precisely the lgmma in Rn,
let I = ]al, b1] X ... X ]an, bn] be a right-closed interval in m“, T its
closure and let us call gauge on-1 any positive function defined on T
L-partition 7 of I any finite family

r= (<t x4 %))

such‘that the right-closed subintervals 1 oof 1 partition [ and the x) are
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points of T (1 < j < q). If, moreover, x) e T (1 < j ¢ q) then the
L-partition 7 will be called a P-partition of I. Given a gauge § on 1 and
a L-partition 7 of I, we shall say that Z is 8=fine if I3 < B[x7; &(xJ)]
(1 < j < q), where B(y; r] is the closed ball of center y and radius r > 0

for the norm |x| = max lxi[, Cousin’s lemma may then be stated as
1<i¢n

follows.
Lemma 1. For each gauge & on T there exists a 6-fine P-partition of I.

In fact, the usual proof by successive divisions of I provides the
supplementary useful information that there exists a &-fine P-partition
I = {(xl, Il), ceey (x?, Iq)} of I such that each Ij is similar to I (see
e.g. [10] for the details).

The direct use of this lemma makes the proof of Goursat’s theorem
quite straightforward. By the C-differentiability of f over 2, if e > 0
is given, there exists a gauge & on T such that y € I, z € @ and
|z - y| ¢ 8(y) imply that
(2) |£(z) - £(y) - £°(y)(z - y)| S e|z - y]|.
ir ((z', 1Y, ..., (z% 1Y) is a 6-fine P-partition of I with the I’

similar to I, then (1) is equivalent to

q
} I f(z)dz = 0.
J

j=1 9l
On the other hand, »
(3) J £(z)dz =J [f(zj)+f’(zJ)(z~zJ)]dz+f (£(z)-£(23)-£" (29) (2-27) Jdz
ard ard ar?
(1 <3¢ q)
and the first-term in the right-hand member of (3) is equal to zero by

direct calculation. By (2) and the 8-fineness of T, we have
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IJ (f(2) - £(23) - £ (23)(z - 29)]dz| ¢ ‘J |z - z7|ae
aIJ GIJ

and hence Goursat’s theorem will be proved if we can show that

q
(4) EJ |z-zJ|deg c
j=1 o13
for some constant C > 0 independent of Z. Now, all the Ij being similar

to I we have, denoting the length of the largest (resp. smallest) side of

1 by L3 (resp. ej). and similarly for I,
q : o q q.
. - L
EJ' j|z z”|de ¢ §2Lj(LJ+ej) 22(?-4-1)t.jej
j=129I j=1 J=1

= 2(; + 1)L¢
(we have used the fact that LeJ = Lje), and the proof is complete.

A careful analysis of this proof suggests that a modification of the
Kurzweil-Henstock approach could lead to an integral which will integrate
the divergence of merely differentiable vector fields in rR" in the same
way as the Perron integral in R integrates all derivatives. If 2(1)
denotes the set of all L-partiiions of I let us introduce a function
Z: L(I) - R; which will measure the jrregularitv of a L-partition
(examples are given later). Let I < R" be a right-closed interval and

1

£: T-rPa function. If 7 = {(xl. "), ..., (xq. Iq)} is a L-partition

of I, we denote by

q
S(f, T) = }f(xj)mn(l‘j)

Jj=1
j L
Riemann-sum, = T T(oy - ai
the corresponding where mn(I ) i=1(b1 al) for
J_q.d R S I | '
I ]al, b1] X ... X ]an,.bn] (1 <3j<aq).

Definition 1. We say that f is Z-P-integrable over T (resp.

Z-L-integrable over T) if there exists J € RP such that, for each ¢ > 0
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and for each 7 > 0, there exists a gauge & on I such that
Is(e, @) - J| ¢ e
provided Z is a &-fine P-partition (resp. L-partition) of I with.Z(Z) € 7.

Such a J is necessarily unique and is noted (ZP)J f.
T

The properties of the integrals given by Definition 1 strongly depend
upon the choice of Z and of the allowed partitions. So, for £Z = 1, the
Z-P-integral is the multi-dimensional Perron integral introduced
independently by Kurzweil [9] and Henstock [4] and the Z-L-integral is
McShane’s version of the Lebesgue integral [13]. Defining o(K) for

K = ]cl' d,] x ... x ]cn. dn] by

1]

o(K) = [ max (d, - c.)]/[ min (d, - c.,)]
N T

and zo(n) by
zo(x) = [ max a(IJ)]/o(I)
1<J¢a
we obtain integrals introduced in [11] as the GP- and GL-integrals,

réspectively. The GL-integral is shown to be equivalent to the Lebesgue
integral. For the GP-integral, the following version of the Stokes
theorem can be proved by an argument very similar to that used above to

get the Goursat theorem [11].

TIheorem 1 Let £ be a function of R™ into R" which is differentiable

on an open domain @ and let
n

i-1
Uf3 2(‘1) fi dx1A P Adxi_lAdxi+1A e Adxn.
i=1

n
Then div f = EDifi' is GP-integrabl'g over I for each right-closed
i=1
interval I < R? such that T < @, and, moreover,
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J div £ = I W,
I Al

ﬁhere dI denotes the usual oriented boundary of I.

Thus the GP-integral, which reduces to the Perron integral for n = 1,
integrates the divergence of merely differentiable vector fields in the
same way as the Perron integral integrates every derivative. Also,
Theorem 1 provides a "Green-type" proof of the Cauchy theorem for complex
functions under the mere C-differentiability assumption.

.Although the GP-integral has many .of the usetul.propertiés of usual
integrals, the question of the GP-integrability over T! U T2 when £ is
GP-integrable over abuttiﬁg intervals"f1 and"f2 was left open in [11], as
well as the obtention of a dominated convergence theorem (a monotone
convergence theorem was proved in [11]). Jarnik, Kurzweil and Schwabik
[5] gaVe a counterexample to the first property and, very recently, Shu
Shen Fu [2] has prbved the dominated convergence theorem for the
GP-integral and has given a sufficient condition for the GP-integral to be
additive on abutting intervals. In their paper [5] and- subsequent ones
[6, 7], Jarnik, Kurzweil and Schwgbik introduced a new irregularity

function, namely

q
- 1x < &3 ‘
(5) Zl(ﬂ) zj .|x X ldmn_l(x)
j=1 17
where mo_y is the wusual (n-1)-dimensional Lebesgue measure and the
integrals are Riemann integrals. One can see that this is just what
corresponds to the quantity in the left-hand member of (4). The

corresponding ZI-P- and ZI—L-integrals are the Ml- and ﬂz;ig;gggglg of
{s]. Both allow a Stokes theorem identical to Theorem 1, bhave the
additivity property and the monotone and dominated convergence theorems
hold for them. [5] also contains an example showing that Fubini’s ‘theorem

fails for the GP-, Ml- .and M24integrals, and it is éroved that the
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following strict inclusion properties hold for n > 1 with L for Lebesgue

and KH for Kurzweil-Henstock:

KH
> >
GP > Ml L .
> >
Ma
The M_-integral definition motivated Jarnik and Kurzweil [7] in defining a

2
non-absolutely convergent integral which allows a Stokes theorem for
merely differentiable (n-1)-forms with compact support on a n-manifold of
class Cl. They do it by introducing the concept of PU-partition of a
n 1 1 q q
compact set M€ R, namely a finite family &4 = {((x*, 87), ..., (x*, 87)}

where xj € M, BJ: rR" o [0, 1] are Cl-functions with compact support,

q q
0¢ Eaj(x) ¢ 1, M< int(x € R": LoJ(x) =1} (1< j<q xeM. 16
Jj=1 j=1

is a gauge on M, A is said to be §-fine if
supp 03 e B(xd, s(xV)] (1 ¢3¢ @
and, in analogy with (5), the irregularity function for the PU-partitions

is defined by

Z,(8) = EJ |x - xj| } |D, aj|dx

j=1 IR i=1

n o, RrP with compact support, the corresponding Riemann sum is

For f: R

given by

S(f, 4) = z f(x {[ 9 (x)dx.
j=1 R"

Definition 2. ([7]) We say that f is PU-integrable if there exists

J € R such that for each ¢ > 0 and‘each n > 0, there is a gauge & on

supp f such that
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|s(f, &) - J] < e
provided A 13 a §-fine PU-partition of supp f with ZS(A) < n.

An important additional property of the PU-integral is that the
change of variables theorem in its usual form holds for it [7]. In a very
recent work [8], Jarnik and Kurzweil have modified the above definition to
allow a Stokes theorem when the differentiability property may fail on
some sufficiently small subsets of the manifold.

Independent significant contributions to the above-mentioned problems
have been made by W. Pfeffer [15, 16] and are described in detail in his
contribution to the conference. His approach is.closer in spirit to the

use of the irregularity function Z_ but involves a modification which

0
allows us to overcome the lack of additivity of the GP-integral. Let d(K)

denote the diameter of a right-closed interval K < rR" and

r(K) = un(K)/(d(K))n its regularity. Notice that 1/a(K) > r(K)
> 1/(@(®)™. I1f 0 ¢ k ¢ n -1 and H is a k-plane (a k-dimensional
linear submanifold of R" parallel to k distinct axes), rH(K) is defined by
r(K) 1f HN K = ¢ and by m (KN H)/(d(R) i HA K # 6. If % is a family

of planes, let gx(K) = sup rH(K) and if I = {(xl. Il). e, (xq, Iq)} is a

Hex
P-partition of I, let

p(%, M) = min R (17).
1< j<q
Pfeffer’s definition then goes as follows for a function f: T = rP.

Definition 3. f is g-integrable over T if there exists T € RP such
that for each ¢ € ]0, 1/2] and each finite family ¥ of planes there is a
gauge 8 on 1 such that

|s(f, @) - J| < e

provided T is a 8-fine P-partition of I with p(X; ) > .
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For this integral, Theorem 1 can be proved when f is continuous on T
and differentiable on int I. See [15] for more details, and [16] for
Stokes theorem on differentiable manifolds.

Definitions 1 to 3 show that the basic ingredient“ in getting
generalized Riemann integrals which can integrate merely differentiable
vector fields is to introduce in the definition a non-uniformity with
respect to some measure of the regularity of the pointed partitions. The
conceptual simplicity of the proof of the quite,general Stokes theorems
obtained in this way is another argument in favor of the Riemann sums
approach to integration. Abgndoning the uniformity in the size of the
intervals in the partitions required in the Riemann integral by using
nonconstant gauges had provided integrals of the Lebesgue and Perron
power. Abandoning in those integrals the uniformity on the shape of the
intervals in the partitions gives multiple nonabsolutely convergent

integrals having interesting properties.
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II. TIhe nonstandard aporoach

We shall shortly describe nonstandard characterizations, in the
setting of Nelson’s internal set theory [14], of the non-absolutely
convergent multiple integrals defined in Part I, by following the main
lines of [12]. When this paper [12] was in press, we learned from
Professor Henstock that generalized Riemann integrals in one dimension had
been studied via Nelson’s approach by Benninghofen [1] where the reader
can find interesting results. 1In contrast to (1], the presentation given
in [12] does ﬁot depend upon Benninghofen-Richter theory of superinfini-
tesimals and is Sased directly on Nelson’s fundamental axioms. In
addition, [12] ;uts empﬁasis upon the various definitions of Riemann-type
for multiple integrals. We refer to [12] for more details and complete
proofs and we use the terminology and notations-of Part I.

Nelson’s internal set theory (IST) starts with the usual Zermelo-
Fraenkel set theory with the axiom of choice (ZFC) and adjoin to the usual
undefined binary predicate ¢ a new undefined unary predicate standard
(st); we write st(x) for "x is standard", where x is a set. ISTiuses
formulas written with the wusual symbols of formal 1logic and the
predicates. A formula of IST 1; called’jg;g;nal if it does not involve
the new predicate "st", and external otherwise. Constants are introduced
to simplify the lﬁnguage (like ¢, N, U, ...) and can always be replaced by
fqrmulas using only thé formal language. Such a constant is called

standard if its definition does not involve "st" an& 'ngn§;§ngang
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otherwise. Thus, all the constants of ZFC are standard. An internal
formula is called standard if it contains only standard constants, and
nonstandard otherwise. We shall use the following abbreviations:
vS'%)F(x)  for  (Vx)(st(x) = F(x))
fin
\4 X)F(x) for (Vx)(x finite = F(x))
and corresponding ones with existential quantifiers. The three following

axioms, to be added to those of ZFC, govern the use of the new predicate

"st". One can prove [14] that IST is a conservative extension of ZFC.
A. The transfer principle (T)
For any standard formula A(x, tl. Ceh tn) containing no other free

variable than x, t tn' one has:

1; ey

(VStcl)(VStgz)...(VStcn)[(VStx)A(x, tt) e (YRAGK, €, ...t )]

17
(or equivalently)

vt ) (vt (vt ) [(ExAlx, ¢

Lt e (3%%(x, t ,t 1)

1’ 1’ e n

B. The prin ea io

For any internal formula B(x, y) with free variables x, y and
possibly others, one has

v8t Fi0 s 30y vy € 2)B(x, v) = (3x) (v Sy)B(x. ¥).

(
C. The principle of standardizatjon (S)
For any formula C(z) with free variable z and possibly others, one
has

v ) 3%y (vt [z e y & (z € x) ~ C(2)].

Axiom (T) implies that -every specific object of conventional
mathematics is a standard set and that standard sets are equal if and only

if they have the same standard elements. But a standard:‘set may "contain
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nonstandard elements as follows from a consequence of (I): every element
of a set v is standard if and only if v.is standard and finite. Thﬁs.
every infimite set contains a nonstandard element, and this is the case,
in particular, for N and R. Applying (I) to the internal formula (with

R_={y €R:y>0)and [x| = max |x]|)
1¢ign *

B(x, y) = (x €R") ~ (y€R) ~ (|x] > )
we immediately see that the left-hand side is trivially satisfied and
hence
(3x € IR“)(VSty € R+): |x| > y.
Such an element is called jllimited, and the limited elements are then the
x @ R" such that

(3°

Yy e R): |x] <.

Now, if x is illimited and n = 1, then 1/x .is such that

(6) vy eRr): |x| <y

(notice that by (T) the inverse of a standard real number is standard) and

the elemnts of R" satisfying (6) are called jnfinjtesimals. We say that x

and y are jnfipnitelv close and we write x = y if x - y is infinitesimal.
Recall that a gauge on a set E is a positive application on E, i.e.

an element of RE. The following gauges, whose existence will follow from

(I), play an important role in our approach. Recall that a gauge

5: E = R* is standard if its graph is a standard subset of E x R_.

Lemma 1. Let E # ¢ be a standard set. Then there exists 'a gauge W
on E such that for each standard gauge 8§ on E and each x € E one has

H(x) € &8(x).

To prove this lemma, it suffices to apply (I) to the internal formula

B(7, §) given by | 79



E E
(qeR+) A (6&R+) A (q$6)
where n ¢ & means 7(x) ¢ &(x) for all x € E. A gauge u verifying the
conditions of Lemma 1 is called a microgauge on E. It is easy to show
that for each x € E, u(Xx) must be infinitesimal but no constant
infinitesimal gauge is a microgauge!
Let I be a right-closed standard interval of of R" and T its closure.

A X-partition T = {(xl, Il), RN (xq

, Iq)} of I as defined in Part I will
be called a X-micropartition of I (X = L or P) if Z is u-fine (as defined
in Part I) for some microgauge  on I. This implies that q is necessarily
unlimited and also that each standard element of T is contained in the set
{xl, cees xq} (assume that the standard c € rR" is not in this set and use
the standard gauge &(x) = |x - c|/2 and the u-fineness to get a
contradiction). Let Z: L(I) = R+ be an irregularity function defined on
the set of all L-partitions of I (see Part I for severa1~examp1es). A
X-micropartition T will be called Z-limited if Z(Z) is limited (we depart

from the terninology of [12] where such a micropart;tion was called

regular.

Iheorem 1. Let f: T - RP be standard. Then f is Z-X-integrable over
T if and only if there exists a (standard) J € RP such that S(f, Z) = J

whenever 7 is a Z-limited X-micropartition of I.

Proof: Necessity. Definition 1, the uniqueness of J and (T) imply
that J is standard and such that
(Ve)(wz)(aa){(vn)[(e >0) ~ (7 >0) ~ (8 €R.) ~ (T X (5, 7))
(7)
' > |S(f, @) - J]| ¢ e]}
where Xz(c. n) denotes the set of X-partitions & of I which are &-fine and

such that Z(f) < . Now (T) applied to (7) with ¢ and 77 restricted to
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standard values implies the existence of a standard 6§ for which (...}
holds. Now a Z-limited X-micropartition T of I will be &§-fine for all
standard gauges 8 and such that Z(Z) ¢ 7 for some standard 7, so that we
have, for such a 7,

v3% > 0): |s(£, @) - J| ¢ e,

S(f, T) = J.
Sufficiency. By assumption, taking for & a microgauge on T, we have
(v“c)(vs‘n){(aa)(vm[(e > 0) ~ (8 €R]) . (T ¢ %8, 1))

(8)
> |S(f, o) - J| ¢ ¢]}

because the corresponding T are then Z-limited X-micropartitions of I.
Two consecutive applications of (T) to (8) imply (7) and bomplete the

proof.

Remark 1. By taking Z = 1 in Theorem 1, we obtain the ponstandard
mmmmm_auhmmumm(x = P)_and Lebesgue integrals
(X = L), respectively:

Let £: T - R? be standard. Then f is X-integrable over T if and only
if there exists a (standard) J € RP such that S(f, ) = J whenever Z is a

X-micropartition of I.

Remark 2. Call a X-partition T infinitesimal if d(I’) = 0 for each
1< J ¢ q. Then Robinson {17] has given the following ponstandard
characterization of the Riemann integrabilitv of f over T:

Let f: T - R® be standard. Then f is R-integrable over T if and only
if there exists a (standard) J e RP such that S(f, Z) ~ J whenever I is an

infinitesimal P-partition of I.
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" As each Z-limited X-micropartition is an X-micropartition and each
X-micropartition an infinitesimal X-partition, the nonstandard characteri-
zations of the above types of integrability have a structure which makes
very clear the decrease in generality. Those nonstandard characteriza-
tions also make more transparent the proofs of some classical properties
(see [12]) although it is not yet clear for the author how much they can
simplify the proofs of the convergence theorems.

Let us end this paper by giving a nonstandard characterization of
Pfeffer’s integral. Let us denote by H a fixed subset of the set of all
finite families of planes and if 7 is a P-micropartition of the standard
right-closed interval I < R", let us call T a p-M-appreciable

—m tion if for each standard X € H p(X, Z) 1is not an
infinitesimal (as p(X, Z) < 1, this implies that p is neither

infinitesimal nor illimited, and such real numbers are called

apprecjable).

Theorem 2. Let f: T = rP be standard. Then f is p-integrable over T
if and only if there exists a (standard) J € rP such that S(f, ) = J

-

whenever T is a p-H-appreciable P-micropartition of I.

Proof: Necessity. Again J is necessarily standard and such that

(Ve)(WC)(B&){(VH)[(e € ]0, %1) A (BEM) A (8 ER,) ~ (T €2(8%.e))

(9)
> |S(f, T) - J| ¢ e]}

where ®(5, X, e) denotes the set of 6ffine P-partitions such that
p(X, ) > e. By . (T) applied to (9) w;th ¢ and X restrictéd to standard
values, we obtain a standard & for which {...} holds. Now if P is a
p—H-appreéiable P-micropartition, if % .€ H and ¢ € ]0, p(%, ﬂ)]‘ are

standard, and if & is the corresponding standard gauge, Z is 8-fine and
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p(¥X, I) > ¢, so that
(10) |s(e, 1) - J| < e.
Thus (10) holds for all standard ¢ € ]0, p(%, X)] and hence for all
standardbe > 0 so that S(f, P) = J.
Sufficiency. By assumption
(v3t¢)(v3t::){(aa)(vzz)[(e €10, 1)~ xem) ~ (5€ uz?)

(11)
~ (0 ex(s, X, ¢)) > |S(f, M) - J| ¢ q}.

Indeed, it suffices to take for & a microgauge on I sa that T &-fine
implies that 7 is a P-micropartition and p(¥, Z) > ¢ with ¢ > 0 standard
implies that I is p-M-appreciable, so that S(f, Z) = J and hence IS(f, )
- J| { e. Two successive applications of (T) to (11) then give the
result.

Theorems 2 and 3 show that comparing the Z-X- and p-integrability
concepts just reduces to comparing the Z-limited X-micropartitions and the
pﬂH-appreciable P-micropartitions. So, the equivalence of the ZO-P- and
the p-¢-integrals follows immediately from the inequalities between o (K)

and r(I).
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