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 CLASSICAL PROBLEMS IN ANALYSTS AND NEW INTEGRALS

 I . The classical approach

 We shall motivate and describe recent attempts to define, through the

 use of suitable limits of Riemann sums, integrals which can integrate the

 divergence of mere differentiable veçtor fields. Their approach via

 nonstandard analysis will be sketched in Part II.

 If (2 c c is an open domain and f: fl -♦ C is C-dif ferentiable , the

 Cauchy theorem asserts that

 (1) [ f (z)dz = 0
 d I

 for each 2-interval I whose closure is contained in ß. Two types of proof

 are generally offered in textbooks. The first type uses the Green formula

 to transform the real and imaginary part of the left-hand side in (1) into

 integrals on I whose integrands are equal to zero by the Cauchy-Riemann

 formulas. Such an approach requires more regularity on f than the

 C-dif ferentiability , for example f continuously C-dif ferentiable . The

 second type of- proof, which goes back to Goursat (1900) [3] proves (1)

 under the mere C-dif ferentiability assertion on f by a contradiction

 argument and the technique of successive divisions of I. Such a proof is

 2
 similar to that of a lemma stated and proved in IR in 1895 by Cousin and

 which has played an important role since the late fifties in the

 definitions of Perron-type integrals through Riemann sums introduced by

 Kurzweil [9] and Henstock [4]. To formulate precisely the lemma in iRn ,

 let I = ]a. , bj X ... X la , b 1 be a right-closed interval in lRn, T its
 11 n n

 closure and let us call yaiige on • T any positive function defined on T

 L-partition ÏÏ of I any finite family

 ïï = {(X1, I1)

 such that the right-closed subintervals IJ of I partition I and the xJ are
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 points of T (1 < j < q). If, moreover, xJ € 7J (1 < j < q) then the

 L-partition ïï will be called a P-partition of I. Given a gauge 5 on T and

 a L-partition U of I, we shall say that. U is C-f ine if 1^ c B[x^; S(xJ')]

 ( 1 < j < q ) . where B[y; r] is the closed ball of center y and radius r > 0

 for the norm |x| » max |x.|, Cousins lemma may then be stated as
 1< i<n

 follows .

 Lemma 1 . For each gauge Õ on T there exists a 3-fine P-partition of I.

 In fact, the usual proof by successive divisions of I provides the

 supplementary useful information that there exists a fi-fine P-partition

 ïï =» {(x*, I*), .... (x^, l'*)} of I such that each 1^ is similar to I (see

 e.g. [10] for the details).

 The direct use of this lemma makes the proof of Goursat's theorem

 quite straightforward. By the C-dif ferentiability <?f f over 12, if e > 0

 is given, there exists a gauge 6 on T such that y e Ī, z e ß and

 I z - y I < ö(y) imply that

 (2) |f(z) - f ( y ) - f(y)(z - y)| < ¿|z - y| •

 If {(z1, I1)

 similar to I, then (1) is equivalent to

 q

 ^ J f (z)dz =0.
 j-l eiJ

 On the other hand,

 (3) J f(z)dz -J [f(zJ)+f' (zj)(z-zj)]dz-J [f (z)-f(zJ)-f' ( zJ ) (z-zJ ) ]dz
 dl^ ai^ aiJ

 (1 < j < q)

 and the first- term in the right-hand member of (3) is equal to zero by

 direct calculation. By (2) and the 3-fineness of ïï, we have
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 ij Cf (z) - t(zh - ť(zh(z - Zj)]dz| < |z - zJ|d*
 aiJ dlj

 and hence Goursat's theorem will be proved if we càn show that

 q

 (4) ^ J I z - zJ|d¿ < C
 j-1 dl*

 for some constant C > 0 Independent of ïï. Now, all the 1^ being similar

 to I we have, denoting the length of the largest (resp. smallest) side of

 1"^ by Lj (resp. ¿j), and similarly for 'I,
 q q q

 H ,iz - *Jid< s 22VlJ łV
 j»l d I j = l j-1

 - 2(j ♦ 1)M

 (we have used the fact that Lt ^ ) , and the proof is complete.
 A careful analysis of this proof suggests that a modification of the

 Kurzweil-Henstock approach could lead to an integral which will integrate

 the divergence of merely dif ferentiable vector fields in Rn in the same

 way ás the Perron integral in R integrates all derivatives. If ¿(I)

 denotes the set of all L-partitions of I let us introduce a function

 Z: ¿(I) -» R+ which will measure the irregularity of a L-partition

 (examples are given later). Let I <= Rn be a right-closed interval and

 f: T -» RP 'a function. If ÏÏ =» {(x1, I1), ..., ( x*' , Iq)} is a L-partition

 of I , we denote by

 q

 S(f. tt) = ^ f(xj)mn(IJ)
 j-1

 n

 the corresponding Riemann-sum. where m n (IJ) » ļ f(b^ 1 - a^) for n i=l 1

 Ij - Uļ, il bh x ... x ]a¿, na ,b¿] (1 < J < q) . il na

 Definition 1. We say that' f is Z-P-integrable over T (resp.

 Z-L-integrable over T) if there exists J € Rp such that, for each € > 0
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 and for each q > 0, there exists a gauge 0 on I such that

 |S(f, ïï) - J| < è

 provided ïï is a ö-fine P-partition (resp. L-partition) of I with.I(ff) < q.

 Such a J is necessarily unique and is noted (.TP) f.
 J I

 The properties of the integrals given by Definition 1 strongly depend

 upon the choice of Z and of the allowed partitions. So, for Z ■ l, the

 r-P-integral is the multi-dimensional Perron integral introduced

 independently by Kurzweil [9] and Henstock [4] and the r-L-integral is

 McShane's version of the Lebesgue integral [13]. Defining" o(K) for

 K - ]c , d ] X . . . X ]c , d ] by
 il n n

 a( K) » [ max (d. - c.)]/[ min (d. - c.)]
 l<i<n 1< i<n

 and by

 Z (ïï) - [ max o(IJ)]/o(I)
 i<j<q

 we obtain integrals introduced in [11] as the ££- and GL-integrals .

 respectively. The GL-integral is shown to be equivalent to the Lebesgue

 integral. For the GP- integral, the following version of the Stokes

 theorem can be proved by an argument very similar to that used above to

 get the Goursat theorem [11].

 Theorem 1 Let f be a function of lRn into which is dif ferentiable

 on an open domain 12 and let

 n

 r- i-i

 = V(-l) ft dxļ ^ ... ^ dxļ_j ~ dxi + i A ••• ~ dxn"
 i-1

 n

 Then div f » ^ Di^i *s GP"inteSral3le over T for each right-closed
 i=l

 interval I c Rn such that 7 <= ß, and, moreover,
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 f div f ■ f w
 JI Jdl

 where dl denotes the usual oriented boundary of I.

 Thus the GP-integral, which reduces to the Perron integral for n » 1,

 integrates the divergence of merely differentiable vector fields in the

 sane way as the Perron integral integrates every derivative. Also,

 Theorem 1 provides a "Green-type" proof of the Cauchy theorem for complex

 functions under the mere C-dif ferentiability assumption.

 Although the GP-integral has many .of the useful .properties of usual

 -1 -2
 integrals, the question of the GP-integrability over IUI when f is

 GP-integrable over abutting intervals T1 and T2 was left open in [li], as

 well as the obtention of a dominated convergence theorem (a monotone

 convergence theorem was proved in [11]). Jarnik, Kurzweil and Schwabik

 [5] gave a counterexample to the first property and, very recently, Shu

 Shen Fu [2] has proved the dominated convergence theorem for the

 GP-integral and has given a sufficient condition for the GP-integral to be

 additive on abutting intervals. In their paper [5] and* subsequent ones

 [6, 7], Jarnik, Kurzweil and Schwabik introduced a new irregularity

 function, namely

 q

 (5) ^ J ' |x - x^dm^'x)
 j=l Ij

 where ®n-1 is the usual (n-1) -dimensional Lebesgue measure and the
 integrals are Riemann integrals. One can see that this is just what

 corresponds to the quantity in the left-hand member of (4). The

 corresponding and Z^L-integrals are the and M¿-integrals of
 [5]. Both allow a Stokes theorem identical to Theorem 1, have the

 additivity property and the monotone and dominated convergence theorems

 hold for them. [5] also contains an example showing that Fubini's theorem

 fails for the GP-, M - and M -integrals, and it is proved that the
 X M
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 following strict inclusion properties hold for n > 1 with L for Lebesgue

 and KH for Kurzweil -Hens tock:

 KH
 D D

 GP 3 Mj L .
 3 O

 M2

 The Mg-integral definition motivated Jarnik and Kurzweil [7] in defining a

 non-absolutely convergent integral which allows a Stokes theorem for

 merely differentiable (n-l)-forms with compact support on a n-manifold of

 class C1. They do it by introducing the concept of PU-oartition of a

 compact set M<= Rn, namely a finite family ù » {(x1, Ö1)

 where x^ « M, 9^- (Rn -» [ o . 1] are (^-functions with compact support,
 q q

 0< 5 ^(x) < 1. M C int{x € IRn: > 9J(x) » 1> ( 1 < j < q. x « M) . If 6
 L-

 J-l j-1

 is a gauge on M, A is said to be 5-f ine if

 supp c B[x^ , ö(xJ)] (1 < j < q)
 and, in analogy with (5), the irregularity function for the PU-partitions

 is defined by

 q n

 Z2(A) = ^ J lx " xJ| ^ |D.eJ|dx.
 j»l IRn i-1

 For f: Rn -» Rp with compact support, the corresponding Riemann sum is

 given by

 q

 S(f, A) = ^ f(xj)j e^(x)dx.
 J-l Rn

 Definition 2. ([7]) We say that f is PV-ln<;ęgrąl?1ę if there exists

 J e IR such that for each 4 > 0 and each ij > 0, there is a gauge 5 on

 supp f such that
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 I S( f , A) - j| < e

 provided A is a 5-fine PU-partition of supp f with £g(A) í 1 ■

 An important additional property of the PU-integral is that the

 change of variables theorem in its usual form holds for it [7]. In a very

 recent work [8], Jarnik and Kurzweil have modified the above definition to

 allow a Stokes theorem when the differentiability property may fail on

 some sufficiently small subsets of the manifold.

 Independent significant contributions to the above-mentioned problems

 have been made by W. Pfeffer [15, 16] and are described in detail in his

 contribution to the conference. His approach is closer in spirit to the

 use of the irregularity function but involves a modification which

 allows us to overcome the lack of additivity of the GP-integral. Let d(K)

 denote the diameter of a right-closed interval K <= Rn and

 r(K) » mn(K)/(d(K) )n its regularity. Notice that l/o(K) > r(K)
 > l/(o(K))n If 0 i k 1 n - 1 and H is a k-plane (a k-dimensional

 linear submanifold of Rn parallel to k distinct axes), r^JK) is defined by
 r(K) if H n K » * and by m.(K n H)/(d(K))k if HO KM. If K is a family

 of planes, let R„(K) » sup r„(K) and if S » {(x1, I1), ..., (xq, Iq)} is a
 H«C

 P-partition of I, let

 p(X, ïï) = min IL(IJ).
 l<j<q

 Pfeffer's definition then goes as follows for a function f: T -» Rp.

 Definition 3. f is o-integrable over T if there exists T 6 IRP such

 that for each * « ]0, 1/2] and each finite family JC of planes there is a

 gauge O on T such that

 |S(f, 1Z) - J| < è

 provided IT is a ö-fine P-partition of I with p(X; II) > &.
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 For this integral, Theorem 1 can be proved when f is continuous on T

 and differentiate on int I. See [15] for more details, and [16] for

 Stokes theorem on differentiable manifolds.

 Definitions 1 to 3 show that the basic ingredient ^ in getting

 generalized Riemann integrals which can integrate merely differentiable

 vector fields is to introduce in the definition a non-uniformity with

 respect to some measure of the regularity of the pointed partitions. The

 conceptual simplicity of the proof of the quite general Stokes theorems

 obtained in this way is another argument in favor of the Riemann sums

 approach to integration. Abandoning the uniformity in the size of the

 intervals in the partitions required in the Riemann integral by using

 nonconstant gauges had provided integrals of the Lebesgue and Perron

 power. Abandoning in those integrals the uniformity on the shape of the

 intervals in the partitions gives multiple nonabsolutely convergent

 integrals having interesting properties.
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 II. Thę [wnstantárt appmch

 We shall shortly describe nonstandard characterizations, in the

 setting of Nelson's internal set theory [14], of the non-absolutely

 convergent multiple integrals defined in Part I, by following the main

 lines of [12]. When this paper [12] was in press, we learned from

 Professor Henstock that generalized Riemann integrals in one dimension had

 been studied via Nelson's approach by Benninghofen [1] where the reader

 can find interesting results. In contrast to [1], the presentation given

 in [12] does not depend upon Benninghofen-Richter theory of superinfini-

 tesimals and is based directly on Nelson's fundamental axioms. In

 addition, [12] puts emphasis upon the various definitions of Riemann-type

 for multiple integrals. We refer to [12] for more details and complete

 proofs and we use the terminology and notations of Part I .

 Nelson's internal set theory (1ST) starts with the usual Zermelo-

 Fraenkel set theory with the axiom of choice (ZFC) and adjoin to the usual

 undefined binary predicate e a new undefined unary predicate standard

 (st); we write st(x) for "x is standard", where x is a set. 1ST uses

 formulas written with the usual symbols of formal logic and the

 predicates. A formula of 1ST is called internal if it does not involve

 the new predicate "st", and external otherwise. Constants are introduced

 to simplify the language (like #, N, U, . . . ). and can always be replaced by

 formulas using only the formal language. Such a constant is called

 standard if its definition does not involve "st" and nonstandard
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 otherwise. Thus, all the constants of ZFC are standard. An internal

 formula is called standard if it contains only standard constants, and

 nonstandard otherwise. We shall use the following abbreviations:

 (VStx)F(x) for (Vx)(st(x) » F(x) )

 (V*inx)F(x) for (Vx)(x finite =» F(x))

 and corresponding ones with existential quantifiers. The three following

 axioms, to be added to those of ZFC, govern the use of the new predicate

 "st". One can prove [14] that 1ST is a conservative extension of ZFC.

 A. The transfer principle m

 For any standard formula A(x, t

 variable than x, t, , ..., t , one has:
 1 n

 (Vstt 1 )(v8tt .2 )...(v8tt n )[(VStx)A(x, t, in 1 .2 n in in

 (or equivalently)

 (VSV)(VSV)...(VStt 12 n )[(3x)A(x, t, l 12 n l n in

 B. The principle of idealization (I)

 For any internal formula B(x, y) with free variables x, y and

 possibly others, one has

 (vst finz)(3x)(Vy € z)B(X( y) ^ (3jc)(ysty)B(X( y).

 C. The principle of standardization (SI

 For any formula C(z) with free variable z and possibly others, one

 has

 (VStx)(3Sty)(VStz)[z € y « (z € x) - C(z)].

 Axiom (T) implies that every specific object of conventional

 mathematics is a standard set and that standard sets are equal if and only

 if they have the same standard elements. But a standard 'set may contain
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 nonstandard elements as follows from a consequence of (I): every element

 of a set v is standard If and only if v is standard and finite. Thus,

 every infinite set contains a nonstandard element, and this is the case,

 in particular, for W and R. Applying (I) to the internal formula (with

 R, * » {y « R : y > 0} and | X ļ » max | x 1 . | ) * l<i<n 1

 B(x, y) » (x « Rn) ~ (y € R + ) Ä (|xļ > y)

 we immediately see that the left-hand side is trivially satisfied and

 hence

 (3x « Rn)(Vsty € R + ) : |x| > y.

 Such an element is called illimited. and the limited elements are then the

 x « Rn such that

 (3Sty « R+) : ļxļ < y.

 Now, if x is illimited and n ■ 1, then 1/x is such that

 (6) (VSty € R + ) : ļ x I < y
 (notice that by (T) the inverse of a standard real number is standard) and

 the elemnts of Rn satisfying (6) are called inf initesimals . We say that x

 and y are infinitely close and we write x a y if x - y is infinitesimal.

 Recall that a gauge on a set E is a positive application on E, i.e.

 g
 an element of R+. The following gauges, whose existence will follow from

 (I), play an important role in our approach. Recall that a gauge

 5: E -» R+ is standard if its graph is a standard subset of E x R+.

 Lemma 1 . Let E * ł be a standard set. Then there exists *a gauge /J

 on E such that for each standard gauge Ö on E and each x € E one has

 /j(x) < Ö(x) .

 To prove this lemma, it suffices to apply (I) to the internal formula

 B (/7 , Ö) given by 79



 (rj € R®) Ä (fi « R*) * (q < fl)

 where q < 5 means q(x) < 6(x) for all x € E. A gauge ¡j verifying the

 conditions of Lemma 1 is called a microgauge on E. It is easy to show

 that for each x « E, fu(x) must be infinitesimal but no constant

 infinitesimal gauge is a microgauge!

 Let I be a right-closed standard interval of of lRn and T its closure.

 A X-partition H » {(x1, I1)

 be called a X-microoartltlon of I (X = L or P) if U is fj-tlne (as defined

 in Part I) for some microgauge on T. This implies that q is necessarily

 unlimited and also that each standard element of T is contained in the set

 (x*, xq} (assume that the standard c « Rn is not in this set and use

 the standard gauge 6(x) » |x - c|/2 and the ¿/-fineness to get a

 contradiction). Let Z': £(I) -» R be an irregularity function defined on

 the set of all L-partitions of I (see Part I for several examples). A

 X-micropartition It will be called Z-llmlted if 1(27) is limited (we depart

 from the terminology of [12] wtuere such a micropartition was called

 regular.

 Theorem 1 . Let f : T -» RP be standard. Then f is X-X-integrable over

 T if and only if there exists a (standard) J € Rp such that S(f, TT) « J

 whenever IT is a Z-limited X-micropartition of I.

 Proof : Necessity . Definition 1, the uniqueness of J and (T) imply

 that J is standard and such that

 (V€)(V/7)(i«)|(Vff)[(€ > 0) - (q > 0) ~ (6 « R*) - (ÏÏ « Xjíô, q ))
 (7)

 => |S(f, It) - J| .< 4]j
 where X_(ö, q) denotes the set of X-partitions tt of I which are ö-fine and

 ¿

 such that Z(H) < q. Now (T) applied to (7) with and q restricted to
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 standard values implies the existence of a standard ô for which {...}

 holds. Now a X-limited X-«icropartition î of I will be 5-fine for all

 standard gauges 6 and such that 2(2T) < rj for some standard q, so that we

 have, for such a ÏÏ,

 (VSt* > 0): I S(f , ÏÏ) - J| < 4,

 i.e.

 S(f, ïï) * J.

 Sufficiency . By assumption, taking for 5 a microgauge on T, we have

 (VSte)(V3t/7)j(3ö)(Vff)[(* > o) Ä (6 € rJ) . (ïï « X^ö. 7))
 (8)

 » |S(f, ÏÏ) - J| < 4]|
 because the corresponding ïï are then 2-limited X-micropartitions of I.

 Two consecutive applications of (T) to (8) imply (7) and complete the

 proof.

 Remark 1. By taking X s 1 in Theorem 1, we obtain the nonstandard

 characterization of the Kurzwei l-Henstonk (X =• Pi and Lebesgue integrals

 (X » L), respectively:

 Let f: T -» RP be standard. Then f is X-integrable over T if and only

 if there exists' a (standard) J « Rp such that S(f ïï) a J whenever ïï is a

 X-micropartition of I .

 Remark 2. Call a X-partition ÏÏ Infinitesimal if d(IJ) a 0 for each

 1 i j i q- Then Robinson [17] has given the following nonstandard

 characterization of the Rlemann integrabi 1 i tv of f over T:

 Let f : T -♦ RP be standard. Then f is R-integrable over T if and only

 if there exists a (standard) J e Rp such that S(f, ïï) at J whenever ïï is an

 infinitesimal P-partition of I.
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 As each I-limited X-»icropartition is an X-micropartition and each

 X-micropartition an infinitesimal X-partition, the nonstandard characteri-

 zations of the above types of integrability have a structure which makes

 very clear the decrease in generality. Those nonstandard characteriza-

 tions also make more transparent the proofs of some classical properties

 (see [12]) although it is not yet clear for the author how much they can

 simplify the proofs of the convergence theorems.

 Let us end this paper by giving a nonstandard characterization of

 Pfeffer' s integral. Let us denote by IH a fixed subset of the set of all

 finite families of planes and if ff is a P-micropartition of the standard

 right-closed interval I <= R , let us call ïï a o-w-appreclabie

 P-mlcrooartition if for each standard Ä « IH p(3C, ÏÏ) is not an

 infinitesimal (as p(K, ïï) < 1, this implies that p is neither

 infinitesimal nor illimited, and such real numbers are called

 appreciable! .

 Theorem 2. Let f : T -» RP be standard. Then f is p-integrable over T

 if and only if there exists a (standard) J € Rp such that S(f, ïï) » J

 whenever ïï is a p-<H-appreciable P-micropartition of I .

 Proof : Necessity . Again J is necessarily standard and such that

 (V4)(V5C)(3ô)|(Vff)[(é € ]o, I]) A (X « w) . (a € IR*) ^ (ïï e »(«,*,4))
 (9)

 » I S ( f , ïï) - Jļ < *]ļ
 where »(«, K, s.) denotes* the set of ö-fine P-partitions such that

 p (3C , ïï) > è. By • ( T ) applied to (9) with 6 and K restricted to standard

 values, we obtain a standard S for which {...} holds. Now if P is a

 p-iH-appreciable P-micropartition, if * ..« IH and fe « ]0, p(X, £)] are

 standard, and if ö is the corresponding standard gauge, ïï is ô-fine and
 82



 p(X, ff) > e, so that

 (10) |S(f, B) - J| < 4.

 Thus (10) holds for all standard e « ]0, p(x, ff)] and hence for all

 standard 4 > 0 so that S(f, P) ae J.

 Sufficiency. By assumption

 {VStfe)(VSt3C)|(3ô)(Vff)[(fe € ]0, |]) ~ (X € IH ) /s (fi 6 rJ)
 (11)

 ^ (tt « *(fi, X, fe)) » I S( f , 2T) - j| < 4]|.
 Indeed, it suffices to take for fi a microgauge on T so that ïï fi-fine

 implies that I is a P-micropartition and p(X, ff) > 4 with 4 > 0 standard

 implies that S is p-M-appreciable , so that S(f, H) s* J and hence |S(f, ff)

 - Jļ <4. Two successive applications of (T) to (11) then give the

 result .

 Theorems 2 and 3 show that comparing the Z-X- and p-intègrability

 concepts just reduces to comparing the Z-limited X-micropartitions and the

 p-W-appreciable P-micropartitions. So, the equivalence of the ^0"P~ and
 the p-^-integrals follows immediately from the inequalities between o(K)

 and r ( I ) .
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