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 ïn the first lecture we survey some work done by Soviet mathematicians

 on the application of generalized integrals to trigonometric series. .

 The first group of these integrals was introduced to integrate sums of

 everywhere convergent trigonometrie series, and to calculate the coefficients

 2
 of those series by the Fourier formulae. They are the T. -, P -, SCP-, and

 ¿S

 MZ- integrals; see [2, 3, 4, 5].

 We give results concerning the properties of the primitives 'of these

 integrals, see [6, 7, 8, 9], and their relations to the Denjoy integrals in

 the restricted sense and in the wide sense, see [10, 11, 12].

 Among such properties we draw attention to the fact that for these int-

 egrals the first order primitive does not necessarily have the Luzin N-

 property, [10]. Furthermore an example of a function with such a primitive

 can be chosen from the sums of everywhere convergent trigonometric series,

 [12]. For more references see [13].

 Another group of integrals discussed includes A-, and B- integrals,

 which were introduced to integrate the conjugate function of any summable

 function. Most results concerning these integrals surveyed in the lecture

 have been published, see [14, 15, 16]. We mention here only the recently

 published result by Pannikov, [16] , that the B- integral is included in the

 A- integral. ^



 The second lecture concerns mainly the problem of calculating coeffici-

 ents from the sum of Haar and Walsh series. There are several definitions of

 integrals wide enough to make any everywhere convergent Haar and Walsh series

 a Fourier series in the sense of these integrals/ see [18, 19, 20] .

 The starting point for investigating the above is the observation that

 the partial sums of order 2n of either a Haar or Walsh series can be expres-

 sed in the form

 F(b ) - F(a )
 Mm f ' ß n
 2n (x> f '

 n n

 where {Can' ^n] } is a sequence of binary intervals converging to x, and F is

 the sum of the (term by term) integrated series, which converges at least on

 the dyadic rationals. So the problem of calculating the coefficients from

 the sums of Haar and Walsh series is practically the same as that of

 recovering the primitive from a derivative with respect to a binary sequence

 Yi of nets, [21] .

 A simple way of solving the latter problem is to introduce a Perron type

 integral P^, [20], for which upper and lower derivatives Dn, ^ of major and
 minor functions are not ordinary upper and lower derivatives, but instead are

 taken with respect to the binary sequence of nets In addition the contin-

 uity of these major and minor functions M,m is with respect to which means

 that M(b )-M(a )-*0 and m(b )-m(a )-*0 where {[a , b ] } is as above,
 n n n n n n

 Once of the peculiar features of these binary derivatives is that the

 condition D^F(x) > -<= everywhere for a continuous F does not imply that F is

 VBG as is well known to be the case for ordinary differentiation. This
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 allows us to construct a function that is both -, and Den joy integrable in

 the wide sense, the indefinite P - integral of this function not being a VBG

 function. This shows, as a corollary, that these two general integrals are

 not compatible* However, it is true that these two integrals agree on the

 class of finite D, „- derivatives, which means than any Haar or Walsh series
 n

 converging everywhere to function integrable in the wide sense of Denjoy is a

 Fourier series of its sum in the serise of this integral , [ 1 ] .

 A survey of results in this field prior to 1973 can be found in [22] .
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