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 EXTREME POINT MULTIFUNCTIONS AND

 A GENERALIZED RADON-N I KODYM THEOREM

 By using a generalized version of the Radon -Nikodym theorem, we show
 that under suitable restrictions the bilinear integrals of a multifunc-
 tion and the corresponding extreme point multifunction are. equal.

 1, INTRODUCTION

 The integration of mult if unct ions has been studied extensively in recent

 years by numerous authors. The foundations were laid by R.J. Aumann

 [2], C. Castaing [6], K. Kuratowski and C. Ryll-Nardzewski [12], and

 others. C. Castaing [6] and C.J. Himmelberg and F.S. van Vleck [10]

 showed that under suitable restrictions the measurability of a multi-

 function F implies the measurability of the multifunction ext F,

 where ext F(t) is the set of extreme points of F(t). The main pur-

 pose of this paper is to show, by using a generalized theorem of Ra-

 don-Nikodym, that the bilinear integrals (in the sense of N. Dinculeanu

 [8]) of these two mul tif unctions are equal. This extends corresponding

 results on the same topic.

 2. PRELIMINARIES

 Throughout this paper T will denote a non-empty point set on which no

 topological structure is required. Let V be a Banach space and C

 a ring of subsets of T. Let m: C •+• V be a measure. For every set

 A € C, let ; |m| (A) be the variation of m on the set A. If
 I m ¡ (A) < 00 for every A € C, then |m| is of finite variation with
 respect to C. Extend the finite measure ļmļ on C to a measure
 ļmļ* on the a-algebra P( m| ) of all 'm' -measurable sets. The
 class Z (ļmļ) = {e 6 P(|mļ) ļmļ* (E) < 00 } is the <5-ring of all ļ m | -
 integrable sets. The restriction of ļmļ* to E (ļmļ) is denoted by
 ļmļ. If E € E(ļmļ) and ļmļ (E) = 0, then E is called . ļmļ -neglig-
 ible.

 2.1 DEFINITION- ([8], p. 179). Denote by C(ļmļ) the collection of all
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 classes A = ÍA^|i € i} of disjoint |m| -integrable sets such that
 T - U A. is I m ļ -negligible and such that for every set A € C

 i€l 1
 there exist an |m| -negligible set N <= A and an at most countable
 set J c i with A - N = U ( A H A , ) . we say that the measure | m |

 i€j 1
 has the direct sum property if C(ļmļ) ^ 0. A measure of finite va-
 riation is said to have the direct sum property if its variation has

 this property.

 2.2 SOME PROPERTIES. (a) The measure m on C can be extended to

 a measure m on £(|mj) (see [8], p. 76).
 (b) If C is a cr-algebra and if |m| is complete on C, then
 C = I(ļm|) - P(|m|). (See Section 5).
 (c) If T is a countable union of sets of C, then |mj* is a
 a-finite and complete measure on P(ļmļ). Thus |m| on E(|m|) is
 also complete.

 (d) Whenever m is supposed to be non-atomic, it must be understood

 that m is non-atomic on Z ( | m | ) , that is , the extended measure m
 in non-atomic. This convention is necessary, because the extension of

 a non-atomic measure need not be non-atomic, see [4], p. 2 or [21],

 p. 67 for examples.

 (e) If m is non-atomic on Z(ļmļ), so is |m| .
 (f) If T is a countable union of sets of the 6-ring £(|m|), then
 m has the direct sum property. This follows from the fact that

 C c E ( |m| ) .

 Throughout the paper ü will denote a Banach space. A function

 f: T -*■ U is I m I "measurable if f~*(C) € P(ļmļ) for every closed set
 C in Ü. A multifunction F: T -»* U is a function whose domain is

 T and whose values sure non-empty subsets of U. If A c U, then

 F~ (A) = {t € T I F (t) O A ^ 0}. A multifunction F: T Ü is ļ m ļ -
 measurable (weakly 'm' ^measurable) if F~(A) € P (|m|) for every
 closed (open) subset A of U. A function f: T -*• U is called a

 selector for F if f(t) € F(t) |m|-a.e. on T. The set of all |m|-
 measurable selectors of F will be denoted by S . If f € S^, con-
 sider the equivalence class f = {g: T -*• u|g(t) = f(t) |m|-a.e. on t}.
 Write S = £ f I f 6 S }.

 F 1 F
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 A multifunction F: T -*■ U admits a Castaing representation if there
 exists a countable set M = {f. li € i} c S such that M(t) =

 i ' F

 {f^(t)|i € 1} is dense in F(t) |mļ-a.e. on T. (See [6], p. 116).
 Let W be a third fixed Banach space and consider a bilinear trans-

 formation (u,v) -»■ uv, defined on U x V into W such that

 II (u,v)ll Š II ull .11 vll.

 The vector integral being employed is the "bilinear" or "m-integral"

 of Dinculeanu. Let

 E (Z ( I m I ) ) = {f: T -»■ u|f = £ x , X , x. € U, A. € Z ( | m | ) and
 U i€l 1 Ai 1 1

 I is a finite index set} .

 A function f: T U is m-integrable if there exists a Cauchy se-

 quence (f ) in E„(I(|m|)) such that f -*■ f Iml-a.e. on T. Then
 n u n

 /f (t)dm € w.

 The space of all m- integrable functions f: T -*• U will be denoted

 by ^y(m) . The set of all |m| -integrable selectors of F: T -*■ U
 will be denoted by I . Then I c S . Write I_ = C f | f € I_}. If , F F F . f F

 f £ A ^ P ( ļ m. I ) , then fxA € ^y(ni) and /Af(t)dm =
 /f (t)xA(t)dm. If A € P ( ļ m I ) , then the integral of a multifunction
 F: T -*• U over A is defined by

 /AF(t)dm = {/Af(t)dm|f € 1^,}.

 We observe that / F(t)dm exists, even if F is not I m I -measurable .
 A

 Furthermore, f ^ F(t)dm may be empty, even if U = ]R .
 A multifunction F: T -*■ ü is said to be p -integrably bounded,

 1 š p < », ¿f there exists a k € (|m|) such that

 supfllull |u € F ( t) } Ś k(t) ļmļ-a.e. on T.

 If F: T -*■ U is 1-integrably bounded by k € JC* (|m|) , we say that
 JR

 F is integrably bounded by k.

 Let P be a property possessed by some subsets of the Banach space U.

 A multifunction F: T U is said to be point- P if for every t 6 T,

 F (t) has property P. Denote the topological dual of U by U".

 Following M. Valadier [19], we say that the point-compact convex mul-

 tifunction F: T -*■ U is soalarwise |m| -measurable (- integrable ) if
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 for every x'€u', the function h : T -»• ]R, defined by

 (*) = sup{<x,x'>|x € F (t) }

 is ļmļ -measurable (-integrable).

 2.3 DEFINITION . If X is a Banach space and Z a subspace of X,'
 then Z is said to be a nornrùng subspace of x ' if

 fl< x'z >1 }
 llxll = sup •<

 I liz II J
 Then, X can be imbedded isometrically in Z'.

 If X and Y are linear spaces, then the space of all linear trans-

 formations from X to Y will be denoted by l*(x,Y).

 2.4 DEFINITION . Let X and Y be Banach spaces. We say that a

 function U'. T -*■ L*(x, Y) is simply |m ' -measurable , if for every

 x € X the function <1>x : T Y, defined by ^(t) = U( t)x, is |m|-
 measurable .

 2 . 5 DEFINITION . Let X and Y be Banach spaces and Z c y ' a nor-

 ming subspace. We say that a function U: T L* (X,Y) is Z -weakly

 ļmļ -measurable, if for every x € x and every z € Z, the function
 (ļ) : T H, defined by <ļ) (t) = < í/(t)x,z > , is ļ m ļ -measurable .
 X / Z x , z

 Denote by 8^ the Borei a-algebra of U and by T(P( |m| ) x 8^)
 the a-algebra generated by the class

 P(|m|) x 80 = {A x b| A 6 P ( I m I ) , B € .

 The graph of the multifunction F: T U is the set

 G(F) = { (t , u) € T x u I u £ F(t)>.

 A topological space is Polish if it is separable and metrizable by a

 complete metric; it is Sus lin if it is metrizable and the continuous

 image of a Polish space.

 If F: T U is a multifunction, then the multifunction ext F: T ■+ U,

 defined for every t € T by

 (ext F) (t) = {u 6 F(t) I u is an extreme point of F(t)},

 is called the extreme point multifunction determined by F. Multir
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 functions will be denoted by the capitals F, G and H. If A c U,

 then co A denotes the convex hutt of A.

 3. SOME BASIC RESULTS

 We state the following propositions in forms which are adequate for

 the sequel.

 3.1 PROPOSITION ([12], p. 398). Let U be separable and F: T -*■ U

 point-closed and weakly | m | -measurable . Then F has an | m | -measu-
 rable selector.

 3.2 COROLLARY . Let U be separable and F: T U point-closed and

 [ m I -measurable . Then F has an | m ļ -measurable selector .

 00

 PROOF . If 0 is open in U, then 0 = y C , where the C are
 » n=1

 all closed in U. Then F (0) = y F (C ) € P(ļmļ). Thus, F is
 , n n=l ,

 weakly | m | -measurable and proposition 3.1 holds. V

 3.3 PROPOSITION ([20], p. 868). Let T be a countable union of sets

 of the ring C, U separable and F: T -*■ U point-closed. Then the

 following conditions are equivalent:

 ( 1 ) F is I m I -measurable ;
 (2) F is weakly | m ļ -measurable ;

 (3) G (F) € T ( P ( ļ m J ) X 80) ;
 (4) F admits a Castaing representation.

 Note that the assumption on T implies completeness of the measure

 space (T, P(|m|), |m|*), see 2.2(c). This in turn implies that
 P(|m|) is a Suslin family (see [18], p. 50 or [20], p. 864), as is
 required for proposition 3.3 to hold. It is possible to show by means

 of a suitable example that the completeness of (T, P(ļmļ), |m|*) is
 indeed necessary, see for example [1], p. 27. A further requirement

 in [20], p. 868 is that U be Suslin, which it surely is since it is

 Polish. These remarks also apply to the proposition below, original-

 ly proved for a complete measurable space, a Suslin space U and
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 where F need neither be closed-valued nor |m| -measurable. This pro-
 position is a generalization of the so-called Von Neumann-Aumann se-

 lection theorem, see [2] or [14], p. 69.

 3.4 PROPOSITION ([17], p. 7.11). Let T be a countable union of

 sets of C, U separable and F: T -»■ U such that G (F) € T(P(|m|)

 X By) . Then F has am ļ m ļ -measurable selector.

 3.5 PROPOSITION . If F: T U is point -compact convex and | m ļ -
 measurable , then F is scalarwise ļ m | -measurable.

 PROOF. The function ^x-: T ® defined in (*) is |m[ -measurable,
 see [7], lemma 5, p. 231. Consequently, F is scalarwise |m| -mea-
 surable . V

 3.6 PROPOSITION ([9], p. 439). A non-emtpy compact subset of a loc-

 ally convex linear topological Hausdorff space has extreme points.

 We now employ a theorem of M. Benamara [3] which deals with

 (i) a point-compact convex F: T U' which is scalarwise |mļ -mea-

 surable, i.e. if for every x € U, the function h^: T ■+• ]R , defined
 by

 hx(t) ■ sup{ < x',x > |x'€ F(t) }

 is I m I -measurable ;

 (ii) a complete measure space.

 With remark 2.2(c) in mind, we now have:

 3.7 PROPOSITION ([3], p. 1249). Let T be a countable union of sets

 of the ring C, U separable and F: T -»■ U' point-q (U' ,U) -compact

 convex and scalarwise | m | -measurable. Then the set ext of all
 extreme points of is non-empty and equal to the set

 3.8 PROPOSITION ([10], p. 725). £f F: T ]Rn is point-compact con-
 vex and | m | -measurable , then G(ext F) € T(P(|m|) x 8 ). Further -

 3R

 more , if T is a countable union of sets of the ring C, then
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 ext F is ļmļ -measurable.

 3.9 PROPOSITION. Let (F ) be a sequence of multifunctions,

 F^: T ■* U, with G(Fn) 6 T (P ( ļmļ) * 8^) for all n. Define the
 multifunctions G^: T U, i = 1,2,3,4 by the respective equalities
 G (t) = 'J F n (t); G (t) = n F (t) ; G (t) = y n Fv(t) and n=0 n n=0 n=0 k=n

 00 00

 G. (t) = ļ-ļ y F, (t) . Then we have vt
 n=0 k=n

 G(GJ € T (P( I m| ) X 80) , i = 1,2,3,4.

 PROO£. Routine.

 3.10 PROPOSITION ([16], pp. 166, 167). If dim U < «, then a com-

 pact convex subset A of U equals the convex hull of the set of its

 extreme points, in symbols A = co ext A.

 The two propositions below are stated in general terms.

 3.11 PROPOSITION. Let X and Y be linear spaces. If f € l*(X,Y)

 and if C is a non-empty convex subset of X and B an extreme sub-

 set of f (C) , then f * (B) D C is an extreme subset of C.

 3.12 PROPOSITION (M. Krein and D. Milman [11]). If A is a compact

 subset of a locally convex linear topological Hausdorff space and E

 is the set of extreme points of A, then A c co E, where co E

 denotes the closure of the convex hull of E. Consequently , co A =

 co E. If, in addition, A is convex, then each closed extreme sub-

 set of A contains an extreme point of A and A = co E.

 4. MAIN RESULTS

 4.1 THEOREM. _If U is separable and F: T -*• U is integrably boun-

 ded, point-closed and [ m | -measurable , then / F(t)dm ^ 0 for every

 A € P( I m I ) .

 PROOF. Corollary 3.2 asserts that F has an | m | -measurable selector

 49



 f. If k € -C.Í (J m I ) is the bounding function, then llf(t) II ¿ k(t)
 1 |m|-a.e., hence, f £ £ 1 (m) . Consequently, f € I , and so
 U F

 / F(t)dm ^ 0 for every A 6 P(|m|). V

 D . Blackwell [ 5 ] extended Lyapunov 1 s convexity theorem by proving that

 the ranges of certain vector integrals with values in ]Rn are com-
 pact and, in the non-atomic case, convex. The convexity part of Black-

 well's theorem was generalized by H. Richter [15]. By keeping proposi-

 tion 3.12 in mind, we state Richter 's theorem in the following form:

 4.2 THEOREM ([15], p. 86). (1) .If F: T -»• ]Rn and m is non-ato-

 mic , then /AF(t)d|m| is convex for every A 6 E(jm|).
 (2) Let T be a countable union of sets of C, m non-atomic and

 F : T ]Rn integrably bounded, point -compact convex and | m | -measur-

 able . Then / F ( t ) d ļ m ļ is compact and convex for every A € E ( [ m ļ ) .

 The detailed proofs of theorems 4.3, 4.6 and 4.7 can be found in [13].

 4 . 3 THEOREM. Let T be a countable union of sets of C , m non-

 atomic and F: T ]R n integrably bounded, point-compact convex and

 I m I -measurable . Then

 /AF(t)d|m| = /A(ext F) (t)d|m|

 for every A € E ( |m| ) .

 4.4 THEOREM ([8] , p. 263) . If m: C V c L(U,W) has the direct

 sum property and Z is a norming subspace of W*, then there exists

 a function U i T L(U,Z") having, among others, the following pro-

 perties :

 (1) II ( t ) II = 1 |m|-a.e. on T;

 (2) < U^£,z > is 1 m I -integrable , and
 </f(t)dm,z> = f <U (t)f(t),z > dlml,

 m

 for f € ^(m) and z € Z;
 (3) We' can choose U (t) € L( U,W) for every t € T in the case that

 _______ m

 W = Z'.
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 4.5 REMARKS. (a) In the proof of theorem 4.4, the function U is
 - - - m

 defined in such a way that for every u € U and for every z € Z,

 the function <p : T -»■ H , defined by <ļ> (t )=< U (t)u, z > ,
 u, z u, z m

 is locally I m I -integrable, that is, <ļ> x, ¡m| -integrable for
 11 f Z A

 every set A £ C, see [8], p. 163, definition 1. Then <ļ> x, is
 m / 2 a

 I m I -measurable for every set A € C. By [8], p. 100, corollary,
 <ļ> x» is I m I -measurable .

 U f Z A

 (b) Suppose now that W = Z'. Then, by theorem 4.4(3), we have that

 U : T L (U,W) . Definition 2.5 and (a) above then show that U is
 m m

 Z-weakly | m | -measurable . Suppose further that Z', and hence W,
 is separable. Then U is simply |m| -measurable, see [8], p. 105,
 proposition 22. If now f: -T -»■ U is | m | -measurable , then the func-
 tion g: T Z' = W, defined by g(t) = U ( t)f(t), is | m | -measurab-
 le, see [8], p. 102, proposition 16. By theorem 4.4(1), we now have
 that

 II U (t) f (t) II Ú ''U (t) II . Ilf (t) II = llf (t) II I m I -a . e . on T.
 m m

 If f€£*(m), then U f € £ ' ( Imi ) . Under the conditions sketched
 u mW1 ^

 above and from theorem 4.4(2) we obtain , for f € £ ^ (m) and every
 z € Z,- that

 </f(t)dm,z> =/ < U (t)f(t),z >d|m|
 IB

 = < fU (t) f (t)d|m| , z > .
 m

 The second equality above follows from [8], p. 123, corollary to the

 proposition 7. We then have that

 /f (t)dm = fU (t)f (t)d|m| .
 m

 4 ¿ 6 THEOREM. Let T be a countable union of sets of the ring C , U

 separable and F: T ü integrably bounded, point -compact and ļ m | -
 measurable . If W is separable , W = Z' where Z is a norming sub-

 space of W, m: C + V <=L( U,W) and î/_: T L(U,Z') = L(U,W) is
 _ -

 the function whose existence is guaranteed by theorem 4 . 4 , then

 /„F(t)dm = /, U (t)F(t)d|m| 1 , for every A € P( |m| ) . A Am 1 -

 4.7 THEOREM. Let T be a countable union of sets of the ring

 C , F : T -*• ]Rn integrably bounded, point -compact convex and | m | -mea-
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 sur able and let m: E(|m|) -»■ IB? be non-atomic . Then

 / F(t)dm = / (ext F) (t)dm, for every A €■ E ( |m| ) .
 A A

 5. EXAMPLES

 The main purpose of this section is to show by means of illustrative

 examples that parts of the hypotheses of theorems 4.3 and 4.7 cannot

 be weakened.

 5.1 EXAMPLE. Let T = {t }, E = {0,t} and m: E -*• lì be defined

 by m(T) = 1, m(0) = 0. Then m is an atomic measure and m = |m| .
 Define F: T 3R by F(t) = (1,2]. Then F satisfies the conditions

 of theorems 4.3 and 4.7. Furthermore,

 (ext F) (t) = {1,2} = /(ext F) (t)dm.

 If f: T ]R is defined by f(t) = 1 , then f € I and
 1

 /f(t)dm » 1 €/F(t)dm. Thus,

 /F(t)dm ^ /(ext F) (t)dm.

 5 . 2 EXAMPLES . Let T = [0,1] , E be the Lebesgue a-algebra of- sub-

 sets of T and m the Lebesgue measure on T. Then m is non-atomic

 and m = |m| . (a) Define F: T •+• H by F(t) = ]R for all t € T.
 Then F is point-convex, but neither integrably bounded nor point-com-

 pact. Clearly, (ext F) (t) = 0 for all t € T and

 /(ext F) (t)dm » 0 ^ /F(t)dm.

 (b) 'Define F: T ]R by F(t) = (0,1) for all t € T. Then F is

 integrably bounded and point-convex but not point-compact. As in (a)

 above we have that

 /(ext F) (t) dm = 0 ^ /F(t)dm.

 5.3 EXAMPLE. The space cq is the Banach space of all sequences
 X = (x^) converging to zero. The space cq is infinite dimensio-
 nal and the closed unit ball A of cq is non-compact and convex.
 Let T, E and m be as in 5.2 and consider c = L(JR,c ). Define

 O o

 F: T -*• c by F(t) = A for ail t 6 T. Then F is clearly ļ m ļ -
 O
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 measurable and integrably bounded. Since ext A = 0 we have that

 /(ext F) (t)dm = 0 ^ /F(t)dm.
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