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 During the past few years a number of books, surveys and expository

 articles dealing with dynamical behavior of continuous functions have been

 written by biologists, physicists and mathematicians. The scope of the sub-

 ject is large, touching on many parts of mathematics: ergodic theory, dif-

 ferential equations, complex analysis, and fractals among others. Those

 publications having primarily a real analysis flavor stress well-behaved

 functions. For example, for functions mapping an interval into itself, one

 usually assumes quite a bit of differentiability of the functions as well as

 certain other regularity conditions that lead to pleasing developments. Such

 requirements on the functions are natural since the types of functions that

 arise in practice meet these conditions. Yet, the functions that serve as

 models for practical problems in the biological, social and physical sciences

 may be imperfect, and it seems desirable to study the dynamical behavior of

 continuous functions that are not so well behaved. In some cases, a slightly

 imprecise model may cause no serious errors; in others, the errors could be

 very serious indeed. (Even when the function in use is perturbed to another

 well-behaved function, the perturbed function may possess dynamical proper-

 ties very different from those of the unperturbed function.)

 This area seems to be one in which the real analyst familiar with the be-

 havior of continuous functions that are not necessarily well-behaved can make

 contributions.
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 We shall discuss the dynamics of one dimensional maps, that is, of

 continuous functions mapping an interval into itself. After a motivational

 section and an illustrative example, we discuss briefly some of the well-

 known iterative behavior of functions meeting certain regularity conditions.

 We then contrast this behavior with the corresponding behavior of the

 "typical" continuous function. We follow with a discussion of certain aspects

 of chaotic behavior. We close with various remarks and with suggestions of

 problems.

 The reader interested in the ways the dynamics of one dimensional maps

 arise in practice in the biological, physical and social sciences may wish to

 consult the articles [M], [LY] and [VSK] as well as the references cited in

 the articles. Readable developments of the dynamics of well-behaved functions

 can be found in the recent books [CE], [D] and [P].

 Motivation

 To provide an indication of the manner in which a study of the dynamical

 behavior of a one dimensional map can arise, we begin with a brief discussion

 of a well-known equation," the logistic equation.

 Suppose a populational biologist wishes to study the growth pattern of a

 particular species. It may be that the main ingredients affecting the growth

 are the size of the initial population and environmental factors that limit

 the growth. In that case, one often arrives at the differential equation

 y' = ky(L-y), where y = y(t) is the size of the population at time t, k

 is a constant and L is the limiting population. For an initial population

 yg < L, one finds y' > 0 and finds y(t) t L. Similarly, if yg > L, one
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 finds y(t) + L. An investigator who makes a slight error in estimating yg,

 k, or L may find no serious error in predictions concerning the long-term

 growth pattern of the population.

 This model assumes continuous growth of the population. But some species

 may develop in discrete generations and not procreate continuously. If the

 size of a particular generation is near the limiting size L, the size of the

 next generation may exceed L, only to die quickly, leaving only a small pop-

 ulation to give rise to the generation to follow. To study such a situation,

 one wants a discrete model rather than a continuous model.

 Population biologists will often turn to the logistic di f f erence equa-

 tion xn+ļ = kxn(l"xn) as a model to handle discrete growth [M], [D]. Here

 xn represents the size of the nth generation as a fraction of some maximal

 size "1". This allows for the type of growth which involves exceeding the

 "limiting" size some of the time. But is there a limiting behavior?

 To discuss this and related questions, it is convenient to study the

 iterative behavior of functions of the form f(x) = kx(l-x). Writing x = Xq,

 we find xn+^ = fn+*(x), where f* = f and, for n š 1, fn+^ = f^ ° fn.
 For 0 i k Ś 4, f maps [0,1] into itself.

 We discuss briefly a few aspects of the dynamical behavior of functions

 in this class. Excellent, rather detailed, accounts can be found in the books

 [D] and [P].

 Let f(x) = kx(l-x), 0 < k Ú 4. It is easy to verify that f has fixed

 points at x = 0 and at x = if k > 1; that f'(0) = k, and that

 f'O^) = 2 - k (k > 1). If k < 1, then f(x) < x for all x t 0, thus
 lim fn(x) = 0 for all x. (The population becomes extinct!)

 k_i

 If 1 < k < 3, then -1 < f 1 (-jrO < 1. Thus sufficiently small
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 k-1

 intervals containing -y- shrink in size. In fact, if x * 0,1, then
 n k-1
 f n (x) -»■ -p. (This can be "seen" geometrically by sketching the graph of f

 and employing "graphical analysis" ([D], p 20). The population stablizes.)
 k-1 k-1

 For k > 3, If ("IT")! > Thus, sman intervals containing -y= are
 k-1 k-1

 mapped onto larger intervals. Points near » are "repelled" from in-

 stead of being attracted to this fixed point. The dynamics becomes increas-

 ingly complicated as k increases. For k slightly larger than 3, there

 will be points whose orbits have period 2, but no periodic points of higher
 2 1

 period. For example, for k = 3.1, the point is a repelling fixed

 point. But the pair .55801..., .76456... map onto each other and almost

 all x are attracted to this orbit (the cluster set of {fn(x)} equals these

 two points). Thus, the sizes of future populations bounce back and forth be-

 tween these two values. For larger values of k, periodic points of large

 period arise and for certain values of k, " rather strange behavior occurs.

 Instead of discussing this behavior for functions in this class, we refer the

 reader to [D] or [P]. We prefer to illustrate various sorts of behavior in

 connection with a function that lends itself to simple arithmetic computa-

 tions.

 The Hat Function

 2x, 0 Ś x ś i
 Let f(x) = x ¿

 2(l-x), y K x - *

 This function has been studies by many authors. .It is topol ogically

 conjugate to the function 4x(l-x) on [0,1]. This means that there is a
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 homeomorphism h of [0,1] onto itself such that this function equals

 h ° f ° h Functions that are topologically conjugate exhibit identical

 dynamical behavior. We study f because much of its dynmaical behavior is

 easy to verify since the iterative behavior of f lends itself to binary

 arithmetic.

 Suppose each x € [0,1] is represented by a binary expansion.

 X = .x^Xj... (x^ = 0 or 1 for all i)

 . 0x9x-j ¿ d ... if Û Ś x ś ì ¿ Then x = ¿ d ¿
 . 1X2X2* . • if 2 < x ^ 1

 One verifies easily that

 .x<,x,: . . if 0 Ú x š ì f(x) .x<,x,: II . . -i
 ^Xg. . . if 2 < X ^
 'K X.

 Here Xļ = 0 if x^. = 1 and x- = 1 if x = 0.
 Thus, for example

 f(.OllOOlTÖÜ) = . 1100ĪIŪŪ

 and f(.llOOlīūū) = .OllOOlIŪŪ

 i.e. J = . 011001100 is a point of period 2.
 Similarly, one finds that for each n, - has periodic n.

 2+1

 The function f also exhibits what is called transitive or nomadic be-

 havior. There are points with dense orbit. (An investigator dealing with

 this function (or the function 4x(l-x) would observe behavior that appears

 random. )

 To see this consider an interval

 I = (.a^. . -anïï, .a^. . -anlū).
 Let x be any point in [0,1] whose binary expansion includes the "block"
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 Oav..anO, say x = .x^.. .xkOav . .an0xk+n+3...

 Then fk(x) = ,0ar . .anOxk+n+3. . .
 or

 f (x) - .la. . .a(ļlXļ<+n+2. . .
 k+1

 In either case, f (x) = -ai* • •an0xk+n+3;" "
 Thus fk+1(x) € I.

 Thus, if the binary expansion of x contains every finite block, x has

 a dense orbit, the sequence (fn(x)} is dense in [0,1]. Of course, almost

 every x does have a binary expansion including all finite blocks, so almost

 every x has a dense orbit. It is easy to' verify that the set of points that

 have dense orbits relative to some function is of type G^. Thus, a residual

 subset of [0,1] having full Lebesgue measure, consists of points with dense

 orbits.

 The homeomorphism h giving rise to the conjugacy of f with the func-

 tion 4x(l-x) is absolutely continuous. Thus this function also has a resi-

 dual set of full measure containing points with dense orbit. If this function

 serves as a model for the population biologist, our biologist would almost

 surely observe "random" changes in population size.

 The function f also displays another sort of undesirable iterative

 behavior - Chaos. We shall consider Chaos a little later. First, we discuss

 briefly the iterative behavior of well-behaved functions.

 Well-behaved functions

 The class of functions kx(l-x), 0 S k Š 4 is not the only class that

 arises naturally in the sciences when dynamical questions of a discrete naturë
 kfl-xì

 are under consideration. For example, the families f(x) = kx e
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 (k > 1) and f(x) = sin(kx) (^ < k Ś n) arise.
 The members of these and other families posess a number of regularity

 conditions: they have continuous second derivatives in (0,1); f' vanishes

 only at the maximum m and f"(m) < 0; they are unimodal (m is the only

 local maximum); and they satisfy a certain technical condition [P].

 It turns out that much is understood about the dynamics of functions

 meeting there conditions [P]. We mention only one aspect of what is known,

 the manner in which the orbits of most points are attracted to certain sets.

 Any function f meeting the regularity conditions we mentioned and sat-

 isfying f(z) > z on (0,m] po'sesses exactly one of the following properties:'

 1. There is a periodic orbit that attracts each point in some dense

 open subset of [0,1].

 2. There is a Canter set K that attracts each point in some set resi-

 dual in [0,1].

 3. The function f has "sensitive dependence on initial conditions".

 (This means that there exists e > 0 such that for every xs [0,1]

 and every neighborhood U of x, there exists n £ 0 such that

 I fk(U)| £ e for all k > n.)

 For the functions f(x) = kx(l-x), one finds, for example [P] that

 when k = 3.1, a dense open set is attracted to the orbit

 .55801... .76456;

 when k ~ 3.569... (see [P]), there is a Cantor set which attracts a

 residual subset of [0,1];

 and when k = 4, we saw there are points with dense orbit. This implies that

 there is sensitive dependence to initial conditions. In fact, for

 any nomadic function it is true that there exists intervals K and

 L such that for each interval I there exists an n such that
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 fk(I) 3 K or fk(I) : L for all k > n. (This follows readily

 from the proof of Theorem 11 in [BCR].)

 Thus the family of functions of the form f(x) = kx(l-x) displays all

 three of the possibilities for the class of well-behaved functions we men-

 tioned. The same is. true of many reasonable families of functions.

 Much more is known about the dynamics of well behaved functions. We

 merely scratched the surface in this section. Readable and highly interesting

 accounts can be found in the books [CE], [D] and [P]. In particular, our

 statement concerning the "three types of possible behavior" represents a

 highly condensed and simplified version of material developed in [P], The

 details of the manner in which attraction occurs, the way in which behavior

 changes as the parameter k is varied, the role of the orbit of the maximum

 point and other such topics are fascinating.

 But not all continuous functions are well-behaved. What can we say if a

 function is, for example, nowhere differenti able? We offer a contrast in our

 next section.

 The dynamics of typical continuous functions

 Suppose a scientist uses a well-behaved function f as a model to

 describe an iterative process. Even if the process can be fully described by

 some function g, the function f is undoubtedly only an approximation to

 g. After all, it is fashionable nowadays to assert that nature is best de-

 scribed by fractals! , [Man]. The definition of "fractal" may vary from one

 author to another, but surely a well-behaved function isn't a fractal. If a

 function is a fractal, it must surely be nowhere differenti able and exhibit
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 various other properties common among typical continuous functions. (As

 usual, by a "typical" property, we mean a property shared by all functions in

 some residual subset of C[0,1]. A typical continuous function is one that

 has all the typical properties under consideration.)

 If the process our scientist is studying requires a typical function g

 rather than a well-behaved function f for modeling, how serious are the con-

 sequences likely to be, assuming, of course, that llg-fB is small?

 To discuss this problem, we should first indicate the dynamics of a typi-

 cal continuous g. Might a typical g possess the desirable attractive be-

 havior (1) possessed by some well-behaved functions? What about the pattern

 (2)? Or must case (3) apply, along with the possibility of nomadic, or near

 nomadic behavior?

 The reader familiar with the behavior of typical continuous functions

 will surely suspect the answer to all these questions is "NO". Typical be-

 havior is much more, complicated, yet much more regular. Typical properties

 are the same for all typical functions (by definition of "typical") and it

 would be surprising if there were three different possibilities. The typical

 function has many periodic points, but collectively they attract only a first

 category subset of [0,1]; there will be c pairwise disjoint attracting

 Cantor sets, but each attracts only a nowhere dense set; there will be no

 sensitive dependence on initial conditions (according to our definition of the

 term); there will be no points whose orbit is dense in some interval. Can one

 make any statement about the iterative behavior on a residual set? Yes. Each

 of the attracting Cantor sets attracts a nowhere dense set - but collectively,

 they attract a residual set. There is a residual subset Qc [0,1] such

 that to each x e Q corresponds a Cantor set K such that the cluster set

 of the orbit of x is K. If x s K, then x has an orbit that is dense in
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 K. The function maps K onto itself homeomorphically.

 Thus, the well-behaved f and the typical g exhibit quite different

 dynamical behavior. One can perhaps gain some intuition by noting some dif-

 ferences concerning the orbits of intervals. Consider, a well-behaved f

 having a fixed point xQ such that |f'(Xg)| < 1. Since the function f is

 continuous, it maps sufficiently small intervals I containing Xg into

 themselves. The sequence { f n( I ) } contracts to Xg. It follows that

 for xs I, fn(x) ■+ Xg. For a typical g, this never happens. There are in-
 tervals, necessarily containing fixed points, that map into themselves. But

 the sequence {gn( I) } will contract to a nondeqenerate interval that, of

 course, maps onto itself. Similar comments apply to certain intervals con-

 taining periodic points. For typical g, arbitrarily close to any periodic

 point Xg there will be other periodic points of arbitrarily high period, and

 there will be "intervals of arbitrarily high period" arbitrarily near Xg.

 More precisely, given a positive integer N and <5 > 0, there is an interval

 I c (Xg - Ô, Xg + ô) and an n > N such that fn(I) c I but fm(I) n I = 0
 for m= l,...,n-l. Such an interval I contains periodic points of period

 n as well as periodic points of higher period.- One can choose such a per-

 iodic point of higher period and begin the process again. Keeping track of

 the possibilities shows that each such interval I gives rise to c Cantor

 sets as well as to c periodic points. (Each periodic point will attract an

 uncountable first category set, but the totality of points attracted to peri-

 odic points is only of the first category. This set has cardinality c in

 every interval, however.)

 Some precise formulations of the typical dynamics can be found in [AB].

 Many questions remain open, however.
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 With this background, we return to our question concerning the scientist

 with a well-behaved f as a model instead of a typical g. How serious is

 the error caused by the assumptions that f is well-behaved likely to be?

 (We should mention here that an^ error may be serious, even without assuming

 that thè true model involves a function of the form kx(l-x), a slight in-

 accuracy in selecting the parameter k could lead to vastly different be-

 havior of the iterates. We are more concerned at the moment with the

 difference of observed behavior due to f being well-behaved while g is

 typical.)

 We can pose the problem in two ways:

 a) The scientist has f. If the true g is near f, Bf-gll small,

 will the observed behavior obtained by g approximate the behavior

 predicted by f?

 and b) If the scientist is able to obtain f near g, will the behavior

 predicted by f approximate the true behavior?

 These two questions are technically different. In a), we are approximat-

 ing f by g; in b) we are approximating g by f. In both cases, we as-

 sume Bf-gll small.

 An oversimplified and vague answer to both questions is that it may well

 happen that these differences in behavior between f and g that are due

 only to the fact that f is well-behaved while g is typical, are micro-

 scopic in nature and invisible to the eye or to the computer.

 For example, regarding question a), suppose f has a fixed point at Xq

 and ļ f 1 (Xq) ļ < 1. For sufficiently small closed intervals I containing
 O

 Xg, we will have f(I) c I and a de se open set G will be attracted to

 Xq. Suppose X e G and fn(x) el or n £ N. What will our scientist ob-
 serve if H g- f II small? If Bg-fR i sufficiently small, gn(x) will also

 ¿o



 O u

 be in I and g(I) will be contained in I. It may happen that g (x) Xg,
 but more likely (in the category sense), the sequence { g^(x) } will move

 around a Cantor set K that is the cluster set of this sequence. Of course,

 KCl, so if I is sufficiently small, the microscopic behavior of {g^(x)}

 for large k is invisible to the scientist. For practical purposes,
 u

 g (x) ■* Xq, as suspected. On the other hand, once f is chosen, II g-f II»

 while small, doesn't change. There will be points x€ G whose orbits (under

 f) don't enter I for many, many iterations. If this happens first for
 nQ ng

 n = nQ, it may well happen that g (x) ^ I. Perhaps g (x) is in an in-
 terval J on which the behavior of g is quite different from its behavior

 in I. The scientist will be confused. This type of error was not due, how-

 ever to g being typical - it was due to ilf-gR not being sufficiently

 small. The fact that g is typical led to errors of a microscopic nature.

 The situation may be more interesting when f is nomadic, say

 f(x) = 4x(l-x). Suppose x has a dense orbit under f and the investigator

 knows this and expects "random" behavior. A typical g has no points with
 lx

 dense orbit. Most likely the sequence g (x) will appear to move randomly

 for a while, but then enter its microscopic attraction to a Cantor set. K.

 (The observed motion may resemble that of a fly moving through space randomly

 until it is suddenly caught in a spider web.) The set K might be contained

 in' a very small interval, in which case it will appear to the sci enti tst that

 the orbit approaches a fixed point. If the smallest interval containing K

 can be "seen", then the scientist will observe periodic motion, the magnitude

 of the observed period depending on the ability of the scientist to distin-

 guish the small intervals that move periodically near K. It may, of course,
 I/

 happen that the number of iterates needed for the sequence {g (x)} to be

 trapped near K is so large that 'it doesn't occur during the observation
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 period. In that case, the scientist may be very pleased in the belief that

 the random behavior predicted by f has occured.

 Regarding question b), we mention that some relevant information is

 contained in some of the lemmas found in [AB]. The typical g has neighbor-

 hoods all of whose members possess the nonmicroscopi c behavior of g. (This

 usually happens when one obtains a residual class of functions via the Bai re

 Category theorem). Thus, once again, the choice of a well-behaved f in-

 stead of a typical g may well lead to only invisible errors. (More import-

 ant errors may well be due to the inability to obtain f sufficiently close

 to g or to round-off errors inherent in any computer.)

 We close this section by mentioning that an interesting result related to

 question a) for functions f that are well-behaved according to a different

 criterion has been obtained in [SS]. Roughly speaking, the result states that

 any continuous g that is sufficiently near a function having periodic points

 of only finitely many periods and whose set of periodic points is . nowhere

 dense, must have all its orbits asymptotically periodic up to microscopic

 behavior.

 Chaos

 We have seen that a finite set might attract each x in some residual

 set. This happens when the orbit of x is asymptotically periodic. Similar-

 ly an uncountable set may serve as an attractor. This set could be a Cantor

 set or it could be an interval. We have used the family kx(l-x) to illus-

 trate each of these types of attraction. When the Cantor set K attracts a

 residual set of points, the behavior of the sequence (fn(x)} may eventually
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 appear to be periodic to an observer. The magnitude of the apparent period

 depends on the observer's ability to distinguish microscopic behavior. When

 an interval [a,b] is the attractor, for example, when f is nomadic, the

 behavior may appear "random". It is natural to ask whether it is possible for

 a countable set A to serve as attractor. If so, how can an orbit be

 attracted to A?

 Let us return for a moment to the hat function. It is clear that for

 -k -k+1
 each positive integer k, f(2 ) = 2 . Consider now any x€ (0,1)

 whos.e binary expansion alternates blocks of O's and l' s , these blocks

 becoming increasingly longer. Recalling our simple method of following the

 orbit of a point under f, we see that for such an x the sequence (fn(x)}
 « lx

 is attracted to the countable set {0} u {2 }, k = 0,1,2,... . An observer

 unable to distinguish microscopic behavior will eventually observe the se-
 "" k

 quence "stopping" at 0, only to begin moving near the sequence {2 } (in

 the positive direction) after a long pause at 0.

 Suppose now that two points x t y both have binary expansions of the

 type mentioned. Suppose also that, infinitely often, x has a long block of

 l' s in the positions that y has a long block of 0's. One finds that for

 infinitely many values of n, | fn(y) - fn(x)| is near 1. But if there are

 also infinitely many long blocks that both x and y fill with O's, then

 there will be infinitely many values of n for which | fn(x) - fn(y)| is

 near 0. Thus, the orbits of x and y are frequently far apart and fre-

 quently close together. One can imagine the confusion this sort of behavior

 can cause a population biologist. If the initial population is x, which the

 biologist slightly misjudges to be y, the observed population of future gen-

 erations will sometimes bë very close to the predicted populations and some-

 times be very far apart!
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 The points x and y are part of what is called a "scrambled set".

 Definition: S is called a scrambled set for f if whenever x,ys S

 (x * y),

 lim sup ļ fn(x) - fn(y)| > 0
 n-*»

 and lim inf | fn(x) - fn(y)| = 0.
 n-*»

 Now, if a scrambled set contains only a few points, it will be unlikely

 that the true initial population x and the observed initial population y

 are in S. This suggests the question, "How large can a scrambled set be?"

 Li and Yorke [LY] have shown that if there is a point of period 3, there

 will be an uncountable scrambled set. According to some definitions, this

 represents "Chaos". (The definition of Chaos varies among authors.) Jankova

 and Smítal [JS] have found other conditions equivalent to chaos. (One of

 these involves the existence of a certain type of infinite attractor.) They

 also mention that the existence of a two-point scrambled set implies the exis-

 tence of an uncountable scrambled set! Thus, the hat function has an uncount-

 able scrambled set. How can one find such a set?

 One approach would be to use the same idea we used to obtain the points

 x and y with long blocks of O's and l's in their binary expansions.

 The difficulty is that each pair chosen from such a set must have the long

 blocks of O's and l's matching up properly. This can, however, be done

 [BH^]. One obtains, in fact, a Borei set S having cardinality c in every
 interval.

 Each point of S is attracted to the set {0} u {2 ^} , k = 0,1,...

 While the set S is large in cardinality, it is small in measure and in

 category. With this model, or with the model 4x(l-x), the scientist is un-

 likely to run into chaos because of S. Does the hat function possess a
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 scrambled set of positive measure? The answer is "no". Smital [S^] has shown

 that it does possess scrambled sets of full outer measure, but no measurable

 scrambled set of positive measure. Nor can a scrambled set for f be resi-

 dual. In fact, any scrambled set for any function must be first category if

 it has the property of Baire [BH^]. (There is, however, a scrambled set for

 f that is second category in every interval [J]. It can't have the property

 of Baire, of course. More about that later.)

 In order for a scrambled set S to be likely to cause confusion for an

 observer, it would have to have positive measure. This would attach a posi-

 tive probability to the event that both x (the initial population) and y

 (the observed initial population), are in S. Can this happen for a function

 f? Kan [K] and Smital [Sg] simultaneously (but independently) gave examples

 of this. Kan's example had the additional feature that S is "extreman y

 scrambled":

 lim sup ļfn(x) - fn(y)| = 1 for all x,y €'S, (x * y).
 n-*»

 With these models, an investigator would have a positive probability of

 experiencing chaos. Are there other models for which experiencing chaos is

 (almost) a certainty, i.e. for which S has measure 1?

 Let us return once again to our hat function. The scrambed set S we

 described has measure 0, but it is a Borei set having cardinality c in

 every interval. This suffices to guarantee the existence of a homeomorphism

 h of [0,1] onto itself such that T = h(S) has full measure [G]. The func-

 tion g = h « f « h"^ has T as an extremal ly scrambled set.

 One can choose h arbitrarily close to the identity and such that each
 -k

 point in the set {0} u {2 }, k = 0,1,2,... remains fixed. The function g

 is then almost indistinguishable from the hat function. Each point in T is
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 attracted to the set {0} u {2*^}, k = 0,1,2,... .

 The function g illustrates some interesting behavior on T. The sets
 1/

 g (T), k = 0, ±1, ±2, . . . are pairwise disjoint. Since T = g°(T) has mea-
 1/

 sure 1, all of the other sets g (T), k ï 0, have measure 0. The set

 ÛO

 T* = ij g^(T) is also a scrambled set for g and gk(T*) = T* for all k.
 k=-«

 One can also show the following, that indicates some of the mixing pro-

 perties exhibited by the dynamics of g. Let U be any open set whose
 -k

 closure is disjoint from {2 } , k = 0,1,2,...
 « If

 Since each point of T is attracted to {0} u {2 }, k = 0,1,2,...-,

 no point. of T n U has an orbit that returns to U infinitely often. Yet,

 there is a residual subset R of [0,1] each member of which has a dense

 orbit under g. Thus each point of RHU returns to U infinitely often.

 Thus, U contains two sets, one large in measure, the other in category; the

 members of the first eventually leave U, never to return, the members of

 the other return to U infinitely often.

 Various definitions of chaos appear in the literature, the notion of

 scrambled set appearing in one way or another. But the notion of "dense

 orbit" also carries a sense of chaos. One might ask whether "chaos" and

 "nomadic behavior" are related. They are. Here is a sample result [BH^].

 If there is a set E, dense in [0,1], such that for x,y€ E, x * y, we

 have

 lim sup I fn(x) - fn(y)| = 1,
 ri-*»

 2
 then f is nomadic. (This implies, of course, that f is 'nomadic). In

 2
 the other direction, if f is nomadic. then there is a set S, of second

 category in every interval such that for x,ye S, x t y, the set
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 (fn(x) - fn(y)} is dense in [-1,1]. (This assumes the Continuum Hypothesis.)

 This, of course implies that S is extremally scrambled. The preceeding act-

 ually relates "extremal" chaos to nomadicity of f . Changing the notion of

 chaos or of nomadicity may lead to different sorts of results. If one re-
 2

 quires that 'f (but not f ) be nomadic, then one cannot conclude extremal

 chaos, but one can conclude chaos. But chaos does not imply existence of any

 orbits that are dense in some interval. For example, the typical f is chao-

 tic [BP], but no point has an orbit dense in some interval. (The set of

 points whose orbits are dense in I is of type G^-, hence residual in I.
 But, for typical f, a residual set consists of points attracted to Cantor

 sets. )

 Additional Remarks

 We mention briefly a few other items that may be of interest.

 1. Equi continuity of the iterates.

 The scientist dealing with an iterative process may have a wish list

 that looks something like this:

 a) The process approaches a state of equilibrium: i.e. {fn(x)} con-

 verges to Xg for all x. In this case, an error in initial mea-
 surement has no effect on long term behavior.

 b) If a) fails, the process should at least reach some weaker form of

 equilibrium: {fn(x)} is asymptotically periodic, the same periodic

 orbit attracting all orbits. If the attracting period is not too

 long, the long term behavior of the process can still be reasonably

 understood.
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 c) At the very least, there should be predictability of long- term

 behavior: a slight error in initial measurement should not lead to

 serious errors in predicting long-term behavior. In precise lan-

 guage, the scientist wishes that the family {fn} is equi con-

 tinuous.

 To what extent are the items on the wish-list likely to occur? Regarding

 a) and b), it will sometimes happen for well-behaved f that one of these

 conditions is met for all x in some residual subset of [0,1]. (Actually,

 this set will often have full measure [P]). This may well suffice for prac-

 tical purposes since the true model g, if near f, may exhibit this

 behavior, except microscopically. But the conditions will rarely be met for

 all x.

 Regarding c), it is usually too much to expect equi continuity of the

 iterates. This rarely happens. If f maps [0,1] onto itself, it will happen

 if and only if f^ is the identity: f^(x) = x for all x. If f is not

 an onto mapping, there are possibilities, but equi continuity does impose ser-

 ious restrictions on f [B], [BHg]. These conditions may rarely be met in

 practice. It is, of course, reasonably likely that equi continuity of the

 iterates does occur on. some large set.

 The situation may be summarized by saying that while our scientist's

 wish list will undoubtedly not be fulfilled, there are reasonable chances

 that it will be approximated.

 2. On periodic behavior.

 We have already mentioned that if f has a point of period 3, then f

 will exhibit chaotic behavior [1Y]. It is also true that f will in that

 case have points of all other periods. This is a special case of a theorem of
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 Sarkovskii, (see [D] for a development). This theorem provides an ordering

 of the natural numbers. If k precedes 1 in this ordering, then every f

 having a point of period k also has a point of period 1. At the head of

 the list is the number 3. At the end is the number 1. Immediately preceding

 the number 1 is the sequence {2n} 'in reverse order. Thus, if there are

 periods of order 2n, there will be periods of order 2m for all m < n.

 There are also examples that illustrate that for each n, there are functions

 having points of period n but having no points of periods that precede n

 in the Sarkoviskii order.

 Suppose now that we consider a family of well-behaved functions, say

 kx(l-x), 0 ú k Ú 4. We have already noted that as k increases, the dynamic

 behavior becomes more complex. How this occurs is complicated, but we mention

 one aspect of it related to part of the Sarkovskii order. As k increases,

 the family experiences "period doubling". This means that there is an in-

 creasing sequence of numbers k^.kg,... such that as k increases through

 kn, the family loses a stable periodic orbit of period 2n * and gains a

 stable orbit of period 2n. For k^ = lim k one finds f(x) = k^ x(l-x)
 h-*»

 has an invariant Cantor set K attracting most points of [0,1]. The constant

 k^ is approximately 3.569.

 Similar patterns exist for other families of functions depending on a

 parameter k. A remarkable theorem of Feigenbaum indicates that this occurs

 in a universal way for certain types of well-behaved families. There is a

 constant <5 ~ 4.6692... such that k^ - kn - C<5 n, the constant C depend-
 ing on the family.

 The reader interested in Feigenbaum universality may wish to consult [CE]

 or [VSK]. A readable development of the period-doubling phenomenon can be

 found in [D], but the Feigenbaum universality is not developed there.
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 3. Some Problems.

 We close with a few problems directly related to material we have dis-

 cussed. It is possible that these problems are not difficult to solve.

 a) One of the three dynamical patterns possible for a well-behaved

 function is that a Cantor set attracts the orbits of all x in

 some residual set R. This set R actually has full Lebesgue measure

 [P]. For a typical continuous f we saw that there exists a family

 of Cantor sets which, collectively, attract the orbits of all x in

 some residual set. We have not determined whether this set has full

 Lebesgue measure.

 b) The existence of a large scrambled set creates possible problems for

 the scientist, as we have observed. For the function g conjugate

 to the hat function f, the scrambled set T has full measure -

 someone using such a model will almost surely run into chaos and the

 resulting impossibility of prediction. Here the term "impossibility

 of prediction" is being used in a very specific sense:

 if x,y€T, x * y, then the orbits of x and y are sometimes

 close together and sometimes far apart. Actually, most of the time

 they are close together - both are near zero. Recall, an observer

 may experience the phenomena fn+^(x) ~ 2fn(x) until fn(x) is

 near 1: then fn(x) ~ 0. As the long blocks of O's in the

 binary expansion for x become even longer, the orbit of x will

 appear to "rest" at 0 for longer periods of time. The same is

 true of the orbit of y. Thus, when predicting fn(x) for n

 large, one might simply predict "fn(x) = 0"! In fact

 lim f(x)+f2(x)+...+fn(x) = g for a11 xeT Not onl is the 1i(nit
 h~ n
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 of averages equal to 0, the limit of variances is also. This

 raises the question of the limit of correlations. We have not even

 determined that this limit isn't 1.

 More generally, even when extremal chaos is present, it is con-

 ceivable that some sort of reasonable prediction is possible. This

 vaguely- stated question could perhaps be answered in specific cases,

 or preferably, in general,

 c) The countable attractor, {0} u {2 ^}, k = 0,1,..., present in the

 dynamics of the hat function, is a closed set with only first order

 limit points. Which countable closed sets can serve as attractors?

 Are there examples of all order-types? How do such attractors arise

 for the typical g? Is there a function that has countable

 attractors of all order types possible? If so, is this a typical

 property?

 These questions might be easy to answer. We don't know; we haven't given

 them serious thought.

 End of story.
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