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 Higher Order Riemann Complete Integrals

 1. Introduction. It is easy to show that the generalized Riemann integral

 [5], [7] integrates an everywhere finite ordinary derivative. Necessary

 and sufficient conditions for an exact Peano derivative to be generalized

 Riemann integrable were obtained in [4] . It is the purpose of this article

 to introduce the idea of a "higher order" generalized Riemann integral

 that will integrate a wide class of finite generalized derivatives.

 2 . Preliminaries . Let

 a = < X, < . . . < X = b
 0 1 m

 be a division (partition) of the interval [a,b] , and suppose the numbers

 z. are associated with the division by the relation x. , < z. < x.. Such
 3 D-l , D 3

 a division, denoted by V, is called a tagged division with tags z ^ ,
 j = l,2,...,m. Suppose further there is given a function 6(x) such that

 6(x) >0, x € [a,b]. If the tagged division V has the property that

 [x.^,x.] c (z_.-ô(zj, z_.+Ô(z_.)), j = 1,2, ...,m, then the division is
 said to be compatible with õ(x) .

 It has been shown by Henstock ([7] and [8]) that if 6 (x) >0 is an

 arbitrary function defined on [a,b], then there is a tagged division of

 [a,b] compatible with 5(x).

 AMS Subject Classifications: 26A24, 26A39.
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 Moreover, given 6 (x) >0 defined on [a,b], there is a tagged divi-

 sion of [a,b] compatible with 5(x) so that xQ = a is the tag of
 [ x , X- ] and x = b is the tag for [x _ ,x ] . (Cf [10] , page 11 ff.)
 0 1 m m-i m

 If I? is a tagged division of [a,b] where, as above, the tags

 satisfy the relations

 zn=a, x. i - z - x. , 2 < k 5 m-1, z = x , 1 K-l i - k - K , mm

 we can obtain a finer tagged division of [a,b] by dividing each interval

 [x. _,x.] into subintervals [x. n , z . ] and [z.,x.] and taking z. to
 D"1 D D-l n , 3 . 3 3 3

 be the tag of each of these subintervals for j = 2,3,...,n-l. We incor-

 porate the above considerations into a formal definition.

 Definition 2.1. A tagged division of [a,b] will be called a res-

 tricted tagged division of [a,b] if it has the form

 X = Z < X < z < X < Z < X < ... <x < z < x _ < z .= x
 0 1 1 2 2 3 3 m-2 m-1 m-1 _ m m

 where x^ = zn is the tag 2 of [x.fxj, x = z is the tag 2 of [x n ,x ]

 and z. is the tag 2 of both [x . wz.] and [z.,x.] for j = 2, 3,..., m-1.

 If a restricted tagged division of [a,b] has further the property that

 z.-x. n = x.-z., j = 2, 3,..., m-1, the division will be called a restricted
 : D-l n DD

 symmetric tagged division of [a,b].

 It is clear that given 6(x) > 0 defined on [a,b] there exists a

 restricted tagged division of [a,b] compatible with 6(x). That there

 exists a restricted symmetric tagged division of [a,b] compatible with

 5(x) follows from [9].
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 Definition 2.2. (cf. [7] and [10]) Let f be defined (and finite) on

 [a,b]. The number I is the definite generalized Riemann integral (or

 the Riemann complete integral) of f on [a,b] if, corresponding to

 € > 0 there is a 5(x) >0, x € [a,b] so that

 m

 I - V f (z , ) (x .-X. ) < €
 j=i 3 , 3 '-1

 for each tagged division V compatible with 6. When the integral exists

 fb
 we write I = RC f ( t ) dt .

 ^ a

 Note: It is clear that we would obtain the same integral if we sub-

 stituted restricted tagged divisions for tagged divisions in the definition.

 This is because f(z.)(x.-x. n) = f (z . ) (x ,-z . ) +f (z . ) (z .-x . Ì. (cf. [7],
 3 D D-l 3 . 3 3 . 3 . 3

 page 84) . This will not be true of the generalized integrals we define in

 this paper.

 3. Generalized derivatives. Let F(x) be a function defined on [a,b] .

 If there are constants , $2 ' * * • ' $2r ' depending on xq kut not on
 such that

 1 r h2k 2
 (3.1) y 1 (P(x0+h)+r<vh)) - J p2k o (h 2 r>, K. - U

 /

 as h -► 0, then ß is called the de la Vallee Poussin (or generalized

 symmetric) derivative of order 2r of F(x) at x = x^, and is written
 2 r 2 r 2k

 D F(Xq). If D F(Xq) exists then D F(x^), 0 < k < r-1, exists and
 2k

 ß2k = D 0 - k - r-
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 Odd numbered symmetric derivatives are defined in a similar way:

 If there are constants ^1^3' * ' * '^r+l' depending on xq not
 on h, such that

 1 r h2k+1 9 r +1
 (3.2) - 1 {F(x0+h)-F(x0-h)} - K J - U ß2k+i o(h 9 r +1 ), K - U

 as h ->■ 0, then is the de la Vallee Poussin derivative of order
 2r+l

 2r+l

 (2r+l) of F (x) at x = x and is written D F(x^) .
 Now let F(x) be a continuous function defined on [a/b] . If there

 exist constants a ,a ,...,a , such that
 12 n

 hn
 (3.3) F(x +h)-F(x )-ha . .

 0 0 1 n! n

 th
 as h 0, then a is called the n Peano derivative of F at x„
 n 0

 th
 and is denoted by F (x^) ([6] and [11]). If F has an n Peano deri-

 n 0

 th
 vative at x , then F has also a k Peano derivative at x , F (x ) ,

 U U JC u

 k = l,2,...,n-l, where F]_(xq) = (xQ) . It is clear that the existence
 of F v (x^) implies that of DrF (x_ ) and that DrF (x_ ) = F (x^) .
 (r) v 0 0 0 r 0

 If F, (x_) exists for 1 < k < n-1, define Y (F;x_,h) by
 k 0 n 0

 (3* 4) Yn(F;X0'h) = ^ h [p(Vh)-F(x0) ^ - k=l X H" W * h ^ k=l

 If hy (F ; x ,h) -+ 0, as h -► 0 , then F will be said to be P -continuous
 n 0 n

 at V
 J.C. Burkill [2] constructed a scale of (Cesàro-Perron) integrals, the

 C P-integrals, k = 0,1,2, .. š ,n, in which the C P-integral is the
 K U
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 Perron integral which, it is known, is equivalent to the Riemann complete

 integral.

 Suppose that for 0 5 k < n-1 the C P-integral has been defined. A
 Jv

 function M(x) , defined on [a,b] is said to be C -continuous on [a,b]
 n

 if it is C _ P-integrable over [a,b] and if
 n-1

 ' n Ì fX+h n-1
 C (M,x,x+h) = - n C nP (x+h-t)n n-1 M(t)dt -> M(x) ,
 n . n n-i

 J X

 as h -> 0, for every x in [a,b]. Let

 C DM(x) = lim - h-K) ^ h/n+1 , J

 and define C DM(x) in the obvious way. If C DM(x) = C DM(x) then the
 n- n n-

 common value is taken to be the C -derivative. C DM(x) .
 n n

 The functions M(x) and m(x) are called C P-major and minor fune-
 n

 tions, respectively, if f(x) over [a,b] if

 (3.5) M(x) and m(x) are C -continuous in [a,b] ;
 n

 (3.6) M(a) = m(a) = 0;

 (3.7) C DM ( x) > f(x) > C Dm(x) , x € [a,b];
 n- n

 (3.8) C DM (x) f , C Dm(x) ^ +°° .
 n- n

 If for every 6 > 0, there is a pair M(x) , m(x) satisfying the

 conditions (3.5), (3.6), (3.7) and (3.8) above and such that | M(b) -m(b) | < £ ,

 then f (x) is said to be C P-integrable in [a,b] and
 n
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 (b
 C P f(t)dt = inf M(b) = sup m(b) ,

 n
 J a

 where the inf and sup are taken over all major and minor functions ,

 respectively.

 It follows easily that the C^P-integral integrates an everywhere
 finite C -derivative, and

 n

 •b

 g(b)-g(a) = C P C Dg(x)dx.
 n , J n

 , J a

 Moreover, if f(x) is C _ P-integrable on [a,b] , then f(x) is
 n-1

 C^P-integrable on [a,b] , and the integrals agree. In particular,
 if f is RC-integrable then it is C P-integrable for k = 1,2,3,...,

 K

 and the integrals all have the same value.

 If f is C^_^P-integrable on [a,b] , and if r > 1, the symmetric

 Cesaro derivative, or, SC^-derivative, of f at x^, x^ € (a,b) , denoted
 by SC Df(x-) is defined to be

 r 0

 . Vf;VVh)~Cr(f;xO'Vh)1
 h" . I 2h/r+1

 if the limit exists (cf. [1] and [3]).

 If f has an exact Peano derivative f for x € [a,b] , we have at
 n

 each X, corresponding to € > 0, a 6(x,€) >0 so that

 n-l f (x) (t-x)k . ,n
 f(t)-f(x) - I kl . , kl n! n

 . k=l ,

 Í0(t,x), 0 ( x , t ) , x-ô(x,£) x < t < x+ô < t ( x < , € xi ) 0 ( x , t ) , x < t < x+ô ( x , € )
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 f (v-u) n
 where 0(u,v) = -

 n !

 superadditive interval function with 0(a,b) small for small € > 0,

 since for positive integer n,

 (c-a)n = [ (c-b) +(b-a) ]n = (c-b) n+(b-a) n + positive terms

 > (c-b) n+(b-a) n, a 5 b 5 c.

 Assuming exists, 0 < k < n-1, we could define an integral as

 follows :

 If there is a number I such that for all € > 0 there exists a

 function 5(x) = 6(x,(:) > 0 for x € [a,b] such that

 I n-1 m f (z.) m (x.-x. )n
 I - I I -V-fWi' - 1 J <ť 1 k=l j=l j=l J

 for all tagged divisions compatible with 6(x) , then I is the integral

 of g over [a,b] .

 Then if fn(x) exists in [a,b] it follows that corresponding to £ > 0
 there is a function 6(x) >0, x 6 [a,b] such that

 n-1 m f (x. ., ) , m (x.-x. ,)n

 £<b)-f(a)- k=l I I J' (K J -x J ) - I V n- V'j-l' n J x k=l j=l J J j=l n- n J x

 m n-1 f (x. ) (x.-x. )k f (x. )(x.-x. )n
 = I f(x.)-f(x D-l . I k 3-1 k! 1 J"1 j=l' I f(x.)-f(x 3 D-l . kíi I k!

 „ € V I (x ( _x- i) 'n - - € (b_a)!1 - „ - ~r V I (x ( _x- i) 'n - - - n! ; - » ~r n! 3 J'1 - n! ;

 for all divisions compatible with õ(x), and so

 rb

 f (b) -f (a) = f (t)dt.
 n

 J a
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 In fact this reduces to simply the generalized Riemann integral of

 m f, V (x. _ ) , pi V 1 ~ 1 , K

 f (x) since all the sums ¿ - (x.-x.) , k = 2,3,...,n-l and
 j=l K- 3 3

 J' - - - ļ

 j=l n! D 3-1
 to follow. Thus nothing is gained by introducing this style of integration

 and so we take another approach in section 4.

 Theorem 3,1. Let f(x) be defined on [a,b] and suppose p > 0.

 Then given ( > 0 3 6(x) > 0 such that

 ij, * e-
 for all tagged divisions compatible with 6 .

 Proof . It is easy to verify that we may choose

 6(x) = €1/P{ (b-a) (1+ I f (x) I ) }~1/P.

 4. Higher order Riemann complete integrals. If f is a finite function

 defined on [a,b] , let two interval functions be defined by F^(u,v)

 = ( f , u, v) = f(v)(v-u) and F^(u,v) = F^(f,u,v) = f(u)(v-u). It will be
 convenient to denote a pair of interval functions by a single letter in

 script face. For example we shall write F(u,v ) = {F^(ufv) , F^_(u,v) } or,

 more briefly, F = (F£'Fr) • In ^e following we shall introduce a variety
 of interval function all of which, like the above, are defined in terns of

 a given point function f and its derivatives.
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 Given a restricted tagged division V of [afb] and a pair of inter-

 val functions we consider sums of the form

 cp ( z » X ) "Kp p ( X f z ) +cp ( z . X ) +cp n (x/Z) + . . . ~Hp (z . / X )+<p«(x ,z ). r 1 1 Ł 1 z r z z Ł Z 3 r m-l m-l jL m-l m

 We shall denote such sums by (PjZip^. where a = t or r depending on

 whether the tag of the interval is the right hand or left hand end point.

 We introduce below the definitions of the generalized Riemann complete

 integral and the generalized symmetric Riemann complete integral .

 Definition 4.1. The number I will be called the generalized Riemann

 complete (generalized symmetric Riemann complete) integral of f with

 respect to the pair of interval functions ^l(ufv) = {h^(ufv) ,h^(u,v) } on

 [a,b] if, corresponding to £ > 0, there is a function 6(x) > 0 so that

 (4.1) ļ 1 I- (V)Z (h +F ) I 1 < Ç 1 a a 1

 for all restricted tagged divisions (restricted symmetric tagged divisions) ,

 V compatible with 6(x), where a = L or r, depending on whether the

 tag of the interval is the right hand or left hand end point.

 The notation for these integrals is

 fb fk
 I = (GR C,h) f (t) dt and I = (GSRC,/l) f(t)dt,

 ^a J a

 respectively .
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 Theorem 4.1. f(x) is Riemann complete integrable if and only if it

 is generalized Riemann complete integrable with respect to k = {0,0} and

 the integrals are equal.

 Proof . If h^ = h^ = 0, the sums (4.1) are the defining sums for the

 Riemann complete integral.

 Corollary. If F1 (x) = f(x) where f(x) is finite for all x, then

 rb rb

 (GRC/ k) f(t)dt = RC f(t)dt = F(b)-F(a), with h = {0,0}.
 •'a ^ a

 It is clear also that if f is generalized Riemann complete integrable

 with respect to k = {h^,h^} then f is generalized symmetric Riemann

 complete integrable with respect to k and the integrals are equal.

 5. Integration ¿ of the Peano and C -derivatives. First we assume that f (x)

 and C Df(x) exist in [a,b] and define several particular interval
 n

 functions :

 r- n-2 k -

 flu)- l

 G£(f,n,u,v) - |-(n-l)f (v)-f (u)-n! (-1) (v-u) ļ_ (-1) (v-u) _J
 - n-2 , k - n

 í f,"'L
 G (f ,n,u,v) = <(n-l)f ' n-1 (u)+f n-1 (v)-n! r ' n-1 n-1 . >n-l

 |_ (v-u) .

 F»(f,n,u,v) = f (v) (v-u) ,
 'C n

 F (f,n,u,v) = f (u) (v-u) ,
 r n
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 Ho(f,n,u,v) = (n+1) C (f , v,u) -nf (v) -f (u)
 ^ n

 H (f,n,u,v) = -(n+l)C (f , u, v) +nf (u) +f (v) .
 r n

 Theorem 5.1. If f (x) has a finite Peano derivative f (x) in [a,b]

 then is generalized Riemann complete integrable with respect to

 G = (G»rG ) on [a,b] and
 Z r -

 fb
 f (b) -f (a) = (GRC, G) = f (t) dt .
 n-1 n-1 n

 J a

 Proof. Given £ > 0 there exists ô(x) > 0 such that

 lfn-1 (t)-G^(f ,n, t, x) -F^(f ,n, t,x) ļ

 Í
 , n-1 f (x) (t-x)

 =

 (-l)n(x-t)n-1 T ļf(t)- I kio

 if x-Ô(x) 5 t < x, since f (x) exists.
 n

 In a similar way it can be shown that

 |f ( u) - f Ax)-G ( f , n, x,u) -F (f,n,x,u) | 1 < € (u-x) , n-i n-1 r r 1

 if x < u < x+ö (x) .

 As we noted in Section 2, there exists a restricted tagged division

 compatible with 5(x). If V is one such division, say,

 a = x^ < x, < . . .< x , = x = b , we can write (where a = r or Ł
 0 1 m-1 , m
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 depending on whether the tag is the left hand or right hand end point of

 the corresponding interval) :

 m

 |f n-1 (b)-f n-1 (a) - (V) I { G ( f , n , x . ,x.)+F (f,n,x. .,x.)}| 1 n-1 n-1 a j-1 . j a j-1 j 1

 m

 - (P)jXļfn-i(xj)-fn-i(xj-i>{-Ga(f'n'xj-l'xj)-pa(f'n'xj-l'xj)}l
 m

 < € y (x,-x, ) = í(b-a).
 j-1 3

 This shows that I = f _(b)-f , (a) is the generalized Riemann complete
 n-1 n-1 ,

 integral of f (x) with respect to G.
 n

 Theorem 5.2. If f(x) has a finite C D-derivative on [a,b] then

 C^Df ( x) is generalized Riemann complete integrable with respect to

 H = {H£,H^} on [a,b] and

 rb

 f (b) -f (a) = (GRC,H) C Df (t) dt.
 n

 ^ a

 Proof . The method of proof is the same as for Theorem 5.1.

 6 . Integration of the de la Vallée Poussin and the SC^ -derivatives . In
 addition to the interval functions G0, G , H«, H introduced in the pre- t r , L r

 vious section we need the following interval functions (where we assume

 that Dnf(x) and SC Df(x) are defined in (a,b) and f , (x) in [a,b]):
 n n-1 ,
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 2n-2 f (u) ( v-u) r

 f(v)~ I ~ 7]
 J (f , 2n,u, v) = (2n-l) f (u)+f (v)-(2n)!

 r 2n-l 2n-l , . 2n-l
 (v-u) , .

 2n-2 f (v)(u-v)r '
 Î

 J£(f,2n,u,v) = -(2n-l)f2n_1(v)-f2n_1(u)-(2n)!

 [ (v-u)

 K (f,n,u,v) = -(n+l)C (f ,u, v) +nF (u) +F (v) ,
 r n

 ( f , n , u , v ) = (n+DC^ (f , v,u) -nF(v) -F(u) ,

 for a < u < v < b,

 I^(f,2n,u,v) = D2nf(u)(v-u)

 I^(f f 2n,u,v) = D2nf (v) (v-u) ,

 for a < u < v < b, and

 I^(f,2n,a,v) = l£(f,2n,u,b) = 0.

 Theorem 6.1. Suppose f(x) has a finite de la Vallée Poussin deriva-

 tive of order 2n iri (a,b) , a finite Peano derivative of order 2n-l

 in [a,b] and is P^ -continuous at a and b. Then the function g(x)
 -

 defined by
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 f '
 I

 D nf (x) , x £ (a,b)
 g(x) = f

 0 , x = a,b

 is generalized symmetric Riemann complete integrable with respect to the

 interval functions J = (J^, J^) on [a,b] , and

 rb

 (6.1) f ,(b)-f., . (a) = (GSRC, J) g(x)dx. zn-1 zn-L
 J a

 2n
 Proof. Since D f(x) exists in (a,b) and f(x) is -continuous

 at a and b, we have that corresponding to € > 0 there exists

 6(x) = 6(x,Q >0 such that

 r n-1 n2r- D f , 2r ,x^V D f (x)h ,
 f (x+h)+f (x-h)-2 ļ

 (6.2)
 , ¿n-± , , ^ v .

 ^ h , / , (2n) , ^ v ! . J

 for a < x-h < x < x+h < b and h < ô(x) ,

 2n-l f (a)h^
 f (a+h) -f (a) - £ - -

 k=l
 (6.3)

 h / (2n) !

 for a < a+h < a+6(a) < b, and

 2n-l f (b)(-h)k
 f(b-h)-f(b)- I JL-r-i

 k=l * X
 (6.4)

 , ¿n-l , . „ . .
 , h / , (2n) . „ . . !

 for a < b-5(b) < b-h < b.
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 We have seen in Section 2 that there is a symmetric tagged division of

 [a,b] which is compatible with 5(x). If V is one such division, say,

 a = x^ < x., <. . .< x .,<x = b,
 0 1 m-1 m

 (where by the definition of a symmetric tagged division, m is even) then

 a is the tag for the interval [a,x^] and x^ < a+ô(a), b is the tag
 for the interval [x . ,b] and x _ > b-ô(b), and x. is the tag of the

 m- 1 m- 1 2

 two intervals [x ,x ] and [x ,x ] where = x -x , and so on.
 X ¿ j ^ Z x

 Consequently we may write (where a = r or £ depending on whether

 the tag is the left hand or right hand end point of the corresponding

 interval) ;

 I m I

 (6.5)
 m

 i <0) .J1(f2n-l(V~f2n-l<xj-l)~Ja(f'2n'ltj-l',tj)-Ia<2n,ÍIj-1,1'j' '

 We then have

 f 2n-2 f (a)(x_-a)r ļ

 £(xl>- ï„ r
 f2„-l ' txl> ' "f 2„-l U) - «"-» f2n-l (a> "f2„-l ' lxl> *' 12"> 1

 [ (x^-a) J

 2n-l f (a) (x -a)r

 - (2n)!

 (x^-a)

 by (6.3), and similarly, by (6.4), for the last term of the series.
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 Taking the remaining terms in pairs on the intervals [x^ ļ'Xk^ and

 k = 2,4,...,m-2, with as the tag in each case we see

 that

 I k ¡£!n-l('1"f2n-llVlWt(f'2n'Vl''1-Itl2n'Vl'') 1 k 1

 ^n-l'W-^n-l'V-V^-VW-V^'VW

 f 2n-2 £ l')lV -^)r ]
 I „ .

 "I k (2n,! k ļ 'Wi» j

 ,, , 2r2 - W'vrV1
 ,, £(1W- , ' - T,

 +(2n) 1

 "wV j

 f V °2Cfi'n'<-i-'>21 1
 f(Vi,+£,^+i)-2 1.

 "I k (2n" k v. „ (xk+rV , v. „ y

 •= I k ( k

 2k

 by (6.2), since = ^"^-l an(^ D = ^2k^"

 The full sum in (6.5) is thus less than {€(b-a)+2}.
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 It is clear that the same kind of result holds for odd numbered symmetric

 2n+l , x ,
 derivatives D fix), , x where, ,

 2n-l f (u) (v-u)r ^

 J (f , 2n+l,u,v) = (2n) f (u) +f (v)-(2n+l)!

 r 2n 2n . v «n
 (v-u) . v

 and,

 2n-l f (v)(u-v)r

 f<u)i,
 J„ (f , 2n+l,u,v) = (-2n)f (v)-f (u)+2n+l)!

 L 2n 2n , . zn
 [ (v-u) , .

 Theorem 6.2. Suppose f(x) has a finite SC^-derivative in (a,b)
 and is C -continuous at a and b. Then the function h(x) defined by

 SC Df (x) , X € (a,b) ^
 n

 h (x) = <1

 0 , x = a,b

 is generalized symmetric Riemann complete integrable with respect to the

 interval functions K = {K^fK } on [a,b] and

 fb
 f (b) -f (a) = (GSRC,K) h (x) dx.

 •'a

 Proof. The method of proof is the same as for Theorem 6.1.

 I am indebted to the referees for many helpful suggestions for the

 presentation of this material.
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