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A DERIVATIVE OFTEN
ZERO AND DISCONTINUOUS

Let Dg denote the set of all bounded derivatives on (0,1] that vanish
on a dense subset of [0,1]. Then Dgp 1is a complete metric space [3] wunder
the sup metric. A slight modification of an argument by Clifford Weil [4],
shows that the set of all derivatives in Dg that are discontinuous almost
everywhere on [0,1] is a residual subset of Dg. 1In [1], it is shown that
the apparently smaller set of all derivatives in Dg that are nonzero almost
everywhere on [0,1] is a resgidual subset of Dg. The question arises
whether these sets really do differ. Are there derivatives in Dg that are
discontinuous almost everywhere on [0,1] and yet vanish on a set of positive
measure? In any case, the set of all such derivatives 1is only a first
category subset of Dg. 1In this note we construct such a derivative directly.

We construct a derivative h € Dg that is discontinuous almost everywhere
on [0,1] and yet vanishes on a set of positive measure in each subinterval
of ({o0,1].

Note that any such derivative necessarily is nonzero on a first category
set of positive measure in each subinterval of [0,1]. We begin our
construction with a derivative in Dg that is nonzero almost everywhere. Let
fo be a bounded nonnegative derivative on [0,1] that vanishes at each
rational point and is positive on a dense set of irrational points [2], [5].
Let f,(x) = fo(x) for 0 < x <1, and in general make f, periodic on R

with period 1. Put

L e® _-n
f(x) = T, 2 f’_(znx) (0 < x<1),
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Then f € Dg and f(0) = £f(1) = 0. Let m denote Lebesgue measure. Then
m{x € (0,1): f,(x) > 0} > 0; otherwise the indefinite integral of £, would
be constant on (0,l1). Let m{x € (0,1): f,(x) > 0} = € > O. Routine
arguments show that m{x € I: £f(x) > 0} 2 em(I) for any interval I. Thus
the set £°4(0,m) has no point of dispersion in {o,1] and hence
m(£"1(0,w)) = 1.

In the rest of this note, we assume that f € Dg, 0 < £ <1, f£(0) = £f(1)
=0, and f > 0 almost everywhere on [0,1]. Ilet X denote the (dense) set

of points where £ is continuous. Then f vanishes on X.

Lemma 1. let U C (0,1) be an open set, dense in (0,1), such that R\U
is a perfect set, fxy € Dg. Then there exists an open set V C U, dense in
(0,1), such that R\V 1is a perfect set, fxy € Dg, and such that for each

component interval I of U, m(I nNnV) < sm(I).

Proof. let I be a component interval of U. By induction, we construct
a sequence of mutually disjoint, nonabutting, open subintervals J,,J,,J3, ...
of I with endpoints in X, such that sup £f(Jp) < n™*, m(Jp) < 27P"im(I)
for each n, and U§=, Jn is dense; in I. (To do this, construct Jp
around a point X, € X where f is continuous and 0.) Now  Let
I,,I;,I3, ... be the component intervals of U, and for each i let
Ji11+9i2+Fi3» ... Dbe the open intervals chosen in this way for the component
Ij. Put V =vUjjJ3i5. Then R\V is a perfect set, V is evidently open and

dense in each Ij and hence dense in (0,1). Also for each i,
m(v nIj)=CEjmJIij) < Ej 2'5“'m(I5_) = sm(Ij).

It remains only to prove that fxy 1is the derivative of its indefinite
integral P. We prove that F.;.(x) = f(x)xy(x) for O < x < 1. The proof
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that Pl(x) = f(x)xy(x) for O < X £ 1 is analogous. There are three cases

to consider.

1. Suppose x € V or x 1is the left endpoint of some Jjj. Then the
conclusion is clear because f 1is a derivative.
2. Suppose x € [0,1]\U. let G be the indefinite integral of f£fxy € Dg.

Then for t > x, we have
t &
0 < P(t) - B(x) = J' fxv < j fxy = G(t) - G(x).
xX xX

0 and it follows that

But GH(X) = £(X)xy(x)

£(x)xv(x)

OC

Pi(X)
3. Suppose X € U\V and X 1is not the left endpoint of any Jij. Say

x € Ij. Por te€Ij and t > x we have

t
o < Kt) -Fx) =] sy=r, | £ S I, 3TUM(315n(x,t))
x Jijn(x,t)
where Ix means sum on those j for which Jij meets the interval (x,t).
But the intervals Jij are mutually disjoint, and it follows that 0 <
P(t) - P(x) € k"3(t-x) where Kk 1is the smallest index j for which Jij

meets (x,t). Consequently

1lim (?(t)-?(x))(t-x)'* 0 = P4(X) = f(xX)xv(x). a

t-x+

Put Ug = (0,1). Note that f foo In general, let the open set Up,,

be obtained from U, the same way V was obtained from U in Lemma 1. Then
™(Upt;) < $m(Up) for each n. Moreover, U, D U, DU, DUy O ... is a

contracting sequence of open subsets of (0,1) such that m(n®-, U,) = O,

fxy, € Do and m(I\Up,) > O for each component interval I of U, for
each n. For n » 0, define f, = fxg, - fxy,,, -
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Let I be a component interval of Up. Then m(I\Up4,) > O. So there is an
X € I\Up4y; such that f£(x) = f(x) > 0. Select an interval J contained in
I with x € J and endpoints in X such that m(J) < d2, where d is the
distance between the interval J and the set R\I.

Let I,,I,,I,, ... be the component intervals of U,. For each i, let
Ji be a subinterval of Ij the same way J is a subinterval of I in the
preceding paragraph. We define the function g, as follows:

for x € Jj, gn(x) = fp(x)/sup f(Ji),

for x € [0,1]\vj Ji, 8gn(x) = 0.

Lemma 2. Por n 31, gn € Dg, gn Vvanishes on Unh.,\U, and g is

discontinuous almost everywhere on Up.,\Un.

Proof. Obviously O < g < 1. By construction, £, vanishes on R\Up,
so gp vanishes on Unh_,\U,. Now take a point x & U,.,\Un; necessarily x
is not an isolated point of U,h.,\U,. Since U, is dense in Up.;, there
will be component intervals of U, in every neighborhood of x. But in each
component interval I of Up, sup gnp(I) =1 Dby construction. Thus gp is
discontinuous at x. It follows that g, is discontinuous almost everywhere
on Up_,\Upj.

It remains only to prove that 8n 1is the derivative of its indefinite
integral é. We will only prove that Fi(x) = gh(x) for 0 < x < 1. The
proof of P.(X) = gp(x) for O < x < 1 is analogous.

If x € any Ij or is the left endpoint of any 1Ij (where Ii is a
component interval of Up), the conclusion is clear because f, 1is a
derivative. Suppose that x € [0,1] is not such a point, and let Ji be the

subinterval of Ij used in the definition of g,. Take t > x. Then

268



t
0 < P(t) - F(x) = J gn € L, m(Ji) < I, m(I A (x,t)°
X

where £x means sum over those i for which Jj meets the interval (x,t).

But the intervals Ij are mutually disjoint, so

0 < F(t) - F(x),s T m(Ij n (x,t))° < (t-x)°
and clearly

lim _  (P(£)-B(x))}(t-X)"* =0 = P4(X) = gn(X). o

n=z2 2 I(£2541 + B2341)-

Then h € Do because the functions f,j4, and g j+, are fﬁnctions in Do
bounded by 0 and 1. Let K be any open subinterval of (0,1). Then K
contains some component interval I of U,,; for some n. All the functions
f2541 and  g;34;, and h as well, vanish on Upn\Uppy; and hence on
I\U,p4+y. But m(I\Uyp4,) > O by construction. It remains only to prove that
h is discontinuous almost everywhere on (0,1).

As we just saw, h vanishes on U,,\U,nh4; for any n > 0. Also h 3
2°Mg.n+s and it follows that h must be discontinuous at any point in
U,n\U,n+, WwWhere gony, 1is discontinuous. By Lemma 2, gppn4; and h are
discontinuous almost everyhwere on U,n\U,pn4;. On U,ng,\Upnt, for n 3°0,
we have h » 2°Pf,,.. = 2"Pf, and f > O almost everywhere on U,nt,\Usntaz.
Thus h > 0 almost everywhere on Uyn4;\Uny,. But h  is discontinuous at
any point where h is positive because h vanishes. on a dense subset of
[0,1]. It follows that h is discontinuous almost everywhere on
Usn+1\Uzn+2. Recall that m(nf=y Up) = 0. Pinally, h is discontinuous
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(0,1) = (u:=o (Un\Unt1)) U (AT Up).

o

We began with a function f obtained from [2], and constructed h from
f. A topic for further research could be to seek a metric on Dg (or on some
other set of functions) that would allow us to prove the existence of such

derivatives by a category argument.
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