F.S. Cater, Department of Mathematics, Portland State University, Portland, Oregon, 97207.

A DERIVATIVE OFTEN ZERO AND DISCONTINUOUS

Let D_0 denote the set of all bounded derivatives on [0,1] that vanish on a dense subset of [0,1]. Then D_0 is a complete metric space [3] under the sup metric. A slight modification of an argument by Clifford Weil [4], shows that the set of all derivatives in D_0 that are discontinuous almost everywhere on [0,1] is a residual subset of D_0 . In [1], it is shown that the apparently smaller set of all derivatives in D_0 that are nonzero almost everywhere on [0,1] is a residual subset of D_0 . The question arises whether these sets really do differ. Are there derivatives in D_0 that are discontinuous almost everywhere on [0,1] and yet vanish on a set of positive measure? In any case, the set of all such derivatives is only a first category subset of D_0 . In this note we construct such a derivative directly.

We construct a derivative $h \in D_0$ that is discontinuous almost everywhere on [0,1] and yet vanishes on a set of positive measure in each subinterval of [0,1].

Note that any such derivative necessarily is nonzero on a first category set of positive measure in each subinterval of [0,1]. We begin our construction with a derivative in D_0 that is nonzero almost everywhere. Let f_0 be a bounded nonnegative derivative on [0,1] that vanishes at each rational point and is positive on a dense set of irrational points [2], [5]. Let $f_1(x) = f_0(x)$ for $0 \le x \le 1$, and in general make f_1 periodic on R with period 1. Put

$$f(x) = \sum_{n=1}^{\infty} 2^{-n} f_1(2^n x) \qquad (0 \le x \le 1),$$

Then $f \in D_0$ and f(0) = f(1) = 0. Let m denote Lebesgue measure. Then $m\{x \in (0,1): f_1(x) > 0\} > 0$; otherwise the indefinite integral of f_1 would be constant on (0,1). Let $m\{x \in (0,1): f_1(x) > 0\} = \epsilon > 0$. Routine arguments show that $m\{x \in I: f(x) > 0\} \ge \epsilon m(I)$ for any interval I. Thus the set $f^{-1}(0, \infty)$ has no point of dispersion in [0,1] and hence $m(f^{-1}(0,\infty)) = 1$.

In the rest of this note, we assume that $f \in D_0$, $0 \le f \le 1$, f(0) = f(1) = 0, and f > 0 almost everywhere on [0,1]. Let X denote the (dense) set of points where f is continuous. Then f vanishes on X.

Lemma 1. Let $U \subset (0,1)$ be an open set, dense in (0,1), such that $R\setminus U$ is a perfect set, $f\chi_U \in D_0$. Then there exists an open set $V \subset U$, dense in (0,1), such that $R\setminus V$ is a perfect set, $f\chi_V \in D_0$, and such that for each component interval I of U, $m(I \cap V) < \frac{1}{2}m(I)$.

Proof. Let I be a component interval of U. By induction, we construct a sequence of mutually disjoint, nonabutting, open subintervals J_1, J_2, J_3, \ldots of I with endpoints in X, such that $\sup f(J_n) < n^{-1}$, $m(J_n) < 2^{-n-1}m(I)$ for each n, and $\bigcup_{n=1}^{\infty} J_n$ is dense in I. (To do this, construct J_n around a point $x_n \in X$ where f is continuous and 0.) Now Let I_1, I_2, I_3, \ldots be the component intervals of U, and for each i let $J_{11}, J_{12}, J_{13}, \ldots$ be the open intervals chosen in this way for the component I_1 . Put $V = \bigcup_{ij} J_{ij}$. Then R/V is a perfect set, V is evidently open and dense in each I_1 and hence dense in (0,1). Also for each i,

$$\mathbf{m}(\mathbf{v} \cap \mathbf{I}_{\mathbf{i}}) = \Sigma_{\mathbf{j}} \mathbf{m}(\mathbf{J}_{\mathbf{i}\mathbf{j}}) < \Sigma_{\mathbf{j}} 2^{-\mathbf{j}-\mathbf{1}} \mathbf{m}(\mathbf{I}_{\mathbf{i}}) = \mathbf{I}_{\mathbf{j}} \mathbf{m}(\mathbf{I}_{\mathbf{i}}).$$

It remains only to prove that f_{XV} is the derivative of its indefinite integral P. We prove that $F_{+}(x) = f(x)_{XV}(x)$ for $0 \le x \le 1$. The proof that $F'(x) = f(x)\chi_V(x)$ for $0 < x \le 1$ is analogous. There are three cases to consider.

1. Suppose $x \in V$ or x is the left endpoint of some J_{ij} . Then the conclusion is clear because f is a derivative.

2. Suppose $x \in [0,1]\setminus U$. Let G be the indefinite integral of $f_{XU} \in D_0$. Then for t > x, we have

$$0 \leq F(t) - F(x) = \int_{x}^{t} f_{XV} \leq \int_{x}^{t} f_{XU} = G(t) - G(x).$$

But

$$G'_{+}(x) = f(x)\chi_{U}(x) = 0$$
 and it follows that
 $F'_{+}(x) = f(x)\chi_{V}(x) = 0.$

3. Suppose $x \in U \setminus V$ and x is not the left endpoint of any J_{ij} . Say $x \in I_i$. For $t \in I_i$ and t > x we have

$$0 \leq F(t) - F(x) = \int_{x}^{t} f_{XV} = E_{x} \int_{J_{ij}\cap(x,t)} f \leq E_{x} j^{-1}m(J_{ij}\cap(x,t))$$

where $\Sigma_{\mathbf{x}}$ means sum on those j for which $J_{\mathbf{ij}}$ meets the interval (x,t). But the intervals $J_{\mathbf{ij}}$ are mutually disjoint, and it follows that $0 \leq F(t) - F(\mathbf{x}) \leq k^{-1}(t-\mathbf{x})$ where k is the smallest index j for which $J_{\mathbf{ij}}$ meets (x,t). Consequently

$$\lim_{t \to x^+} (F(t) - F(x))(t - x)^{-1} = 0 = F_+(x) = f(x)\chi_V(x).$$

Put $U_0 = (0,1)$. Note that $f = f\chi_{U_0}$. In general, let the open set U_{n+1} be obtained from U_n the same way V was obtained from U in Lemma 1. Then $m(U_{n+1}) < \frac{1}{2}m(U_n)$ for each n. Moreover, $U_0 \supseteq U_1 \supseteq U_2 \supseteq U_3 \supseteq \ldots$ is a contracting sequence of open subsets of (0,1) such that $m(\cap_{n=0}^{\infty} U_n) = 0$, $f\chi_{U_n} \in D_0$ and $m(I\setminus U_{n+1}) > 0$ for each component interval I of U_n for each n. For $n \ge 0$, define $f_n = f\chi_{U_n} - f\chi_{U_{n+1}}$.

Let I be a component interval of U_n . Then $m(I \setminus U_{n+1}) > 0$. So there is an $x \in I \setminus U_{n+1}$ such that $f(x) = f_n(x) > 0$. Select an interval J contained in I with $x \in J$ and endpoints in X such that $m(J) < d^2$, where d is the distance between the interval J and the set $R \setminus I$.

Let I_1, I_2, I_3, \ldots be the component intervals of U_n . For each i, let J_i be a subinterval of I_i the same way J is a subinterval of I in the preceding paragraph. We define the function g_n as follows:

for $x \in J_i$, $g_n(x) = f_n(x)/\sup f_n(J_i)$,

for $x \in [0,1] \setminus \bigcup_i J_i$, $g_n(x) = 0$.

Lemma 2. For $n \ge 1$, $g_n \in D_0$, g_n vanishes on $U_{n-1} \setminus U_n$ and g_n is discontinuous almost everywhere on $U_{n-1} \setminus U_n$.

Proof. Obviously $0 \le g_n \le 1$. By construction, f_n vanishes on $\mathbb{R}\setminus U_n$, so g_n vanishes on $U_{n-1}\setminus U_n$. Now take a point $x \in U_{n-1}\setminus U_n$; necessarily xis not an isolated point of $U_{n-1}\setminus U_n$. Since U_n is dense in U_{n-1} , there will be component intervals of U_n in every neighborhood of x. But in each component interval I of U_n , sup $g_n(I) = 1$ by construction. Thus g_n is discontinuous at x. It follows that g_n is discontinuous almost everywhere on $U_{n-1}\setminus U_n$.

It remains only to prove that g_n is the derivative of its indefinite integral F. We will only prove that $F'_+(x) = g_n(x)$ for $0 \le x \le 1$. The proof of $F'_-(x) = g_n(x)$ for $0 \le x \le 1$ is analogous.

If $x \in any I_i$ or is the left endpoint of any I_i (where I_i is a component interval of U_n), the conclusion is clear because f_n is a derivative. Suppose that $x \in [0,1]$ is not such a point, and let J_i be the subinterval of I_i used in the definition of g_n . Take t > x. Then

$$0 \leq \mathbf{P}(t) - \mathbf{P}(\mathbf{x}) = \int_{\mathbf{x}}^{t} g_n \leq \Sigma_{\mathbf{x}} m(J_1) \leq \Sigma_{\mathbf{x}} m(I_1 \cap (\mathbf{x}, t))^2$$

where Σ_{\star} means sum over those i for which J_i meets the interval (x,t). But the intervals I_i are mutually disjoint, so

$$0 \leq F(t) - F(x)_{x} \leq \Sigma m(I_{1} \cap (x,t))^{2} \leq (t-x)^{2}$$

and clearly

$$\lim_{t \to x^{\perp}} (P(t) - P(x))(t - x)^{-1} = 0 = P'_{\perp}(x) = g_{n}(x).$$

Put

$$h = \Sigma_{j=0}^{\infty} 2^{-j} (f_{2j+1} + g_{2j+1}).$$

Then $h \in D_0$ because the functions f_{2j+1} and g_{2j+1} are functions in D_0 bounded by 0 and 1. Let K be any open subinterval of (0,1). Then K contains some component interval I of U_{2n} for some n. All the functions f_{2j+1} and g_{2j+1} , and h as well, vanish on $U_{2n}\setminus U_{2n+1}$ and hence on $I\setminus U_{2n+1}$. But $m(I\setminus U_{2n+1}) > 0$ by construction. It remains only to prove that h is discontinuous almost everywhere on (0,1).

As we just saw, h vanishes on $U_{2n}\setminus U_{2n+1}$ for any $n \ge 0$. Also $h \ge 2^{-n}g_{2n+1}$ and it follows that h must be discontinuous at any point in $U_{2n}\setminus U_{2n+1}$ where g_{2n+1} is discontinuous. By Lemma 2, g_{2n+1} and h are discontinuous almost everywhere on $U_{2n}\setminus U_{2n+1}$. On $U_{2n+1}\setminus U_{2n+2}$ for $n \ge 0$, we have $h \ge 2^{-n}f_{2n+1} = 2^{-n}f$, and f > 0 almost everywhere on $U_{2n+1}\setminus U_{2n+2}$. Thus h > 0 almost everywhere on $U_{2n+1}\setminus U_{2n+2}$. But h is discontinuous at any point where h is positive because h vanishes on a dense subset of [0,1]. It follows that h is discontinuous almost everywhere on $U_{2n+1}\setminus U_{2n+2}$. Recall that $m(\cap_{n=0}^{0} U_{n}) = 0$. Finally, h is discontinuous almost everywhere on

$$(0,1) = (\bigcup_{n=0}^{\infty} (U_n \setminus U_{n+1})) \cup (\bigcap_{n=0}^{\infty} U_n).$$

We began with a function f obtained from [2], and constructed h from f. A topic for further research could be to seek a metric on D_0 (or on some other set of functions) that would allow us to prove the existence of such derivatives by a category argument.

References

- 1. F.S. Cater, Two large subsets of a function space, International Journal of Mathematics and Mathematical Sciences, 8(1985), pp. 189-191.
- 2. Y. Katznelson & K. Stromberg, Everywhere differentiable, nowhere monotone functions, Amer. Math. Monthly, 81(1974), pp. 349-354.
- 3. Clifford E. Weil, On nowhere monotone functions, Proceedings Amer. Math. Society, 56(1976), pp. 388-389.
- 4. Clifford E. Weil, The space of bounded derivatives, Real Analysis Exchange, 3(1977-78), pp. 38-41.
- 5. Z. Zahorski, Sur la premiere derivee, Trans. Amer. Math. Society, 69(1950), pp. 1-54.