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 A DERIVATIVE OFTEN

 ZERO AND DISCONTINUOUS

 Let Dq denote the set of all bounded derivatives on [0,1] that vanish

 on a dense subset of [0,1]. Then Dq is a complete metric space [3] under

 the sup metric. A slight modification of an argument by Clifford Weil [4] ,

 shows that the set of all derivatives in Dq that are discontinuous almost

 everywhere on [0,1] is a residual subset of Dq. In [1], it is shown that

 the apparently smaller set of all derivatives in Dq that are nonzero almost

 everywhere on [0,1] is a residual subset of Dq. The question arises

 whether these sets really do differ. Are there derivatives in Dq that are

 discontinuous almost everywhere on [0,1] and yet vanish on a set of positive

 measure? In any case, the set of all such derivatives is only a first

 category subset of Dq* In this note we construct such a derivative directly.

 We construct a derivative h « Dq that is discontinuous almost everywhere

 on [0,1] and yet varnishes on a set of positive measure in each subinterval

 of [0,1].

 Nöte that any such derivative necessarily is nonzero on a first category

 set of positive measure in each subinterval of [0,1]. We begin our

 construction with a derivative in Dq that is nonzero almost everywhere. Let

 fo be a bounded nonnegative derivative on [0,1] that varnishes at each

 rational point and is positive on a dense set of irrational points [2], [5].

 Let fŁ(x) = f0(x) for 0 < X < 1, and in general make fŁ periodic on R

 with period 1. Put

 f ( X) = Z ® 2~nf (2nx) (0 < X < 1),
 n=i i.
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 Then f e Dq and f(0) = f(l) = 0. Let m denote Lebesgue measure. Then

 m{x « (0,1): fj.(x) > 0} > 0; otherwise the indefinite integral of fŁ would

 be constant on (0,1). Let m{x e (0,1): fx(x) > 0} = € > 0. Routine

 arguments show that m{x « Is f(x) > 0} > em(I) for any interval I. Thus

 the set f_J-(0,oo) has no point of dispersion in [0,1] and hence

 m(f~L(0,oo)) = 1.

 In the rest of this note, we assume that f « Dq, 0 < f < 1, f(0)=f(l)

 = 0, and f > 0 almost everywhere on [0,1]. Let X denote the (dense) set

 of points where f is continuous. Then f vanishes on X.

 Lenana 1. Let U c (0,1) be an open set, dense in (0,1), such that R'U

 is a perfect set, fxu « Do« Then there exists an open set V c a, dense in

 (0,1), such that R'V is a perfect set, fxv € °o> and such that for each

 component interval I of O, m(I n V) < %m(I).

 Proof. Let I be a component interval of U. By induction, we construct

 a sequence of mutually disjoint, nonabutting, open subintervals Jx , J2 , J3 , ...

 of I with endpoints in X, such that sup f(Jn) < n~A, m(Jn) < 2 'n_im( I )

 for each n, and Ug=Ł Jn is dense in I. (To do this, construct Jn

 around a point Xn « X where f is continuous and 0 . ) Now Let

 Ii,I2,I3, ... be the component intervals of O, and for each i let

 Jix.Ji2.Ji3. ••• 156 the open intervals chosen in this way for the component

 1^. Put V = UijJij. Then R'V is a perfect set, V is evidently open and

 dense in each Ij_ and hence dense in (0,1). Also for each i,

 m(v n Ii) = Ej rn(Jij) < Ej 2_j'1in(Ii) = ^(Ij.).

 It remains only to prove that fxv is the derivative of its indefinite

 integral P. Vte prove that F+(x) = f(*)Xv<*) ^or 0 < x < 1. The proof
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 that f1(x) = f(x)xv(*) for 0 < x « 1 is analogous. There are three cases

 to consider.

 1. suppose X « V or x is the left endpoint of some Jij. Then the

 conclusion is clear because f is a derivative.

 2. Suppose x « [0,1]'U. Let G be the indefinite integral of fxu € Do*

 Then for t > x, we have

 t t

 O < F(t) - F(X) = f f XV < í f XO = G(t) - G(X).
 X X

 But G+( x) = f(x)xu<x) = 0 and it follows that

 pļ(x) = f(x)xv(x) = 0.

 3. Suppose x « U'V and x is not the left endpoint of any Jij. Say

 x « Ii. For t « li and t > x we have

 0 * F(t) - F(x) = f fxv= E, f f < rxm(Jijn<x,t))
 x Jijn(x,t)

 Where E* means sum on those j for which Jij meets the interval (x,t).

 But the intervals Jij are mutually disjoint, and it follows that 0 <

 F(t ) - F(x) < X"A(t-x) where X is the smallest index j for which

 meets (x,t ). Consequently

 limfc-ac+ (F(t)-F(x))(t-x)_1 = 0 = f1(x) = f(x)xv(x)' □

 Put 00 = (0,1). Note that f = fXc0* In general, let the open set

 be obtained from Un the same way V was obtained from a in Lenma l. Then

 "(^n+i) < for each n. Horeover, U0 ^ 0^ 3 3 U3 3 . . . is a

 contracting sequence of open subsets of (0,1) such that m( r!fi=0 Un) = 0,

 fXun € Dq and m( I 'On+i ) > 0 for each component interval I of Un for

 each n. For n > o, define fn = fXan " •
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 Let I be a component interval of Un. Then m( I'Un+Ł) >0. So there is an

 X « I'Un+Ł such that f(x) = fn(x) > 0. Select an interval J contained in

 I with X e J and endpoints in X such that m(J) < dz, where d is the

 distance between the interval J and the set R'I.

 Let I¿,I2>l3» • •• be the component intervals of Un. For each i, let

 J± be a subinterval of the same way J is a subinterval of I in the

 preceding paragraph, we define the function gn as follows:

 for X « Ji, gn(x) = fn(x)/sup fn(Ji)»

 for X « [0,l]'ui J±, gn(x) = o.

 Lenana 2. For n > 1, gn « D0, gn vanishes on Un- A'Un and gn is

 discontinuous almost everywhere on On-i'Un .

 Proof. Obviously 0 < gn < 1. By construction, fn vanishes on R'Un ,

 so gn vanishes on Un-x'Un. Now take a point x « Un.¿'Un; necessarily x

 is not an isolated point of Un-i 'Un. Since Un is dense in Un-i. there

 will be component intervals of Un in every neighborhood of x. But in each

 component interval I of Un, sup gn( I ) = 1 by construction. Thus gn is

 discontinuous at x. It follows that gn is discontinuous almost everywhere

 on ün.iNün.

 It remains only to prove that gn is the derivative of its indefinite

 integral F. We will only prove that F+(x) = gn(x) for 0 < x < 1. The

 proof of f1(x) = gn(x) for 0 < x < 1 is analogous.

 If x « amy Ij, or is the left endpoint of any I i (where I i is a

 component interval of On) , the conclusion is clear because fn is a

 derivative, suppose that x « [0,1] is not such a point, and let be the

 subinterval of Iļ used in the definition of gn. Take t > x. Then
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 O < F(t) - F(x) = [ gn < E* n(Ji) < E* »(Ii n (x,t))2
 X

 where E* means sum over those i for which meets the interval (x,t).

 But the intervals li are mutually disjoint, so

 O <, F(t) - F(x)^ Z m(li n (x,t))z « (t-x)z

 and clearly

 limt-x+(F(t)-F(x))(t-x)"1- = 0 = f;<x) = gn(x). □

 Put

 h = *>o 2"3(f23+l- +

 Then h « Dq because the functions f 2 j+Ł amd gz j+i. are functions in Dq

 bounded by 0 amd 1. Let K be amy open subinterval of (0,1). Then K

 contains some component interval I of Uzn for some n. All the functions

 f2j+i and 82 j+A , and h as well, vanish on U2n^U2n+i and hence on

 I'U2n+i • But m(I'02n+A) > 0 by construction. It remains only to prove that

 h is discontinuous almost everywhere on (0,1).

 As we just saw, h vanishes on U2n'Ozn+i for any n > 0. Also h >

 2 "ng2n+Ł and it follows that h must be discontinuous at srny point in

 U2n'U2n+Ł where g2n+i is discontinuous. By Leuna 2, gzn+i and h are

 discontinuous almost everyhwere on 02n'U2n+i. . On a2n+Ł'U2n+2 for n > 0,

 we have h * 2"nfzn+Ł = 2"nf , and f > 0 almost everywhere on U2n+Ł'U2n+2.

 Thus h > 0 almost everywhere on Uzn+3.'ūzn+z . But h is discontinuous at

 amy point where h is positive because h varnishes on a dense subset of

 [0,1]. It follows that h is discontinuous almost everywhere on

 U2itfi.'U2n+2* Recall that m (rÇÇ=0 CJn) = 0. Finally, h is discontinuous

 almost everywhere on
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 (0,1) = <u®=o (ünXün+O) u (n"_o ün).

 We began with a function f obtained from [2], and constructed h from

 f. A topic for further research could be to seek a metric on Dq (or on some

 other set of functions) that would allow us to prove the existence of such

 derivatives by a category argument.

 References

 1. P.S. Cater, Two large subsets of a function space, International Journal
 of Mathematics and Mathematical Sciences, 8(1985), pp. 189-191.

 2. Y. Katznelson & K. Stromberg, Everywhere differentiate, nowhere monotone
 functions, Amer. Math. Monthly, 81(1974.), pp. 349-354..

 3. Clifford E. Weil, On nowhere monotone functions, Proceedings Amer. Math.
 Society, 56(1976), pp. 388-389.

 4. Clifford E. Weil, The space of bounded derivatives, Real Analysis
 Exchange, 3(1977-78), pp. 38-41.

 5. Z. Zahorski, Sur la premiere derivee, Trams. Amer. Math. Society,
 69(1950), pp. 1-54.

 270


	Contents
	p. 265
	p. 266
	p. 267
	p. 268
	p. 269
	p. 270

	Issue Table of Contents
	Real Analysis Exchange, Vol. 11, No. 1 (1985-86) pp. 1-289
	Front Matter
	EDITORIAL MESSAGE [pp. 4-4]
	THE TENTH SUMMER REAL ANALYSIS SYMPOSIUM July 27-30 1986 [pp. 5-5]
	PROCEEDINGS OF THE NINTH SYMPOSIUM
	The Ninth Summer Real Analysis Symposium June 12-15, 1985, The University of Louisville: Schedule of Events [pp. 6-9]
	Very Generalized Riemann Derivatives, Generalized Riemann Derivatives and Associated Summability Methods [pp. 10-29]
	NONABSOLUTE INTEGRATION IN THE PLANE [pp. 30-39]
	Determining Sets for Functions and Measures [pp. 40-55]
	CONCERNING EXTENDABLE CONNECTIVITY FUNCTIONS [pp. 56-63]
	Continuous Restrictions of Marczewski Measurable Functions [pp. 64-71]
	Infinite Peano derivatives [pp. 72-74]
	TWO MORE CHARACTERIZATIONS OF BESOV-BERGMAN-LIPSCHITZ SPACES [pp. 75-80]
	HIGH ORDER SMOOTHNESS [pp. 81-84]
	A New Approach to Integration [pp. 85-96]

	TOPICAL SURVEY
	SELECTIVE DIFFERENTIATION [pp. 97-120]

	RESEARCH ARTICLES
	NONABSOLUTELY CONVERGENT INTEGRALS [pp. 121-133]
	BILINEAR INTEGRATION OF AN EXTREME POINT MULTIFUNCTION [pp. 134-158]
	DERIVATIVES ON COUNTABLE DENSE SUBSETS [pp. 159-167]
	PLANAR SETS WHOSE COMPLEMENTS DO NOT CONTAIN A DENSE SET OF LINES [pp. 168-178]
	Closure Properties of Order Continuous Operators [pp. 179-193]
	CONTINUOUS FUNCTIONS NEED NOT HAVE σ-POROUS GRAPHS [pp. 194-203]
	MONOTONE SECTIONS OF FUNCTIONS OF TWO VARIABLES [pp. 204-220]
	A RIESZ-TYPE DEFINITION OF THE DENJOY INTEGRAL [pp. 221-227]
	Some Properties of Semi-continuous Functions [pp. 228-243]

	INROADS
	A MOMENT INEQUALITY [pp. 244-253]
	THE UNIFORM LIMIT OF CONNECTIVITY FUNCTIONS [pp. 254-259]
	CONNECTIVITY FUNCTIONS WITH A PERFECT ROAD [pp. 260-264]
	A DERIVATIVE OFTEN ZERO AND DISCONTINUOUS [pp. 265-270]
	THE METHOD OF FRACTIONAL OPERATORS APPLIED TO SUMMATION [pp. 271-282]
	APPROXIMATE PEANO DERIVATIVES AND THE BAIRE ONE PROPERTY [pp. 283-289]




