Richard G. Gibson, Department of Mathematical Sciences, Columbus College, Columbus, Georgia, 31993; and Fred Roush, Department of Mathematics, Alabama State University, Montgomery, Alabama, 36101.

CONNECTIVITY FUNCTIONS WITH A PERFECT ROAD

Let X and Y be topological spaces. A function $f:X \rightarrow Y$ is said to be a connectivity function provided that if A is a connected subset of X, then the graph of f restricted to A is a connected subset of $X \times Y$. A function $f:X \rightarrow Y$ is said to be an almost continuous function provided that if O is an open subset of $X \times Y$ containing the graph of f, then there exists a continuous function $g:X \rightarrow Y$ such that O contains the graph of g. A realvalued function f defined on an interval is said to have a perfect road at the point x provided that there exists a perfect set P such that x is a bilateral point of accumulation of P and such that f restricted to P is continuous at x.

Let I be the closed unit interval. In order that a function $f:I \to I$ be a connectivity function, it is necessary and sufficient that the graph of the entire function be connected. However, if $f:I^2 \to I$ and the entire graph is connected it is not guaranteed that f is a connectivity function. Also, if $f:I \to I$ is an almost continuous function, then f is a connectivity function. But there exist connectivity functions $f:I \to I$ that are not almost continuous, [3], [7], [10]. However, if $f:I^2 \to I$ is a connectivity function, then f is an almost continuous function, [11], but the converse is not true. Using these facts a negative answer was given to the

question posed by Stallings, "Can a connectivity function $f:I \to I$ be extended to a connectivity function $I^2 \to I$ when I is embedded in I^2 as $I \times \{0\}$?" Thus if $f:I \to I$ is a connectivity function, having f an almost continuous function is a necessary condition to insure that f can be extended to a connectivity function $I^2 \to I$. However, it has been shown by Gibson and Roush that having f an almost continuous function is not a sufficient condition, [5].

The purpose of this paper is to prove the following theorem.

Theorem. Let $f:I \rightarrow I$ be a function and let $g:I^2 \rightarrow I$ be an extension of f. If g is a connectivity function, then f has a perfect road at each point.

<u>Proof.</u> Choose any $\dot{x} \in I$ that is not an endpoint. We now show that there exists a perfect subset A of I to the left of x and containing x such that f restricted to A is continuous at x.

If for some $\xi > 0$, f is constant on the interval $(x-\xi,x]$, then we may let A = [a,x] where $a \in (x-\xi,x)$. Otherwise, assume that f is not constant on any interval $(x-\xi,x]$.

Let $\xi_1 > 0$. By theorem 1 of [6], there exists $x_1 \in (x - \xi_1, x)$ such that $|f(x_1) - f(x)| < \xi_1$ and $f(x_1) \neq f(x)$. By theorem 2 of [5], there exists a Cantor set $C_1 \subset (x_1, x)$ such that $f(C_1)$ is between $f(x_1)$ and f(x); and moreover, f restricted to C_1 is continuous. Let $\xi_2 \leq d(C_1, x)$ where $f(x_1)$ is the usual distance function. As above there exists $f(x_1) = \frac{1}{2} \int_{-\infty}^{\infty} |f(x_1)| + \frac$

is between $f(x_2)$ and f(x); and moreover, f restricted to c_2 is continuous.

By induction construct a sequence \mathbf{E}_n such that \mathbf{E}_n converges to 0 and a sequence of Cantor sets \mathbf{C}_n such that $\mathbf{E}_n \leq \mathbf{d}(\mathbf{C}_{n-1},\mathbf{x})$ and f restricted to \mathbf{C}_n is continuous. Note that \mathbf{C}_i and \mathbf{C}_j are disjoint whenever $i \neq j$. Then $\mathbf{A} = (\bigcup_{n=1}^{\infty} \mathbf{C}_n) \cup \{\mathbf{x}\}$ is a Cantor set to the left of \mathbf{x} containing \mathbf{x} such that f restricted to \mathbf{A} is continuous at \mathbf{x} .

Likewise we can show that there is a perfect subset $\, B \,$ of $\, I \,$ to the right of $\, x \,$ containing $\, x \,$ such that $\, f \,$ restricted to $\, B \,$ is continuous at $\, x \,$.

Then $P = A \cup B$ is a perfect road for f at x. In each case, when we deal with the end points of I, the bilateral condition is replaced with a unilateral condition.

Notice that we have actually proved that f restricted to P is continuous at each point of P.

The first example given by Gibson and Roush, [4], is an almost continuous function $f: I \rightarrow I$ that has a perfect road at no point of I and can not be extended to a connectivity function. This leads to a natural question.

Question 2. Does there exist an almost continuous function $f:I \rightarrow I$ that has a perfect road at each point but can not be extended to a connectivity function $I^2 \rightarrow I$?

It is a well-known fact that if $f:I \rightarrow I$ is a Baire class 1 function, then the following statements are equivalent, [2].

- (1) f has a connected graph, [8].
- (2) f is an almost continuous function, [1].
- (3) f has a perfect road at each point, [9].

This leads to another natural question.

Question 2. Does there exist a Baire class 1 connectivity function $f:I \to I$ that can not be extended to a connectivity function $I^2 \to I$?

References

- 1. J. B. Brown, "Almost continuous Darboux functions and Reed's pointwise convergences criteria," Fund. Math. 86(1974), 1-7.
- 2. A. Bruckner and J. Ceder, "Darboux continuity," Jber. Deut.

 Math. Ver. 67(1965), 93-117.
- 3. J. L. Cornette, "Connectivity functions and images on Peano continua," Fund. Math. 58(1966), 183-192.
- 4. R. G. Gibson and F. Roush, "The Cantor intermediate value property," Topology Proc. 7(1982), 55-62.
- R. G. Gibson and F. Roush, "Concerning the extension of connectivity functions," Topology Proc. (to appear).
- 6. O. H. Hamilton, "Fixed points for certain noncontinuous transformations," Proc. of A. M. S. 8(1957), 750-756.
- 7. F. B. Jones and E. Thomas, Jr., "Connected G₆-graphs," Duke Math. Journal 33(1966), 341-345.
- 8. K. Kuratowski and W. Sierpinski, "Les fonctions de classe 1 et les ensembles connexes punctiformes," Fund. Math. 3(1922), 303-313.
- 9. I. Maximoff, "Sur les functions ayant la propriete de Darboux,"

 Proce. Matem. Fizyc. 43(1936), 241-265.
- 10. J. H. Roberts, "Zero-dimensional sets blocking connectivity functions," Fund. Math. 57(1965), 173-179.
- 11. J. Stallings, "Fixed point theorem for connectivity maps,"
 Fund. Math. 47(1959), 249-263.

Received March 12, 1985