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 CONTINUOUS FUNCTIONS NEED NOT HAVE a -POROUS GRAPHS

 Porosity and a-porosity are concepts which were

 first introduced in [1]. The purpose of this paper is

 to answer a question posed by Paul Humke; namely, do

 continous real functions have a -porous graphs? The

 following definitions will be needed:

 1) A set E has porosity s at x if lim r'/r = s where

 r1 is the radius of the largest circle whose

 interior misses E and lies inside the circle of

 radius r centered at x.

 2) A set E is porous if each x € E has porosity

 greater than zero.

 3) A set E is a -porous if E is the countable union of

 porous sets.

 Another way to consider porosity is as follows:

 If B is a circle, let m*B denote the circle with the

 same center as B and radius m times that of B. A point

 x è E has porosity greater than s if and only if there

 are arbitrarily small circles B whose interior misses E

 such that x is in the interior of m*B where s < l/(m+ 1).
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 This known equivalence can he seen by noting that if B

 is a ball of radius r' and x is in the interior of m*B,

 then if r = mrf + r' , B is contained in the circle of

 radius r centered at x. Thus for s < 1 r' ,
 m+1 r

 the porosity of E at x is greater than s. For similar

 reasons, the converse also holds. The porosity of a

 point can be no more than 1/2. Nonetheless, the following

 result holds for the graphs of continuous functions and,

 as pointed out by the referee, for all nowhere dense subsets

 E of R^; náměty the set of points of porosity 1/2 of E

 is residual in E. To see this, consider E' = fl E_v lllK m,k lllK

 where Em = { x € E: there is Z € with dist (Z, x)

 < (1 + 1/k) dist (z,E) < 1/m }. The ball of radius

 (1 + 1/k) • 2 dist (z, E) centered at x contains the ball

 of radius dist ( z, E) centered at Z and the second ball has

 no points of E in its interior. Thus, each point of E'

 is a point of pcrosity 1/2 of E and, since each Emk is

 open and dense in E, E' is residual in E.

 The example below is that of a function whose graph

 is non-cr-porous. The graph has Hausdorff dimension 2. It

 is not known whether a lower dimension number is possible or,

 for that matter, whether a function of bounded variation
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 could have a non-a-porous graph. The function F(x) =

 x^cosCx-1/2) with F(0) =0 has (0,0) as a point of non-

 porosity of its graph and is absolutely continuous. It is

 not difficult to have the set of points of non-porosity be

 dense in the graph of a function of bounded variation. It

 is not clear whether this set could be uncountable.

 The following lemmas will be needed in the

 construction of a continuous f whose graph is non- cr- porous:

 Lemma 1. Let c^ = 1/3 and Cjļ+ļ = cn/(2n+l). Suppose

 that E is a subset of the plane, x € E and for n > N

 the circle of radius cn+ļ centered at x contains no

 circle of radius <^.3 which misses E. Then x is a point

 of non-porosity of E.

 Proof. Suppose E has porosity greater than 1/m at x.

 Choose n so that m <• 2n + 5. Given e > 0 with e <

 cn+2, there is a circle of radius r with r < e centered
 at x and a circle of radius r' which misses E and is

 contained in the circle of radius r and r'/r > 1/m.

 Choose p so that Cp+2 < r < Cp+ļ. Then

 1_ < r]_ < r' < °p+3 = 1 < 1
 m r °p+2 V2 2p+5 m

 which is a contradiction and thus the lemma is proved.
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 In what follows denote the graph of f on the set X

 by B(f ;X) .

 Lemma 2. Suppose F is defined and continuous on a

 perfect set F = ^ of [0,1] . Suppose that for every

 pair of natural numbers Ck,n) with n > k there are

 perfect sets F^ n satisfying the following: Given any

 natural numbers k > 1, n^ n2, ... n^^ with 1 < n^

 < n2 < ... < lét Fj = Fļ>n^ D F2,n2 ^ n ,nj "
 Suppose that for all n > n^. ļ and for all such choices

 of n^

 i) each point of B(f; F^.ļ il Fļ^) is a point of non-

 poro'sity of B(f ;F]ç_1)'

 ii) F^ļ n n>]ç Fk>n is dense in F^.
 Then B(f;F) is a non- a- porous subset of the plane.

 Proof. (The proof is analogous but by no means

 identical to that found in [2] p. 356.) Suppose not.
 co

 Then B(f;F) = U where each ^ is a porous subset of
 n=l

 the plane. Let Aq = 0, Fi = Fi i n ^ wIiere Ii = f0»1!

 and suppose that perfect sets Fļ~> F2D . . . 3 Fķ.ļ have

 been chosen where F. = i*l(Fļ,n^ fi I^) j = 1,2,... k-1 and
 i=l

 that fi F = 0 for all i < j and all j < k - 1.
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 There are two possibilities for (1) is dense

 in Fjc_ļ or (2) there is a closed interval 1^ c

 with A^_ļ D n I'iç = J0 and F^.ļ fl 1^ perfect. In

 case (1), Aķ_ļ is contained in the set of points of

 porosity of BCfīF^.ļ). Then Aļc_1 D B(f ;F^ n) = 0 forali

 n > Hļc_ļ. Select any nj, > n^ ^ and any 1^ c 1^

 ^ Fk,nk n h Perfect and let Fk = Fk,nk n h- In
 case (2), with Ik determined, using ii) select nk > n^_1

 such that Fk_ļ fi F^ il is perfect and let Fk =

 F^ ļ fi ' n k H I^. Proceeding in this fashion yields ' n k

 a decreasing sequence Fk of perfect sets contained in F

 with A^ il BCfjF^) = 0 for all i < k and all k. Then
 oo

 D B(f;Fk) is not empty but contains no point of
 k=l

 LJ A, , a contradiction.
 k=l K

 Example. There is a continuous real function defined

 on [0,1] whose graph is a non- cr-porous subset of the plane.

 Construction. The function f will be defined on a

 perfect set F and thus can clearly be extended to [0,1]

 by adding to the graph monotone functions connecting the

 endpoints of intervals contiguous to F. Let c^

 l/(3*5'7- . . . * (2n+l)) . Then each X € [0,1] can be

 written uniquely as Z xncn where the xn are integers

 with 0 < xn 5 2n. The xn will be referred to as the
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 places in the expansion of x. The uniqueness can be obtained

 by using terminating O's whenever x has two expansions.

 Certain other numbers will be used in constructions of

 f, F - Flfl and Fk>n •

 Thus, let ejj = 5 _ 5
 n+4 n+5

 "1/2 + ér ■ No = 0>Ni = 18>Vi = V>
 K. = N. - N. _r

 Note that £ e = 1, - e = 5/(k+4) and
 n=l n n=k n

 {pn > = {5/6, 6/8, 7/10, ..., (n+4)/2(n+2) , ...}.

 Then pn can be thought of as proportions and pn

 decreases to 1/2. Furthermore, ' the numbers K are ' n

 exactly divisible by 2(n+2) which is the pn denominator

 and are divisible by all denominators when k < n.

 To define f(x), a weight w^ will be assigned to every

 place in the expansions where

 w.: = ej when N. . < i < N. .
 K~ 3"1 . J

 Given x and its Xļ, let a^(x) = a^ = 1 if x^ is odd, 0

 if x. is even. Finally, define f(x) = a^(x)w- and

 /

 '

 F, = x for j>n # { i|a.:(x)=0, 1 N. , < i < N. } < p-. K 'K. k,n J 1 J-ł .1 K .1

 and # { i|ai(x)=0, Nj_ļ < i S Nj } < p^. 'Kj ļ
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 Then x € if and only if eventually (when j > n) x

 has the proportion of even x¿ and the proportion of odd

 Xļ at the places in its expansion less than or equal to

 p^ in each block of i where Nj _ ^ < i < N. . Thus each

 Fķ n does not contain any points which can be written

 N m
 as 2 X.C.. It follows that if x £ R
 i=l i i k,n

 and x"1 -* x, then x111 = x,, n eventually; that is, n n

 there is so that = x^ when n > Thus each n

 is closed and since it contains no isolated points each

 Fk n *s Per^ect* Likewise, if x?11 -> x in n then
 fOT f (x) because of the place wise definition of f.

 Hence f is continuous on F. _ and on all F-. . It is
 1,1 _ k,n

 clear that the n satisfy ii) of Lemma 2. Lemma 1

 will be used to show that f satisfies i) of Lemma 2 on

 the F, and this will prove that the graph of f is
 K,n

 non-a-Dorous. Let k > 1, 1 < ni < ••• < n]ç-i <

 Fk.l = F1 nl n ••• " Fk-1> nk-l a™1 let

 x € H Pļe n .Suppose j > n + 1 and Nj < i < ^j+i
 and consider the points x - o - mCļ+3 where 0 < m

 < 2cj/Cļ+3« Let x' be one of these points and note that at

 most four places occur in x' for which the value of

 a- (x' ) f a- (x) . Moreover, these places occur in between
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 N. ^ and N^. (This is because the possible values of
 x,-c. have numerators between 0 and 2i inclusive and thus
 i i

 if = 0, = 0, = 0 and xi_^+ļ * 0
 then x' = X - has an even term in each place

 x' ļ, ... x'ļ_£_p namely, 2i, 2(i-l), ... 2(i-£-l) and
 x' has a change of parity from x only at x. . Moreover, 1--Í/+JL .

 i - ¿ + 1 > because the proportions of even and

 odd places required of n are less than 1 in each block

 N_. ^ < i < Nj . Similarly this occurs for each

 x.i = x - c. + mc. 7. Thus each such x' € Ft, k-1 7 . Let i i 1+3 7. k-1 7

 x" = x' + Cj+p then [x', xM] fl F^^ is a perfect set.
 Note that

 f(x) - a < f(x') < f(x) + a

 where a = 4ej /Kj Due to the increased value of

 Pķ_ļ to that of p^, the function f on the interval

 [x' , xM] takes on a larger range of values on F than
 K" JL

 it does on F, . Specifically the range of f on
 K,n

 [x' , xM] fl F^_ļ contains points as large and as small

 as f(x') + b where

 b = -?-i7CPv-i"Pk^ei 2 =

 ^ 2
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 Since a

 0+3) (j+4)Kj^
 to b and it is easily seen that b - a > 4 > c.#

 0+6)3 r
 On each interval [x',xM], f(x) takes on values on F

 K ~ J.

 between f(x) - (b-a) and f (x) + Cb-a) in increments of

 at most 1/q where q = K.+y For if q = K.+3 and

 E < d - v, , »then f(x) + P . 2 e. is
 q *Vl d - v, Pk-1 , - q . i=j+2 1
 assumed on F^.ļ on each of these intervals. Thus the ball
 of radius o centered at (x,f(x)) does not contain a ball

 of radius c^ which misses B(f;F^ ^). Since this is true
 at each x € F, • when i > N . it follows that i) of

 K,n n+1

 Leirnia 2 holds and thus f has the property that its graph is

 non-cr-porous.

 One may further note that the graph of f on F^ can be

 connected by means of monotone singular functions each of

 which is constant on a dense set of intervals in each interval

 continguous to F^. On each of the intervals where the

 singular functions are constant, a function having small

 oscillation and non-cr-porous graph can be constructed. If

 this process is repeated, the property that its graph is

 non-CT-porous on every interval contained in [0,1].
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