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 DERIVATIVES ON COUNTABLE DENSE SUBSETS

 Throughout this paper, A, B, C and D will be mutually disjoint

 countable dense subsets of the real line, R. In [1], p. 72, A. Bruckner

 observed that there exists an everywhere differentiable function f that has

 a proper local maximum at each point of A and at no other points, and has a

 proper local minimum at each point of B and at no other points. We will

 prove (Lemma 1) the existence of an increasing differentiable homeomorphism of

 R onto R that maps certain countable subsets of R the way we please.

 (Compare with [A], and also note the Remark on p. 72 of [I]. ) We use Lemma 1,

 together with one prototype function from [1], to prove:

 Theorem 1. There is an everywhere differentiable function F on R that

 has a proper local maximum at each point of A and at no other other points,

 has a proper local minimum at each point of B and at no other points, and is

 increasing at each point of C and decreasing at each point of D.

 Of course F must increase ( decrease ) at uncountably many points , so

 C(D) cannot include all such points. We also use Lenna 1 to construct a

 variety of types of pathological functions. The first type we consider are

 continuous functions that have no derivative, finite or infinite, at any

 point.

 Theorem 2. There is a continuous function F on R such that at each x

 « R, we have [D+F(x),D+F(x)] u [D.F(x),D"F(x)] = [-00,00], where D+, D+, D',
 D_ denote the usual Dini derivates, and such that

 D+F( x) = 00 for x « A, D^Pix) = -00 for x « B,

 D_F(x) = 00 for x « C, D~F(x) = -00 for x « D.

 By a knot point of f , we mean an x e R at which

 D+f(x) = D"f(x) = 00, D+f(x) = D_f(x) = -00.
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 We use Leuna 1 to construct a function on R, absolutely continuous on every

 compact interval, that has some knot points and other unusual points in every

 interval .

 Theorem 3. There is a function F on R, absolutely continuous in every

 compact interval, such that

 F'(x) = 0 for x <s A, F'(x) = oo for x « B, F'(x) = -oo for x e C,

 and each x e D is a knot point of F.

 Me say that a nonconstant function f on sui interval I is singular on

 I if f is of bounded variation on I and £' = 0 almost everywhere on I.

 We use Lemma 1 to prove that Theorem 3 works when "singular" replaces

 "absolutely continuous" .

 Theorem U. There is a function F on R, continuous and singular in

 every compact interval, such that

 F'(x) = 0 for x « A, F'(x) = oo for x « B, F'(x) = -® for x e C,

 and each x € D is a knot point of F.

 Lenna 1 can be used to prove the existence of certain kinds of

 derivatives. In [3] Katznelson and Stromberg gave a nice example of a

 derivative on R that is positive on A and negative on B. Of course such

 a derivative must be discontinuous at any point Where it is nonzero. On the

 other hand, it might be continuous or discontinuous at amy point where it is

 zero. We conclude with

 Theorem 5. There is sui everywhere differentiable function F on R such

 that F'(x) > 0 for x « A, F'(x) < 0 for x e B, F* vanishes and is

 discontinuous at each x « C, and F' varnishes and is continuous at each

 x « D.

 If A and B are countable dense subsets of R, it is easy to construct

 am increasing homeomorphism of R onto R that maps A onto B. we show

 that we can make the homeomorphism differentiable.
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 Lemma 1. Leť A, B, C, D be mutually disjoint countable dense subsets of

 R and let Aq, B0, C0, D0 likewise be mutually disjoint countable dense

 subsets of R. Then there exists a continuously different iable function g

 mapping R onto R such that g(A) = A<j, g(B) = B0, g(C) = C0, g(D) = D0,

 and g* > 1 on R.

 Proof. Let (dn) be an enumeration of D, (d¿) be an enumeration of

 D0, ( cń) ^o> (cn) (^ń) ®o» (^n) (ań) ^o» (an)

 of A where aŁ / O. We will construct a sequence of polynomials Pn and a

 sequence of points un by induction on n. Let uŁ = aL and put pŁ(x) = rx

 where 0 < r "< ķ and 2uŁ + pŁ(Ui) e A<,. This can be done because Aq is

 dense in R. Then r + r|x| < 2"Ł for |x| < 1. Suppose that n > 2 and

 polynomials pj and points Uj «AuBuCuD(l<j < n - 1) have been

 chosen so that |pj(x)| + |pj(x)| < 2"j for |x| < j and Pj(x) > -2"j for
 all X, Pj(ui) = 0 for i < j, and

 (1) for j - l(mod 8), Uj is the element in A'{ux, • • • ,Uj_A} with smallest
 index and 2Uj + E^ Pi(Uj) « Aq,

 (2) for j s 2 (mod 8), Uj « A' {uA t • • • ,Uj _A} and 2uj + E^£ Pi(Uj) is the
 element in A0'u?_a {2ujc + C?_A Pi(Ufc)} with smallest index, Jc - 1. 1- i

 (3) for j s 3 (mod 8), same as (1) with B and B0 in place of A sind A^,

 ( 4. ) for j a A( mod 8 ) , same as ( 2 ) with B and B0 in place of A and A,, ,

 (5) for j s 5(mod 8), same as (1) with C and C0 in place of A and A0>

 ( 6 ) for j 5 6( mod 8 ) , same as ( 2 ) with C and c0 in place of A and A0 ,

 (7) for j a 7 (mod 8), same as (1) with D and D0 in place of A and A0,

 ( 8 ) for j 3 0( mod 8 ) , same as ( 2 ) with D and D0 in place of A and A0 .

 Por n a 1( mod 8), let q(x) = ( x - un_A - Uj ) and let
 r > 0 be so small that r|q(x)| + r|q'(x)| < 2"n for lxi < n and

 rq'(x) > -2n for all x. This can be done because deg q = 2n - 1 is odd.

 Let un be the element in A'{uŁ, • • • ,un.Ł} with smallest index, and choose

 s (0 < s < r) such that 2un + e"_* Pi(un) + sq(un) « Aq . This can be done
 because A0 is dense in R and q(un) ý 0. Put Pn = sq.
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 Por n a 2(rood 8), let q(x) = (x - un.A )n+xIlj<n.i(x - u j ) and let r
 be so small that r|q(x)| + r|q'(x)| < 2"n for |x| < n and rq'(x) > -2~n

 for all x. Let H(x) = 2x + Pì(x). It follows that H* > 1, H(R) = R,

 and say H(w) = d Where d is the proposed image of un in (2). Moreover,

 w^uj.(l<i<n-l) since H(w) ^ H(Ui). From the definition of q we

 obtain q(w) f- 0. Since A is dense in R, H(A) is dense in R. Choose

 a « a'(uł, • • • ,un.Ł} such that H(a) - d and H(a) + rq(a) - d have opposite

 sign. (Here we use the continuity of H and of q and make a close to

 w. ) Choose s such that 0 < s < r and H(a) + sq(a) - d = 0. Make un = a

 and Pn = sq.

 The cases n s 3, n s 5 , n s 7 (mod 8) are handled similarly to the case

 n s l(mod 8). The cases n a 4, n = 6 , ns 0(mod 8) are handled similarly tò

 the case n s 2 (mod 8). So the induction on n is complete and Pn and un
 have been chosen for all n.

 The series 2x + E^™A Pi(x) sums to a continuously differentiable function
 g on R. This follows from IPn(x)| + IPń(*)l < 2~n for 'x' < n- (It is

 well to note here that had we required E.°° Ipís^'^íx)! < 2"n for |x| < n,
 1=0

 then g would be a real analytic function. This can be verified by using the

 remainder in Taylor's Theorem.) By construction, Pn(ui) = 0 for n > i. It

 follows, then, that g(A) = A0, g(B) = B0, g(C) = C0, g(D) = D0. Finally,

 g* = 2 + E " pļ > 2 - Eļ"A 2*1 > 1 . □

 Before tackling the proofs of the Theorems, we make some observations

 about continuously differentiable functions g with positive derivative. If

 f has a proper local maximum (minimum) at g(x), then clearly f(t) =

 f(&(t)) also has a proper local maximum (minimum) at x. Likewise, if f is

 increasing (decreasing) at g(x), clearly F is increasing (decreasing) at

 x.

 The last fraction in the equation

 F(x + h) - P(x) _ ff(g(x + h)) - f(g(x))ļ fg(x + h) - g(x)ļ
 1 ' h I g(x + h) - g(x) J I h J

 tends to g'(x) as h tends to 0, so
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 D+F(x) = D+f(g(x))g'(x), D+F(x) = D+f( g(x))g'(x),
 D-P(X) = D"f( g(x))g*(x), D.P(x) = D_f( g(x))g'(x).

 Thus if [D+f ,D"*"f ] u [D.f,D"f] = t-oo,oo], as in Theorem 2 at every point, then

 [IXfF.D+F] u [D_F,D"F] = [-00,00] at every point. If f has a knot point at
 g(x), then F has a knot point at x. If f exists and is continuous at

 g(x), then F* exists and is continuous at x. The same is true when

 "discontinuous" replaces "continuous" .

 Both g and g-J- map sets of measure 0 to sets of measure 0 [5].

 Thus if f is absolutely continuous (singular) on every compact interval,

 then F must be absolutely continuous (singular) on every compact interval.

 Proof of Theorem 1. Let f be everywhere differentiable on R such that

 f has proper local maximum points in every interval and has proper local

 minimum points in every interval. Then f is not monotone on amy interval,

 so the sets

 CŁ = {x « R: f'(x) > 0}, Dj_ = {x è R: f'(x) < 0}

 are each dense in R. Moreover f is increasing at each point of C¿ and f

 is decreasing at each point of D¿. Let C0 be a countable dense subset of

 CA , and let D0 be a countable dense subset of D¿. Let A0 consist of all

 points where f has a proper local maximum point, and let B0 consist of all

 points where f has a proper local minimum point. Then the composition

 function F(x) = f(g(x)) suffices where g is the function in Lerana 1. Note

 that F is everywhere differentiable by the chain rule of differentia-

 tion . □

 Proof of Theorem 2. We use [2] to construct a continuous function f on

 R such that

 [D+f(x),D+f(x)] u [D.f(x),D"f(x)] = [-00,00]

 for each x « R, and such that each of the sets
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 A = fx « R: D.f(x) = 00} ,
 ł +

 = {x € Rs D+f(x) = -oo},

 C ='{x 6 Rs D_f( X) = 00},

 = {x « R: D f(x) = -00},

 is dense in R. Let Aq be a countable dense subset of AŁ, B0 of BŁ, C0

 of CŁ and Dq of DŁ. Then F(x) = f(g(x)) suffices where g is the

 function in Lemma 1. Note that F inherits the desired properties from f

 because g ' is everywhere positive. □

 Proof of Theorem 3. It is Known [3], [6], that there exist increasing

 functions hx and hz on R, absolutely continuous on every compact

 interval, such that h¿ = ® on a countable dense set Y and h¿ is finite

 on a countable dense set X, h¿ > 0 on h2(Y) and hļ = 0 on h2(X). Then

 the composite function h3(x) = hŁ(h2(x)) is increasing and absolutely

 continuous on every compact interval. Note that h3 maps sets of measure O

 to sets of measure 0 because hA and h2 do so. Moreover, hj = oo on Y

 and h3 = 0 on X by the chain rule of differentiation.

 Partition X into two countable dense subsets X¿ and xz. By the

 argument in the preceding paragraph, there is em increasing function h* on

 R, absolutely continuous on every compact* interval, such that hļ = O on
 X± u Y and hļ = od on X2. Then f = h3 - h4 is absolutely continuous on

 compact intervals, and f ' = 0 on XA,f* = 00 on Y and f = -00 on Xz.

 Each of the sets

 = (X ť Rs D+f(x) = oo} ,

 = {X 6 R: D+f(x) = -00},

 E3 = {x « R: D~f(x) = 00} ,

 E^ = {x « R: D f(x) = -00},

 164



 is a dense Gs-set in R, so EŁ n E2 n E3 n is dense. But any point in

 EŁ n E2 n E3 n E^ is a knot point of f. Let D0 be a countable dense

 subset of Eł n E2 n E3 n E4. Let Aq = XŁ, B0 = Y, and C0 = X2. Finally,

 F(x) = f(g(x>) suffices where g is the function in Lemma 1. □

 Our approach to Theorem U is similar. However we must use Lemma 1 twice.

 Proof of Ibeorea Let hA be a strictly increasing function,

 continuous and singular on every compact interval. By [5], hŁ cannot have a

 finite Dini derivate at every point of an interval I, for otherwise hA

 would be constant on I. Thus hļ = oo on a dense subset of R. Let Y be a

 countable dense set of points on which hļ = oo, (and let X be a countable

 dense set of points on which hļ = oo) and let X be a countable dense set of

 points on which hļ = 0. Partition X into two countable dense subsets XŁ

 and X2. By Lemma 1, there is a continuously differentiate increasing

 function gŁ from R to R such that gŁ(XŁ u Y) = X, gļ > 1, and g^íXz)

 = Y. It follows that the composite function h2(x) ='hŁ(gŁ(x)) is

 increasing , continuous and singular on every compact interval , h2 = 0 on

 Xj_ u Y and h¿ = oo on X2. Put f = hA - h2. Then f is continuous and

 singular on every compact interval. Moreover, f ' = O on XA, f = oo on Y

 and f' = -oo on X2. The rest of the argument is just like the proof of

 Theorem 3, so we leave it. □

 Proof of Theorem 5. We use [3] to find a bounded derivative f* on R

 that takes positive and negative values in every interval . Then the set

 X = {x « R: f'(x) = 0} is dense in R. Fix xŁ « X. Construct a sequence of

 intervals ( such that lim an = xŁ, and for each n, an e X,

 bn « X,

 < an+i < < an «n* ^ ' an < 2"n<*n - *i)-

 For each n let rn be the positive number such that sup r^f^an,!^)! = 1.

 Let hA be the function that coincides with rnf' on (an,bjļ) for each n,

 and vanishes elsewhere. For an.^ > t > an we have
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 oo - i oo - i i-n

 < Ej=n 2 <aj * *Ł) < <ť * XŁ> £j=n 2 = 2 (t - xł) .
 ft

 It follows that lim (t - xŁ)_i hŁ = O, and hŁ is the derivative of
 t-xA j xx

 its primitive function at xŁ, and at all points of R as well. Note that

 f* and hŁ have opposite sign at no point, hŁ vanishes where f

 vanishes, and hA is discontinuous at x¿ by construction.

 Now let fx«} 00 be a countable dense subset of X. Por each n, we use nin=3.

 the argument in the preceding paragraph to construct a derivative such

 that sup|hnl = 1, hn is discontinuous at xn, and no two of the functions

 f * , hŁ,h2, • • • ,hn, • • • have opposite sign at any point.

 Then f* + 2"nhn is also a derivative, say of the function H, and

 H' is discontinuous at each Moreover, H* vanishes on X, so H' is

 continuous on a dense subset of X. Also H' is positive (negative) at any

 point where f is positive (negative). Let Aq be a countable dense set of

 points on which H' is negative, let C0 = {Xn)n"Ł on which H ' vanishes and
 is discontinuous, and let D0 be a countable dense set of points on which H'

 vanishes and is continuous. Then F(x) = H(g(x)) suffices where g is the

 function in Lemma 1. □

 Lemma 1 can also be used to construct other pathological functions. Por

 example, there is a continuous function P on R that has an upward cusp at

 each point of A and at no other points, and a downward cusp at each point of

 B and at no other points, and each point of C is a. knot point of P. To

 construct F, note that it is easy to construct a continuous function with

 upward and downward cusps in every interval; such a function must have knot

 points in every interval, etc. A possible topic for further study would be

 the possibilities when some of the sets A, B, C, D are uncountable. This is

 suggested in [6], for example. We used 4. pairs of sets in Lenona 1, but it

 clearly can be generalized to n pairs of sets. It can be proved for

 countably infinitely many pairs. If it is desired that g' be positive and

 bounded for any reason, consider g_i.

 166



 REFERENCES

 1. A. Bruckner, Some new simple proofs of old difficult theorems, Real
 Analysis Exchange, vol. 9 (1984) pp. 63-78.

 2. K.M. Garg, On a residual set of continuous functions, Czechoslovak
 Mathematical Journal, vol. 20 #4 (1970) pp. 537-54-3.

 3. Y. Katznelson & K. Stromberg, Everywhere differentiable nowhere monotone
 functions, Amer. Math. Monthly 81 (1974) pp. 349-354.

 4. J.W. Nienhuys & J.G.F. Thiemann, On the existence of entire functions
 mapping countable dense sets onto each other, Indagationes Mathematicae ,
 vol. 38 #4 (1976) pp. 331-334.

 5. S. Saks, Theory of the Integral, second Revised Edition, Dover, 1964,
 p. 271.

 6. Z. Zahorski, Sur la premiere derivee, Transactions Amer. Math. Society,
 vol. 69 (1950) pp. 1-54, Theorem 8.

 167


	Contents
	p. 159
	p. 160
	p. 161
	p. 162
	p. 163
	p. 164
	p. 165
	p. 166
	p. 167

	Issue Table of Contents
	Real Analysis Exchange, Vol. 11, No. 1 (1985-86) pp. 1-289
	Front Matter
	EDITORIAL MESSAGE [pp. 4-4]
	THE TENTH SUMMER REAL ANALYSIS SYMPOSIUM July 27-30 1986 [pp. 5-5]
	PROCEEDINGS OF THE NINTH SYMPOSIUM
	The Ninth Summer Real Analysis Symposium June 12-15, 1985, The University of Louisville: Schedule of Events [pp. 6-9]
	Very Generalized Riemann Derivatives, Generalized Riemann Derivatives and Associated Summability Methods [pp. 10-29]
	NONABSOLUTE INTEGRATION IN THE PLANE [pp. 30-39]
	Determining Sets for Functions and Measures [pp. 40-55]
	CONCERNING EXTENDABLE CONNECTIVITY FUNCTIONS [pp. 56-63]
	Continuous Restrictions of Marczewski Measurable Functions [pp. 64-71]
	Infinite Peano derivatives [pp. 72-74]
	TWO MORE CHARACTERIZATIONS OF BESOV-BERGMAN-LIPSCHITZ SPACES [pp. 75-80]
	HIGH ORDER SMOOTHNESS [pp. 81-84]
	A New Approach to Integration [pp. 85-96]

	TOPICAL SURVEY
	SELECTIVE DIFFERENTIATION [pp. 97-120]

	RESEARCH ARTICLES
	NONABSOLUTELY CONVERGENT INTEGRALS [pp. 121-133]
	BILINEAR INTEGRATION OF AN EXTREME POINT MULTIFUNCTION [pp. 134-158]
	DERIVATIVES ON COUNTABLE DENSE SUBSETS [pp. 159-167]
	PLANAR SETS WHOSE COMPLEMENTS DO NOT CONTAIN A DENSE SET OF LINES [pp. 168-178]
	Closure Properties of Order Continuous Operators [pp. 179-193]
	CONTINUOUS FUNCTIONS NEED NOT HAVE σ-POROUS GRAPHS [pp. 194-203]
	MONOTONE SECTIONS OF FUNCTIONS OF TWO VARIABLES [pp. 204-220]
	A RIESZ-TYPE DEFINITION OF THE DENJOY INTEGRAL [pp. 221-227]
	Some Properties of Semi-continuous Functions [pp. 228-243]

	INROADS
	A MOMENT INEQUALITY [pp. 244-253]
	THE UNIFORM LIMIT OF CONNECTIVITY FUNCTIONS [pp. 254-259]
	CONNECTIVITY FUNCTIONS WITH A PERFECT ROAD [pp. 260-264]
	A DERIVATIVE OFTEN ZERO AND DISCONTINUOUS [pp. 265-270]
	THE METHOD OF FRACTIONAL OPERATORS APPLIED TO SUMMATION [pp. 271-282]
	APPROXIMATE PEANO DERIVATIVES AND THE BAIRE ONE PROPERTY [pp. 283-289]




